RĪGAS TEHNISKĀ UNIVERSITĀTE

Materiālzinātnes un lietišķās ķīmijas fakultāte Lietišķās ķīmijas institūts

RIGA TECHNICAL UNIVERSITY

Faculty of Materials Science and Applied Chemistry Institute of Applied Chemistry

Elmārs ZARIŅŠ

Doktora studiju programmas "Ķīmija" doktorants

AMORFO FĀZI VEIDOJOŠU ORGANISKO LUMINOFORU UN CITU FOTOREFRAKTĪVO SAVIENOJUMU SINTĒZE UN ĪPAŠĪBAS

Promocijas darba kopsavilkums

SYNTESIS AND PHYSICAL PROPERTIES OF AMORPHOUS PHASE FORMING GLASSY ORGANIC LUMUNOPHORES AND OTHER COMPOUNDS WITH PHOTOREFRACTIVE PROPERTIES

Summary of Doctoral Thesis

Zinātniskais vadītājs (Supervisor) Dr. chem., profesors Valdis KOKARS

RTU Izdevniecība Rīga 2014 Iespiests saskaņā ar promocijas padomes RTU "P-01" 2014. gada 25. septembra sēdes lēmumu, protokols Nr. 142.20.

Šis darbs izstrādāts ar Eiropas Sociālā fonda atbalstu projektā "Atbalsts RTU doktora studiju īstenošanai"

This work has been supported by the European Social Fund within the project "Support for the implementation of doctoral studies at Riga Technical University"

PROMOCIJAS DARBS IZVIRZĪTS ĶĪMIJAS DOKTORA GRĀDA IEGŪŠANAI RĪGAS TEHNISKAJĀ UNIVERSITĀTĒ

Promocijas darbs ķīmijas doktora grāda iegūšanai tiek publiski aizstāvēts 2014. g. 23. oktobrī Rīgas Tehniskās universitātes Materiālzinātnes un lietišķās ķīmijas fakultātē, Paula Valdena ielā 3/7 (bijušās Āzenes ielā 14/24), 272. auditorijā, plkst. 15:00.

OFICIĀLIE RECENZENTI

Profesors, *Dr. habil. chem.*, Andris ZICMANIS Latvijas Universitāte

Vadošais pētnieks, *Dr. phys.*, Jānis TETERIS Latvijas Cietvielu fizikas institūts

Vadošais pētnieks, *Dr. chem.*, Aivars KRAUZE Latvijas Organiskās sintēzes institūts

APSTIPRINĀJUMS

Apstiprinu, ka esmu izstrādājis doto promocijas darbu, kas iesniegts izskatīšanai Rīgas Tehniskajā universitātē inženierzinātņu (vai cita) doktora grāda iegūšanai. Promocijas darbs nav iesniegts nevienā citā universitātē zinātniskā grāda iegūšanai.

Elmārs Zariņš(Paraksts) Datums:

Promocijas darbs ir uzrakstīts latviešu valodā. Tas satur 96 attēlus, 24 tabulas, 5 pielikumus (neskaitot publikācijas) un tas atspoguļots 175 lappusēs. Darbā citēti 114 literatūras avoti.

SATURS

PROMOCIJAS DARBA VISPĀRĒJS RAKSTUROJUMS	5
Tēmas aktualitāte	6
Pētījuma mērķis un darba uzdevums	6
Zinātniskā novitāte un galvenie rezultāti	7
Darba aprobācija un zinātniskās publikācijas	7
PROMOCIJAS DARBA GAVLVENIE REZULTĀTI	12
1. Tritiloksietilgrupu saturošo 2-alkil-, 6-stiril- un 2,6-bis-stiril-4H-pirān-4-	
ilidēn atvasinājumu sintēze un fizikālo īpašību raksturojumi	12
2. Uz cikloheks-2-ēn-1-ilidēn un 4 <i>H</i> -pirān-4-ilidēn atvasinājumu bāzes	
sintezētie molekulārie stikli un to īpašības	16
3. Atšķirīgas struktūras stirilgrupas saturošo 2,6-bis-stiril-4H-pirān-4-ilidēn	
atvasinājumu sintēze un fizikālo īpašību raksturojumi	20
4. Amorfo fāzi veicinošo tritiloksietilgrupu saturošo 2,6-diazvietotu-4H-piridīna	
atvasinājumu sintēze un fizikālās īpašības	26
5. Tritilgrupu un azobenzola fragmentus saturošo molekulāro stiklu sintēze	
un to fotorefraktīvās īpašības	32
GALVENIE SECINĀJUMI	40
PATEICĪBAS	42

PROMOCIJAS DARBA VISPĀRĒJS RAKSTUROJUMS

Tēmas aktualitāte

Organiskie D- π -A tipa savienojumi, kuros molekulas elektronu donorais fragments (D) caur konjugētu π -elektronu sistēmu saistīts ar elektronu akceptoro (A) molekulas fragmentu, tiek intensīvi pētīti kā potenciāli izmantojamie materiāli dažādās fotonikas nozarēs¹. Daži šāda veida savienojumi, absorbējot elektromagnētisko starojumu ar noteiktu viļņa garumu, spēj emitēt starojumu ar citu, lielāku viļņa garumu. Savienojumi ar gaismu emitējošām īpašībām ir potenciāli izmantojami organisko gaismu emitējošo diožu, vai atsevišķos gadījumos arī cietvielu lāzeru materiālu pētījumos².

D- π -A tipa savienojumi, kuri savās molekulās satur azogrupu, var raksturoties ar fotorefraktīvām īpašībām un tiek pētīti arī kā potenciāli materiāli informācijas ierakstīšanai un uzglabāšanai³. Iedarbojoties uz šādu savienojumu bāzes veidotiem materiāliem ar diviem interferējošiem lāzera stariem, fotoizomerizācijas un viskoelastīgas masas pārneses rezultātā uz materiāla virsmas notiek deformācijas process un veidojas virsmas reljefa režģis (SRG). Virsmas reljefa režģim piemīt difrakcijas režģa īpašības, kuras var izmantot hologrāfisko datu ierakstīšanai un uzglabāšanai³.

Neorganisko savienojumu materiāli ar gaismu emitējošām un informācijas uzglabāšanas īpašībām jau tiek izmantoti fotonikas materiālu ražošanai un praktiskai izmantošanai. Uz neorganisko savienojumu bāzes izveidotu fotonikas ierīču izgatavošana ir dārga, jo tehnoloģiskie procesi to ražošanai ir sarežģīti un energoietilpīgi, bet paši materiāli ir trausli un salīdzinoši smagi. Šos trūkumus būtu iespējams novērst, lietojot materiālus, kas iegūti uz organisko savienojumu bāzes. Tie ir plāni, viegli, elastīgi un samērā vienkārši iegūstami sintēzes ceļā^{1,3}. Lai organiskos savienojumus varētu izmantot gaismu emitējošo un fotorefraktīvo materiālu pētījumos, tiem jāpiemīt noteiktām fizikālajām īpašībām. Piemēram, cietā agregātstāvoklī tiem ir jābūt caurspīdīgiem jeb jāveido amorfa struktūra.

¹ L. S. Hung, C. H. Chen. *Mater. Sci. Eng:R*, **2002**, *39*, 143–222. ² I. D. W. Samuel, G. A. Turnbull. *Chem. Rev.*, **2007**, *107*, 1272–1295.

³ K. G. Yager, C. J. Barret. Polymeric Nanostructures and Their Applications, 2006, 0, 1–38.

Kā zināms amorfs stāvoklis ir termodinamiski nestabils un parasti molekulārā tipa organiskos savienojumus šādā stāvoklī var iegūt to kausējumu straujas dzesēšanas rezultātā vai arī tos sublimējot no vakuuma, kas ir dārgi un tehnoloģiski sarežģīti procesi⁴. Amorfs stāvoklis ir raksturīgs vairumam no sintētiskajiem organiskajiem polimēriem. Polimēri spēj veidot amorfu struktūru arī no organiskajiem šķīdinātajiem, tiem iztvaikojot. Tā ir lēta un vienkārša metode polimēra tipa materiālu iegūšana cietā amorfā stāvoklī. Lai gan organisko polimēru iegūšana nav īpaši sarežģīta, to sintēzes atkārtojamība ir slikta jeb praktiski neiespējama¹. Veicot viena un tā paša polimēra sintēzi vairākas reizes, katrā no tām tiks iegūts attiecīgo dažādas molmasas molekulu maisījums. Šādu polimēra tipa materiālu fizikālās īpašības var nedaudz būt atkarīgas no konkrētās polimēra iegūšanas reizes jeb molekulu ar atšķirīgām molmasām sadalījuma polimēru materiālā.

Pašlaik intensīvi tiek pētīti tādi ar gaismu emitējošām vai fotorefraktīvajām īpašībām apveltīti organiskie molekulārā tipa materiāli, kurus veido vienas noteiktas molekulārās struktūras savienojumi jeb tā saucamie molekulārie stikli.

Pētījuma mērķis un darba uzdevums

Zināms, ka dažiem molekulārā D- π -A tipa organiskajiem savienojumiem (skat. 1. att.), kuri savās molekulās satur 4*H*-pirān-4-ildinēn vai azobenzola fragmentu, kā arī elektronu akceptoro un elektronu donoro daļas, piemīt gaismu emitējošās vai fotorefraktīvās īpašības. To sintēze nav pārāk sarežģīta un izejvielas ir pieejamas.

R = a) -CH₃ ; b) -CH(CH₃)₂; c) -C(CH₃)₃); d) -CH=CH-Ar;

A - elektronu akceptorais fragments D - elektronu donorais fragments π -konjugācijas sistēmas fragmenti

1. att. Dažu D-π-A tipa fotojūtīgo organisko savienojumu vispārīgās struktūras

⁴ P. Strohriegel, J. V. Grazulevicius. *Adv. Mater.*, **2002**, *14*, 1439–1452.

Mūsu darba galvenais uzdevums bija ne tikai sintezēt un raksturot fizikālās īpašības tādiem 1. att. vispārīgi parādītajiem savienojumiem, bet arī iegūt šī tipa savienojumus, kuri savās molekulās vēl papildus saturētu apjomīgos tritiloksietilaizvietotājus. Apjomīgie tritiloksietil- aizvietotāji varētu nodrošināt šo savienojumu spēju veidot plānas, caurspīdīgas un amorfas cietas filmiņas, kuru uzklāšana būtu realizējama no viegli gaistošiem organiskajiem šķīdinātājiem.

Zinātniskā novitāte un galvenie rezultāti

Pētījuma rezultātā izstrādātas sintēzes metodes un sintezēti vairāki apjomīgo tritiloksietilgrupas saturošie 4*H*-pirān-4-ilidēn un azobenzola fotojutīgie atvasinājumi, kuri veido kinētiski stabilas amorfas kārtiņas jeb filmiņas no viegli gaistošiem organiskajiem šķīdinātajiem. Tas ļauj tos ievadīt fotonikas ierīcēs ar tehnoloģiski vienkāršu un lētu rotējošās virsmas uzklāšanas (*"spin-coating"*) metodi. Iegūti savienojumi izmantošanai organiskajos cietvielu lāzeros.

Darba aprobācija un zinātniskās publikācijas

Nodaļa zinātniskā grāmatā:

 E. Zarins, A. Vembris, V. Kokars, I. Muzikante. Synthesis and physical properties of red luminescent glass forming pyranylidene and isophorene fragment containing derivatives. *Book: Organic Light-Emitting Devices*. ISBN: 979-953-307-810-5, 242 lpp. – publicēta 36 lpp. gara nodaļa.

Publikācijas:

- A. Ozols, V. Kokars, P. Augustovs, D. Malinovskis, K. Traskovskis, E. Zarins, G. Ivanovs. Self-Enhancement of Scalar and Vector Holographic Gratings in Azobenzene Molecular Glassy Films. *Optics and Photonics Journal*, 2014, *4*, 143–152.
- A. Vembris, E. Zarins, V. Kokars. Amplified spontaneous emission of glass forming DCM derivatives in PMMA films. *Proceedings of SPIE*, 2014, *9137*, 91371E-1-91371E-6.

- 4. E. Zarins, A. Tokmakovs, Z. Kalnina, V. Kokars, K. Lazdovica, A. Vembris, M. Rutkis, A. Ozols, P. Augustovs, V. Kampars. Thermal, glass-forming, nonlinear optical and holographic properties of "pull-push" type with azochromophores triphenyl moieties containing isophorene and pyranylidene fragments. Proceedings of SPIE, 2013, 8622, 86221H-1-86221H-12. doi: 10.1117/12.2003085.
- A. Vembris, E. Zarins, J. Jubels, V. Kokars, I. Muzikante, A. Miasojedovas, S. Jursenas. Thermal and optical properties of red luminescent glass forming symmetric and non symmetric styryl-4H-pyran-4-ylidene fragment containing derivatives. *Optical Materials*, 2012, *34*, 1501–1506.
- E. Zarins, K. Siltane, E. Misina, V. Kokars, K. Lazdovica, A. Vembris, V. Kampars, I. Muzikante, M. Rutkis. Synthesis, optical and thermal properties of glassy trityl group containing luminescent derivatives of 2-*tert*-butyl-6-methyl-4*H*-pyran-4-one. *Proceedings of SPIE*, 2012, *8435*, 84351Q-1-84351Q-7. doi: 10.1117/12.921996.
- A. Tokmakovs, M. Rutkis, K. Traskovskis, E. Zarins, L. Laipniece, V. Kokars, V. Kampars. Nonlinear optical properties of low molecular organic glasses formed by triphenyl modified chromophores, *IOP conference series: Material Sciences and Engineering*, 2012, 38, 012-034.
- Zariņš E., Puciriuss T., Siltāne K., Kokars V. One pot synthesis of 2-(3-styryl)-5,5-dimethylcyclohex-2-enylidene)malononitrile dyes as potential multifunctional optical materials. *Latvijas ķīmijas žurnāls*, 2012, *51(1)*, 78–78.
- A. Vembris, M. Pozorovs, I. Muzikante, V .Kokars, E. Zarins. Pyranylidene indene-1,3-dione derivatives as an amorphous red electroluminescence material. *Journal of Photonics for Energy*, 2011, 1, 011001-011008.
- E. Zarins, V. Kokars, A. Ozols, P. Augustovs. Synthesis and properties of 1,3dioxo-1*H*-inden-2(3*H*)-ylidene fragment and (3-(dicyanomethylene)-5,5dimethylcyclohex-1-enyl)vinyl fragment containing derivatives of azobenzene for holographic recording materials. *Proceedings of SPIE*, 2011, 8074, 80740E-1 -80740E-6.

- E. Zarins, J. Jubels, V. Kokars. Synthesis of red luminescent non symmetric styryl-4H-pyran-4-ylidene fragment containing derivatives for organic lightemitting diodes. *Advanced Materials Research*, 2011, 222, 271–274.
- E. Zarins, V. Kokars, M. Utinans. Synthesis and properties of red luminescent 2-(3-(4-(bis(2-(trityloxy)ethyl)amino)styryl)-5,5-dimethylcyclohex-2-enylidene) malononitrile for organic light-emitting diodes. *IOP conference series: Material Sciences and Engineering*, 2011, 23, 012–019.
- A. Vembris, M. Porozovs, I. Muzikante, J. Latvels, A. Sarakovskis, V. Kokars, E. Zarins, "Novel amourphous red electroluminescence material based on pyranylidene indene-1,3-dione", *Latvian Journal of Physics and Technical Sciences*, 2010, 47(3), 23–30.

Dalība konferencēs ar referātu:

- E. Zarins, A. Tokmakovs, V. Kokars, M.Rutkis, A. Ozols, P. Augustovs, V. Kampars. Synthesis and physical property investigation of glassy azobenzene derivatives. "*RTU 54. Starptautiskā zinātniskā konference*", 2013, Ķīpsala. Rīga, Latvija.
- E. Zarins, A. Vembris, K. Siltane, E. Misina, V. Kokars, K. Lazdovica, S. Popova, V. Kampars, M. Rutkis. Trityloxyethyl and *tert*-butyl groups containing molecular glasses of 4*H*-pyran-4-ylidene derivatives with light-emitting and amplified spontaneous emission properties. *"RTU 53. Starptautiskā zinātniskā konference"*, 2012, Ķīpsala. Rīga, Latvija.
- E. Zarins, V. Kokars, A. Ozols, P. Augustovs. Synthesis and properties of 1,3-dioxo-1*H*-inden-2(3*H*)-ylidene fragment and (3-(dicyanomethylene)-5,5-dimethylcyclohex-1-enyl)vinyl fragment containing derivatives of azobenzene for holographic recording materials. "SPIE Optics + Optoelectronics 2011", 2011, 18.–21. Aprīlis, Prāga, Čehija, Prāgas Kongresa centrs.
- E. Zarins, J. Jubels, V. Kokars. Synthesis of red luminescent non symmetric stryryl-4*H*-pyran-4-ylidene fragment containing derivatives for organic lightemitting diodes. "*Inter Academia – 2010*", 2010, 9.–12. Augusts, Rīga.

Dalība konferencēs ar stenda referātiem:

- E. Zarins, T. Puciriuss, M. Otikovs, I. Neibolte, K. Siltane, E. Misina, V. Kokars, A. Ozols, P. Augustovs, V. Kampars. Investigation of structure and physical properties of pyranylidene fragment containing molecular glasses with trytiloxyethyl and *tert*-butyl groups. "Discoveries in Optics and Communications 2013", 2013, 10–12 Aprīlis, LU, CFI, Rīga, Latvija.
- E. Zarins, A. Tokmakovs, Z. Kalnina, V. Kokars, K. Lazdovica, A. Vembris, M. Rutkis, A. Ozols, P. Augustovs, K. Lazdovica, V. Kampars. Thermal, glassforming, nonlinear optical and holographic properties of "pull-push" type azochromophores with triphenyl moieties containing isophorene and pyranylidene fragments. "SPIE Photonics West 2013", 2013, 2–7 februāris, SanFrancisko, Kalifonija, ASV.
- E. Zarins, K. Siltane, E. Misina, V. Kokars, K. Lazdovica, A. Vembris, V. Kampars, I. Muzikante, M. Rutkis. Synthesis, optical and thermal properties of glassy trityl group containing luminescent derivatives of 2-*tert*-butyl-6-methyl-4*H*-pyran-4-one. "SPIE Photonics Europe 2012", 2012, 16.–19. Aprīlis, Brisele, Beļģija.
- E. Zariņš, J. Jubels, V. Kokars, A. Vembris, I. Muzikante. Apjomīgo tritilgrupu saturošo luminoforu sintēze un īpašības. *Apvienotais pasaules latviešu* zinātnieku III. kongress un letonikas IV. kongress, 2011.g. 24.–27. oktobris, Rīga, Latvija.
- E. Zariņš, V. Kokars, A. Ozols, P. Augustovs. Hologrāfisko ierakstu materiāliem pētāmo 4*H*-pirān-4-(1,3-dioksi-1*H*-inden-2(3*H*)-ilidēn) fragmentu saturošu azobenzola atvasinājumu sintēze un īpašības. "*RTU 52. starptautiskā zinātniskā* konference", 2011.g. 13.–15. oktobris, Rīga, Latvija.
- Zariņš E., Puciriuss T., Siltāne K., Kokars V. One pot synthesis of 2-(3-styryl)-5,5-dimethylcyclohex-2-enylidene)malononitrile dyes as potential multifunctional optical materials. "Paul Walden 7th Symposium on Organic Chemistry", 2011.g. 5.–6. oktobris, Rīga, Latvija.

- E. Zarins, V. Kokars, M. Utinans. Synthesis and properties of red luminescent 2-(3-(4-(bis(2-(trityloxy)ethyl)amino)styryl)-5,5-dimethylcyclohex-2-enylidene) malononitrile for organic light-emitting diodes. *"Functional Materials and Nanotechnologies 2011"*, 2011, 5–8 Aprīlis, LU, CFI, Rīga, Latvija.
- E. Zariņš, J. Jubels, V. Kokars, A. Vembris, M. Porozovs, I. Muzikante. Synthesis and properties of red luminiscent symmetric styryl-4H-pyran-4-ylidene fragment containing derivatives for organic light-emitting diodes. "*RTU 51. Starptautiskā* zinātniskā konference". 2010. gada 13–15. oktobrī, Rīgā.
- E. Zarins, J. Jubels, V. Kokars. Synthesis of red luminiscent non symmetric stryryl-4H-pyran-4-ylidene fragment containing derivatives for organic lightemitting diodes. "Inter Academia – 2010", 2010, 9–12 Augusts, Rīga, Latvija.

PROMOCIJAS DARBA GAVLVENIE REZULTĀTI

1. Tritiloksietilgrupu saturošo 2-alkil-, 6-stiril un 2,6-*bis*-stiril-4*H*-pirān-4-ilidēn atvasinājumu sintēze un fizikālo īpašību raksturojumi

4*H*-Pirān-4-ilidēn fragmentu saturošo mērķa savienojumu iegūšanai viena no galvenajām izejvielām – 2,6-dimetil-4*H*-pirān-4-ons (2) tika iegūts (skat. 1.1. att.), dekarboksilējot dehidroacetskābi jeb 3-actetil-4-hidroksi-6-metil-2-okso-2*H*-pirānu (25) ar 86 % iznākumu. 2,6-Dimetil-4*H*-pirān-4-ona (26) tālākās reakcijās ar aktīvo metilēngrupu saturošiem savienojumiem (skat. 1.1. att.) reakcijā ar malonnitrilu (3a), indān-1,3-dionu (3b), vai barbitūrskābi (3c) etiķskābes anhidrīdā, tika iegūti 4*H*-pirāni 4a-c ar 51–90 % iznākumiem. Tiem reaģējot ar 4-(N,N-bis-(2-tritiloksietil)-amino)-benzaldehīdu (5) visos gadījumos tika iegūti *mono-* un *bis-* kondensācijas produktu maisījums.

1.1. att. 2,6-Bis-stiril-un 2-metil-6-stiril-4H-pirān-4-ilidēn atvasinājumu iegūšana.

Attiecīgi, 2-(2-(4-(bis(2-tritiloksi)etil)amino)stiril-4*H*-pirān-4-ilidēn atvasinājumu 6a (DWK-1) un 7a (DWK-2), 2-(2-(4-(bis(2-tritiloksi)etil)amino)stiril-4*H*-pirān-4-ilidēn atvasinājumu 6b (ZWK-1) un 7b (ZWK-2) un 2-(2-(4-(bis(2-tritiloksi)etil)amino)stiril-4*H*pirān-4-ilidēn atvasinājumu 6c (JWK-1) un 7c (JWK-2) maisījumi. Iegūto *mono*kondensācijas produktu atdalīšana (turpmāk vienkārši *mono*-stiril-4*H*-pirāni) no *bis*kondensācijas produktiem (turpmāk *bis*-stiril-4*H*-pirāni) ir ilgs un darbietilpīgs process, taču savienojumi 6a, 6b, 6c un 7a, 7b, 7c kā individuālās vielas tika izdalītas pietiekamos daudzumos, lai to struktūras un fizikālās īpašības varētu viennozīmīgi raksturot.

Amorfās fāzes veidošanos, tās stabilitāti, kā arī savienojumu **6a**, **6b**, **6c** un **7a**, **7b**, **7c** termiskās īpašības raksturotas atbilstoši ar diferenciālo skenējošo kolorimetriju (DSC) un termogravimetriju (TGA) un iegūtie rezultāti parādīti 1.1. tabulā.

1.1. Tabula

Savienojums	T _g , (°C) 1. sildīšana	T _g , (°C) 2. sildīšana	k.t., (°C)	Τ _d , ([°] C)
6b	117	110	212	274
7b	122	118	144	284
6a	-	-	250	267
7a	118	112	148	296
6c	133	120	146	266
7c	135	127	144	283

Iegūto 4*H*-pirān-4-ilidēn atvasinājumu **6a-c** un **7a-c** termiskās īpašības.

 T_d – termiskās sadalīšanās temperatūra ; k. t. – kušanas temperatūra

 T_g – stiklošanās temperatūra

Bis-stiril-4*H*-pirāni **7a**, **7b 7c** uzrādīja augstāku termisko stabilitāti, bet zemākas kušanas un zemākas stiklošanās temperatūras, salīdzinot ar *mono*-stiril-4*H*-pirāniem **6a**, **6b**, **6c**, kas skaidrojams ar apjomīgo tritiloksietilgrupu skaitu un attiecīgā savienojuma molmasas pieaugumu. Augstākās stiklošanās temperatūras uzrādīja 4*H*-pirāna atvasinājumi **6c** un **7c**, kuri elektronu akceptorajā daļā satur barbitūrskābes molekulas fragmentu, kas skaidrojams ar iespējamo ūdeņraža saišu veidošanos starp molekulām. Savienojumiem **6b**,

6c un **7a**, **7b**, **7c** tika novērota stiklošanās temperatūra gan pirmajā sildīšanas ciklā, gan arī otrajā sildīšanas ciklā, kas liecina par tā amorfās fāzes augstu kinētisko stabilitāti cietā stāvoklī. Diemžēl savienojuma **6a** gadījumā mums neizdevās novērot stiklošanos nevienā no sildīšanas cikliem, kas liecina par tā amorfās fāzes zemu kinētisko stabilitāti.

Ar rotējošās virsmas uzklāšanas metodi iegūtās savienojumu **6a**, **6b**, **6c** un **7a**, **7b**, **7c** plānās amorfās filmiņas parādītas 1.3. att. Savienojumu **6b**, **6c** un **7a**, **7b**, **7c** gadījumos no to CH₂Cl₂ šķīdumiem iegūto plāno kārtiņu virsma ir gluda un kristalizācijas centri nav novērojami. Savukārt plānā kārtiņā, kas iegūta no **6a** CH₂Cl₂ šķīduma var ieraudzīt mazu kristalizācijas centru veidošanos.

1.2. att. Optiskā mikroskopa fotogrāfijas plānām amorfām filmiņām, kuras iegūtas no sintezētajiem 4*H*-pirān-4-ilidēn fragmentu saturošajiem molekulārajiem stikliem.

Salīdzinot ar literatūrā^{1,2} apskatītie 4*H*-pirān-4-ilidēn fragmentu saturošie atvasinājumi, kuri sāk kristalizēties, iejaucot (dopējot) tos polimēru matricā lielākā masas daļā par 2 %, atsevišķos gadījumos lielākā par 10 % masas procentiem, bet mūsu sintezētie savienojumi **6a**, **6b**, **6c** un **7a**, **7b**, **7c** veido kvalitatīvu plāno kārtiņu (filmiņu) cietā stāvoklī bez polimēru matricas un satur tikai attiecīgo 4*H*-pirāna atvasinājumu.

Lai iegūtu informāciju par sintezēto molekulāro stiklu **6a**, **6b**, **6c** un **7a**, **7b**, **7c** optiskām īpašībām, veicām to gaismas absorbcijas un spontānās gaismas emisijas pētījumus šķīdumā un cietā kārtiņā (skat. 1.2. tabulu).

Absorbcija,	Emisija,	Absorbcija,	Emisija,
λ_{max} (nm); lg ϵ	λ_{max} (nm)	λ_{max} (nm); lga	λ_{\max} (nm),
(CH ₂ Cl ₂)	(CH ₂ Cl ₂)	(Filmiņa)	(Filmiņa)
514 ; 4.76	619	505 ; 4.71	668
525 ; 4.95	662	524 ; 4.67	685 un 827
470 ; 4.55	583	480 ; 4.88	633
489 ; 4.84	629	500; 4.62	675
511;4.71	626	507 ; 4.82	673
505 ; 4.88	687	517 ; 4.52	715
	Absorbcija, λ_{max} (nm); lgɛ (CH ₂ Cl ₂) 514 ; 4.76 525 ; 4.95 470 ; 4.55 489 ; 4.84 511 ; 4.71 505 ; 4.88	Absorbcija,Emisija, λ_{max} (nm); lgɛ λ_{max} (nm)(CH2Cl2)(CH2Cl2)514 ; 4.76619525 ; 4.95662470 ; 4.55583489 ; 4.84629511 ; 4.71626505 ; 4.88687	Absorbcija,Emisija,Absorbcija, λ_{max} (nm); lgɛ λ_{max} (nm) λ_{max} (nm); lgɑ(CH2Cl2)(CH2Cl2)(Filmiņa)514; 4.76619505; 4.71525; 4.95662524; 4.67470; 4.55583480; 4.88489; 4.84629500; 4.62511; 4.71626507; 4.82505; 4.88687517; 4.52

Iegūto 4*H*-pirān-4-ilidēn atvasinājumu **6a-c** un **7a-c** optiskās īpašības.

Bis-stiril-4*H*-pirāna atvasinājumu **7a**, **7b**, **7c** gaismas emisija gan CH₂Cl₂ šķīdumos (robežās no 489 nm līdz 525 nm), gan plānās kārtiņās (robežās no 500 nm līdz 524 nm) nobīdīta batohromi par 10–30 nm, salīdzinot ar *mono*-stiril-4*H*-pirāna atvasinājumu **6a**, **6b**, **6c** absorbciju šķīdumos, kas ir robežās no 470 nm līdz 511 nm, bet cietās kārtiņās ir robežās no 480 nm līdz 507 nm. Tas skaidrojams ar divu elektronu donoru fragmentu esamību savienojumu **7a**, **7b**, **7c** molekulās. Malonnitrila fragmentu saturošo 4*H*-pirāna atvasinājumu **6a** ($\lambda_{max} \sim 475$ nm) un **7a** ($\lambda_{max} \sim 495$ nm), gaismas absorbcija gan šķīdumos, gan arī cieta kārtiņā hipsohromi nobīdīta par 10–35 nm salīdzinot ar indān-1,3diona un barbitūrskābes fragmentu saturošo 4*H*-pirāna atvasinājumu **6b**, **6c** ($\lambda_{max} \sim 515$ nm) un **7b**, **7c** ($\lambda_{max} \sim 512$ nm) gaismas absorbcijām. Tas norāda, ka indān-1,3-diona un barbitūrskābes fragmenti ir spēcīgāki elektronu akceptori, nekā malonnitrila molekulas fragments.

Savienojumu **6a**, **6b**, **6c** un **7a**, **7b**, **7c** emisijas apgabals CH₂Cl₂ šķīdumos atrodas oranžās un sarkanās gaismas joslā (robežās no 580 nm līdz 690 nm), bet no to plānām kārtiņām tiek emitēta tikai sarkana gaisma (robežās no 633 nm līdz 715 nm). *Mono*-stiril-4*H*-pirāna atvasinājumu **6a**, **6b**, **6c** gaismas emisija gan šķīdumos (robežās no 583 nm līdz 629 nm), gan arī cietās kārtiņās (robežās no 633 nm līdz 673 nm), hipsohromi nobīdīta par aptuveni 50–200 nm, salīdzinot ar *bis*-stiril-4*H*-pirāna atvasinājumu **7a**, **7b**, **7c** gaismas emisiju, kas šķīdumos ir robežās no 629 nm līdz 687 nm , bet kārtiņā – robežās no 675 nm līdz 827 nm. *Bis*-stiril-4*H*-pirāna atvasinājumu **7b** un **7c** daļa gaismas emisijas notiek infrasarkanajā spektra (IS) daļā (aiz 700 nm), kuru cilvēka acs nespēj uztvert. Tādēļ to izmantošana tieši OLED pētījumos nebūs perspektīva. Taču tie kopā ar **6a**, **6b**, **6c** un **7a** var būt perspektīvi stimulētās gaismas emisijas pētījumos kā potenciālie materiāli organiskajiem cietvielu lāzeriem.

2. Uz cikloheks-2-ēn-1-ilidēn un 4*H*-pirān-4-ilidēn atvasinājumu bāzes sintezētie molekulārie stikli un to īpašības

3,3,5-Trimetil-2-cikloheksēn-1-ona (8) jeb izoforona reakcijā ar malonnitrilu (3a) vispirms veidojās starpprodukts 9 (skat. 2.1. att.), kurš netiek izdalīts no reakcijas vides. Tālāk ar aldehīdu 5 kondensācijas rezultātā veidojas (E)-2-(3-(4-(bis(2-tritiloksietil) amino)stiril)-5,5-dimetilcikloheks-2-ēn-1-ilidēn)malonnitrilu (10 jeb IWK-1D).

2.1. att. Apjomīgo tritiloksietilgrupu saturoša izoforona atvasinājuma IWK-1D iegūšana

Tikai *mono*-stiril- aizvietotus piranilidenfragmentu saturošus luminoforus iespējams sintezēt, ja izejvielai 4*H*-pirān-4-onam ir tikai viena kondensēties spējīga metilgrupa. Vienu aktīvu metilgrupu saturošais 2-*terc*-butil-6-metil-4*H*-pirān-4-ons (14) tika iegūts ar 69 % no pentān2,4-dionu (11) un metilpivalāta (12). Tā tālākās kondensācijas reakcijās ar attiecīgajiem aktīvo metilēngrupu saturošiem savienojumiem **3a-f** (skat. 2.2. att.) iegūti 4*H*-

pirānu **15a-f** tālākās reakcijās ar 4-(N,N-bis-(2-tritiloksietil)amino)-benzaldehīdu **5** veidojas *mono*-stiril-4*H*-pirāna atvasinājumi – **16a** (DWK-1TB), **16b** (ZWK-1TB), **16c** (JWK-1TB), **16h** (MWK-1TB), **16k** (EWK-1TB) un **16l** (JWK-1TBS) ar 17–75 % iznākumiem.

2.2. att. Mono-stiril-4H-pirāna atvasinājumu iegūšana.

Sintezētie savienojumi **15** un **16a-f** ir termiski stabili (T_d no 242 °C līdz 312 °C) (skat. 2.1. tab.) un tie veido plānas amorfas filmiņas no viegli gaistošiem šķīdinātājiem. Taču tikai *mono*-stiril-4*H*-pirāna atvasinājumiem **16c-e** un cikloheks-2-ēn-1-ilidēn atvasinājumam **10** varēja novērot stiklošanos otrajā DSC sildīšanas ciklā, kas norāda uz to amorfās cietās fāzes lielāku kinētisko stabilitāti, salīdzinot ar *mono*-stiril-4*H*-pirāniem **16a**, **16b** un **16f**. No savienojumiem, kuri uzrādīja stiklošanos otrajā DSC sildīšanas ciklā (**15**, **16c**, **16d**, **16e**) lielāko T_g vērtību (133 °C) uzradīja **16c**, kas skaidrojams ar ūdeņražu saišu veidošanās iespējamību starp tā molekulām.

2.1. Tabula

Savienojums	Iznākums, %	T _g , (°C) 1. sildīšana	T _g , (°C) 2. sildīšana	k.t., (°C)	T_d , (°C)
10	53	-	92	190	295
16b	41	129	-	167	275
16a	75	158	-	210	309
16c	17	134	133	172	264
16d	59	114	111	180	308
16e	65	132	108	164	312
16f	20	115	-	239	242

Iegūto *terc*-butilgrupu saturošu 4*H*-pirān-4-ilidēn atvasinājumu **16a-f** un cikloheks-2-ēn-1ilidēn atvasinājuma **10** reakcijas iznākumi un termiskās īpašības.

Savienojumu **10** un **16a-f** tālākai optisko īpašību raksturošanai tika veikti to gaismas absorbcijas un gaismas emisijas mērījumi gan šķīdumā, gan arī amorfās kārtiņās jeb filmiņās (skat. 2.2. tabulu).

Molekulāro stiklu **10** un **16a-f** gaismas absorbcija plānās kārtiņās (robežās no 480 nm līdz 533 nm) ir par 10 nm nobīdīta batohromi, salīdzinot ar to gaismas absorbciju CH₂Cl₂ šķīdumos (robežās no 470 nm līdz 535 nm). Savienojums **16a** uzrādīja gaismas absorbciju visīsākajos viļņos gan šķīdumos ($\lambda_{max} = 470$ nm), gan arī plānā kārtiņā ($\lambda_{max} =$ 480 nm), kas skaidrojums ar tā molekulā esošās malonnitrila grupas zemāku elektronu afinitāti, salīdzinot ar indān-1,3-diona un barbitūrskābju fragmentiem.

Savienojumu 10, un 16a-f gaismas emisija CH₂Cl₂ šķīdumos (robežās no 584 nm līdz 643 nm) nobīdīta hipsohromi par 40–60 nm, salīdzinot ar to gaismas emisijām plānās

kārtiņās (robežās no 623 nm līdz 706 nm). N,N-Aizvietoto un neaizvietoto barbitūrskābju saturošo savienojumu **16c-f** gaismas absorbcijas ir līdzīgas, taču to gaismas emisijas atšķiras viena no otras (robežās no 637 nm līdz 706 nm) pat par 70 nm. Šāda gaismas emisiju atšķirība skaidrojama ar dažādu 4*H*-pirāna **16c-f** molekulu iespējamo agregātu veidošanos cietā stāvoklī, kuriem katram var būt sava gaismas emisija. Savienojumu **10** un **16f** liela daļa gaismas emisija ir aiz 700 nm, t.i. IS daļā ko cilvēka acs nespēj uztvert. Šī iemesla dēļ tieši OLED pētījumiem tie nebūs perspektīvi.

2.2. Tabula

	Absorbcija,	Emisija,	Absorbcija,	Emisija,
Savienojums	λ_{max} (nm); lg ϵ	λ_{max} (nm)	λ_{max} (nm); lg α	λ_{max} (nm),
	(CH ₂ Cl ₂)	(CH ₂ Cl ₂)	(Filmiņa)	(Filmiņa)
10	501 ; 4.51	643	510 ; 4.71	705
16b	510 ; 4.80	618	510 ; 4.61	666
16a	470 ; 4.47	584	480 ; 4.56	623
16c	507 ; 4.75	623	490 ; 4.66	656
16d	505 ; 4.74	619	490 ; 4.75	637
16e	530 ; 4.82	638	524 ; 4.84	662
16f	535 ; 4.80	640	533 ; 4.77	706

Iegūto savienojumu **16a-f** un **10** optiskās īpašības.

6-*terc*-Butil-2-stiril-4*H*-pirān-4-ilidēn atvasinājumu **16a-f** optiskās īpašības ir analogas iepriekšējā nodaļā aprakstītajiem savienojumiem **6a**, **6b**, **6c**. Tiem ir labāka termiskā stabilitāte un lielākas stiklošanās temperatūras, taču zemāka amorfās fāzes kinētiskā stabilitāte uz ko norāda iegūtie DSC analīžu rezultāti (skat. 2.1. tab.), kuros dažiem savienojumiem (**16a-b** un **16f**) stiklošanos otrajā sildīšanas ciklā neizdodas novērot. Tas liecina, par **16a-b** un **16f** zemāku amorfās fāzes kinētisko stabilitāti, salīdzinot ar **16c-e** un **10**.

Savienojumi **16a-e** iegūti pietiekami lielos daudzumos un tālāk tiek intensīvi pētītas gan to stimulētās emisijas īpašības, gan arī potenciālās izmantošanas iespējas OLED gaismu emitējošā slāņa izveidošanā (LU Cietvielu fizikas institūtā, *Dr. phys.*, Aivars Vembris).

3. Atšķirīgas struktūras stirilgrupas saturošo 2,6-*bis*-stiril-4*H*-pirān-4-ilidēn atvasinājumu sintēze un fizikālo īpašību raksturojumi

Tikai *vienu* reaģētspējīgu metilgrupu saturošie 4*H*-pirān-4-oni **19a-d** (skat. 3.1. att.) veiksmīgi sintezēti arī no 3-acetil-4-hidroksi-6-metil-2*H*-pirān-2-ona (**1**) un attiecīgo aldehīdu **17a-d** kondensācijas reakcijas produktiem **18a-d** tos pārgrupējot. Savienojumi **19a-d** bez aktīvām karbonil- un metil- grupām 6-pozīcijā satur jau vienu stirilgrupu.

3.1. att. Atšķirīgas struktūras stirilgrupas 2,6-bis-stiril-4H-pirān-4-ilidēn

atvasinājumu iegūšana.

Vienu aktīvo metilgrupu saturošie *mono*-stiril-4*H*-pirān-4-ilidēn atvasinājumi **20a**d, **21a-d** un **22a-d** tika iegūti ar 33–71 % iznākumiem. To tālākās reakcijās ar 4-(N,N-bis-(2-tritiloksietil)-amino)-benzaldehīdu **(5)** piridīna šķīdumā un bāziska katalizatora piperidīna klātbūtnē veidojās tritiloksietilgrupu saturošie atšķirīgas struktūras stirilgrupas 2,6-*bis*-strilaizvietotie-4*H*-pirān-4-ilidēn atvasinājumi **23a-d**, **24a-d**, **25a-d** ar 7–60 % iznākumiem.

Viens no šādu atšķirīgas stirilgrupas saturošu 2,6-*bis*-stirilaizvietotu-4*H*-pirāna atvasinājumu sintēzes svarīgiem uzdevumiem bija panākt tādu mērķa savienojumu iegūšanu, kuros viena stirilgrupa saturētu elektronu donoro, bet otra akceptoru aizvietotājus. Šāda tipa savienojumi varētu nodrošināt to gaismas emisijas hipsohromu nobīdi, salīdzinot ar iepriekšējās nodaļās iegūtajiem un aprakstītajiem *mono*-stiril- un *bis*-stirilgrupām saturētu elektronu akceptoro cianogrupu, šim nolūkam tika sintezēts 3-(4-ciano-stirilkarbonil)-4-hidroksi-6-metil-2*H*-pirān-2-ons (**18e**) (skat. 3.2. att.).

Kā vēlāk noskaidrojās, 3-(4-ciano-stirilkarbonil)-4-hidroksi-6-metil-2H-pirān-2-ona (18e) skābās pārgrupēšanās rezultātā, kā vēlāk noskaidrojās, notika ciano grupas hidrolīze ar sekojošu esterifikāciju, un reakcijas gaitā gaidītā 2-(4-cianostiril)-6-metil-4H-pirān-4-ona vietā tika iegūts 2-(4-izobutiloksikarbonil)-6-metil-4H-pirān-4-ons (19f). Tā kā izobutiloksikarbonilgrupa arī ir elektronu akceptors aizvietotājs, iegūtais 4H-pirān-4-ons 19f tika izmantots cita mērķa savienojumu iegūšanai. 4H-Pirān-4-ona 19f reakcijā ar aktīvo metilēngrupu saturošiem savienojumiem - malonnitrilu (1a), indān-1,3-dionu (3b) un barbitūrskābi (3c) ieguvām attiecīgos 4H-pirān-4-ilidēn atvasinājumus 20f, 21f un 22f ar 24–78 % iznākumiem. Barbitūrskābes fragmentu saturošais 4*H*-pirāns **22f** tālākās reakcijās netika izmantots, jo tas raksturojās ar ļoti sliktu šķīdību organiskajos šķīdinātājos. Sekojošās kondensācijas reakcijas ar aldehīdu 5 tika veiktas ar 4H-pirāniem 20f, 21f, kuri pirms sintēzes papildus tika attīrīti ar šķidruma kolonnas hromatogrāfiju. Taču tikai malonnitrila fragmentu saturošais 4H-pirān-4-ilidēn atvasinājums 20f reakcijā ar 4-(N,Nbis-(2-tritiloksietil)-amino)-benzaldehīdu (5), piridīnā, bāziska katalizatora piperidīna klātienē veido attiecīgo bis-stiril-4H-pirān-4-ilidēn atvasinājumu 23f jeb DWK-7E ar 36 % iznākumu. Veicot līdzīgu sintēzi ar indān-1,3-diona fragmentu saturošo mono-stiril-4Hpirāna atvasinājumu 21f, vajadzīgais produkts netika iegūts. HPLC-MS analīzes uzrādīja vairāku citu produktu maisījuma rašanos, kas norāda uz plānotā mērķa savienojuma zemo stabilitāti un sadalīšanos reakcijas gaitā vai arī tas neveidojas vispār.

3.2. att. Stirilgrupā saturošu elektronu akceptoru aizvietotāju 4*H*-pirān-4-ilidēn atvasinājumu iegūšana.

Atšķirīgas struktūras stirilgrupas 2,6-*bis*-stirilaizvietotu-4*H*-pirān-4-ilidēn atvasinājumu sintēzi, kuros viena no stirilgrupām satur elektronu donoro aizvietotāju, bet otra akceptoro ciano grupu, mēs veicām, izejot no 2,6-dimetil-4*H*-pirāna atvasinājumiem **4a** un **4b** (skat. 3.3. att.).

3.3. att. Atšķirīgas stirilgrupas, kā arī ciano grupu saturošu *bis*-stiril-4*H*-pirān-4-ilidēn atvasinājumu iegūšana.

Malonnitrila (4a) un indān-1,3-diona (4b) fragmentus saturošu 4*H*-pirāna atvasinājumu reakcijā ar 4-cianobenzaldehīdu 17e tika iegūts *mono-* un *bis-* kondensācijas produktu maisījums, no kura ar šķidruma kolonnas hromatogrāfiju tika veiksmīgi izdalīti 2-(4-cianostiril)-6-metil-4*H*-pirān-4-ilidēn atvasinājumi 20e un 21e.

Tālākā **20e** kondensācijā ar aldehīdu **5** mums izdevās iegūt malonnitrila elektronu akceptoro fragmentu saturošo atšķirīgas struktūras stirilgrupas saturošo 2,6-*bis*-stiril-4*H*-pirān-4-ilidēn atvasinājumu **23e**. Veicot identisku sintēzi ar indān-1,3-diona elektronu akceptoro fragmentu saturošo 4*H*-pirān-4-ilidēn atvasinājumu **21e**, HPLC-MS analīzes neuzrādīja plānotā produkta rašanos. Iespējams, ka plānotais indān-1,3-diona atvasinājums reakcijas gaitā neveidojās vispār vai arī ir nestabils un uzreiz sadalās.

Sintezēto atšķirīgas struktūras stirilgrupas saturošo 2,6-*bis*-stirilaizvietoto-4*H*pirān-4-ilidēn atvasinājumu **23a-d**, **24a-d** un **25a-d** termisko analīžu rezultāti apkopoti 3.1. tabulā. Redzams, ka to termiskā stabilitāte T_d ir robežās no 173 °C līdz 312 °C. Jāpiezīmē, ka kopumā tie uzrāda zemāko termisko stabilitāti, nekā iepriekšējās nodaļās (1. un 2.) aprakstītie *mono-* un *bis-* 4*H*-pirāna atvasinājumi **6a-c**, **7a-c** un **16a-f** (T_d no 242 °C līdz 312 °C).

3.1. Tabula

Savienojums	Iznākums, %	T _g , (⁰C) 1. sildīšana	T _g , (°C) 2. sildīšana	k.t., (°C)	T _d , (°C)
23a	41	-	-	246	280
23b	19	115	104	157	198
23c	19	139	111	165	173
23d	30	143	119	244	301
24a	19	-	-	245	306
24b	35	118	113	166	239
24c	48	126	120	158	300
24d	28	125	124	185	312
25a	21	134	113	150	261
25b	60	119	115	146	287
25c	25	158	132	186	237
25d	7	-	-	196	278

Iegūto nesimetrisko *bis*-stiril-4*H*-pirān-4-ilidēn atvasinājumu reakcijas iznākumi un termiskās īpašības.

Savienojumiem 23a, 24a un 25d netika novērota stiklošanās, kas liecina par to iespējamās amorfās fāzes mazu kinētisko stabilitāti. Sintezētajiem 4*H*-pirāniem 23b-d, 24b-d, 25a-b stiklošanās tika novērota gan pirmajā gan otrajā DSC sildīšanas ciklā un ir robežās no 105 °C līdz 124 °C. Augstākās stiklošanās temperatūru vērtības uzrādīja 25c, kas elektronu akceptorajā daļā satur barbitūrskābes fragmentu. 4*H*-Pirāna atvasinājumi 23e un 23f netika iegūti pietiekamos daudzumos to termisko īpašību pētījumiem.

Dažu tritiloksietilgrupu saturošo atšķirīgas struktūras stirilgrupas 2,6-*bis*-stiril-4*H*pirāna atvasinājumu amorfās fāzes veidošanos iespējas no viegli gaistošiem šķīdinātajiem parādītas 3.4. attēlā. To plānās kartiņās tika konstatēti vairāki kristāliskie centri, kas liecina par molekulu savstarpējo pakošanas, agregātu veidošanos un zemu amorfās fāzes kinētisko stabilitāti. 4*H*-Pirāna atvasinājums **25c** amorfo fāzi neveido.

3.4. att. Dažas optiskā mikroskopa fotogrāfijas plānām optiski kvalitatīvām amorfām filmiņām, kuras iegūtas no sintezētajiem atšķirīgas struktūras stirilgrupas *bis*-stiril-4*H*-pirān-4-ilidēn atvasinājumiem.

2,6-*Bis*-stiril-4*H*-pirāna atvasinājumu **23b-d**, **24b-d**, **25a-b** gaismas absorbcijas un emisijas raksturlielumi apkopoti 3.2. tabulā.

3.2. Tabula

Nesimetrisko 2,6-*bis*-stiril-4*H*-pirāna atvasinājumu gaismas absorbcijas un gaismas emisijas raksturlielumi.

	Absorbcija,	Emisija,	Absorbcija,	Emisija,
Savienojums	λ_{max} (nm); lg ϵ	λ_{max} (nm)	$\lambda_{\max}(\mathbf{nm}); \mathbf{lg}\alpha$	λ_{max} (nm),
	(CH ₂ Cl ₂)	(CH ₂ Cl ₂)	(Filmiņa)	(Filmiņa)
23a	507 ; 4.59	636	508 ; 4.67	667
23b	502 ; 4.54	633	502 ; 4.40	659
23c	487 ; 4.85	633	492 ; 4.72	682
23d	510 ; 4.56	644	502 ; 4.42	680
23e	507 ; 4.42	647	523 ; 4.52	689
23f	515 ; 4.39	599	539 ; 4.58	700
24a	541 ; 4.67	668	531 ; 4.72	702
24b	538 ; 4.72	661	479 ; 4.68	695
24c	523 ; 4.61	664	530 ; 4.79	726
24d	507 ; 4.63	675	534 ; 4.53	707
25a	545 ; 4.56	681	465 ; 4.55	722
25b	543 ; 4.54	679	480 ; 4.67	715
25c	502 ; 4.88	688	508 ; 4.54	715
25d	549 ; 4.64	691	465 ; 4.48	740

To gaismas absorbcija gan CH_2Cl_2 šķīdumā, gan arī plānās kartiņās ir robežās no 400 nm līdz 550 nm, bet to gaismas emisija ir plānās kārtiņas ir robežās no 659 nm līdz 740 nm un batohromi nobīdīta par aptuveni 50 nm salīdzinot ar to gaismas emisiju CH_2Cl_2 šķīdumos, kas ir robežās no 600 nm līdz 691 nm. Salīdzinot 4*H*-pirān-4-ilidēn atvasinājumus **23c** un **23e**, papildus elektronu akceptora aizvietotāja ievadīšana stirilfragmentā mērķa savienojumu gaismas emisiju nobīdīja hipsohromi tikai par 30– 50 nm, pie kam šis novērojums konstatēts tikai CH_2Cl_2 šķīdumā.

Savienojumu **23a-f**, **24a-d**, un **25a-d** gaismas absorbcijas un gaismas emisijas pētījumos tika konstatēts, ka ievadot abās stirilgrupās ar dažādiem elektroniskajiem efektiem – iegūto mērķa savienojumu gaismu emitējošās īpašības būtiski nemainās un tās ir līdzīgas iepriekšējā nodaļā (1.) aprakstītajiem vienādas stirilgrupas saturošajiem *bis*-stiril-4*H*-pirān-4-ilidēn atvasinājumiem **7a**, **7b** un **7c**. Iegūtie novērojami liecina par otrā stirilfragmentā ievadītā aizvietotāja mazo ietekmi uz visas molekulas gaismu emitējošām īpašībām. Tā, galvenokārt, ir atkarīga no N,N-bis-(2-tritiloksietil)aminostiril- elektronu donorā aizvietotāja, 4*H*-pirān-4-ildidēn π -sistēmas un pie 4*H*-pirāna gredzena 4-vietā esošā elektronu akceptorā fragmenta.

Šajā nodaļā aprakstītie atšķirīgas struktūras stirilgrupas saturošie 2,6-*bis*-stiril-4*H*pirān-4-ilidēn atvasinājumi **23a-f**, **24a-d**, un **25a-d**, kuri veido plānas filmiņas no viegli gaistošiem šķīdinātājiem, piemīt molekulāro organisko stiklu raksturīgās īpašības, kas padara tos perspektīvus fotonikas materiālu pētījumiem.

Lai varētu iegūt materiālus ar gaismas emisiju dzeltenajā vai pat zilajā redzamās gaismas spektra daļā, kas nepieciešams baltas gaismas emitējošu OLED ierīču izveidošanai un pētījumiem, ir jāveic cita veida 4*H*-pirāna atvasinājumu modificēšana.

4. Amorfo fāzi veicinošo tritiloksietilgrupu saturošo 2,6-diazvietotu-1*H*-piridīna atvasinājumu sintēze un fizikālās īpašības

Iepriekšējās darba nodaļās apskatīto 2,6-*bis*-aizvietoto-4*H*-pirān-4-ilidēn atvasinājumu gaismas emisija tika novērota redzamās gaismas spektra sarkanajā daļā. To noteica pie 4*H*-pirāna gredzena 4-pozīcijā esošā elektronu akceptorā fragmenta struktūra un elektronu donoro aizvietotāju saturošā stirilgrupa. Ar mērķi iegūt savienojumus ar dzeltenas gaismas emisijas īpašībām, mēs veicām 2,6-diaizvietotu-1*H*-piridīnu iegūšanu no

2,6-diaizvietotiem-4*H*-pirāniem. Šādi 1*H*-piridīni **27** var tikt iegūti no 4*H*-pirāna atvasinājumiem **26** to reakcijās ar pirmējiem amīniem (skat. 4.1. att.).

4.1. att. 1*H*-Piridīnu iegūšanas no 4*H*-pirāniem vispārīgs reakcijas mehānisms

Kaut arī stbilstoši 4.1.att. dotajam reakcijas mehānismam gan elektronu akceptorais fragments (A), gan aizvietotāji (R¹, R² un R³) nevienā no reakciju starpstāvokļiem savu atrašanās vietu nemaina, to struktūra var ietekmēt reakcijas norises efektivitāti. Gadījumos, kad aizvietotājs R¹ nav vienāds ar aizvietotāju R², pirmējā amīna nukleofīlā pievienošanās pie 4*H*-pirāna atvasinājuma 26 gredzena var notikt 2 vai 6 pozīcijā, vispirms veidojot pārejas savienojumu 26a. Tas tālāk pārgrupējas par enolu 26b1 vai ketonu 26b2. Atkarībā no tā pastāvošās ketona vai enola formas, tālāk notiek ciklizācija caur amonija pārejas savienojumiem 26c1 vai 26c2, kuras gala rezultātā izveidojās 1,2,-dihidro-4*H*-piridīns 26d1. Tā dehidratācijas rezultātā tiek iegūti 1*H*-piridīna atvasinājumi 27, kas visticamāk veidosies kā diastereoizomēru maisījums. Mūsu pētījumā kā pirmējo amīnu izvēlējāmies benzilamīnu, kura benzilfragments mūsu mērķa savienojumos varētu nodrošināt lielāku stiklošanās temperatūru un labāku amorfās fāzes kinētisko stabilitāti. Ar mērķi iegūt amorfo fāzi veicinošo tritiloksietilgrupu saturošos mērķa savienojumu **16a-N** atbilstoši 1*H*-piridīnu veidošanās mehānismam (skat. 4.1. att.), tā sintēze tika mēģināts sintēzi veikt no *mono*-stiril-4*H*-pirāna atvasinājuma **16a** reakcijā ar benzilamīna pārākumu (skat. 4.2. att.), vai arī veicot *terc*-butilgrupu saturoša 1*H*-piridīna atvasinājuma **11a-N** kondensāciju ar aldehīdu **5**.

4.2. att. Amorfo fāzi veicinošo tritiloksietilgrupu aizvietotāju saturošu 1*H*-piridīna atvasinājumu iegūšanas mēģinājumi.

Taču iespējamais savienojums **16a-N** netika iegūts nedz no 4*H*-pirān-4-ilidēn atvasinājuma **16a**, nedz arī izejot no 4*H*-pirāna atvasinājuma **11a**. Abos gadījumos iegūto produktu maisījuma HPLC-MS analīzes uzrādīja līdz pat 20 dažādu savienojumu signālus. Tādēļ plānotā 1*H*-piridīna atvasinājuma **16a-N** vai tā analogu iegūšanai mēģinājām kā izejvielas izmantot iepriekš sintezētos savienojumus **4a-f**, kuri 2,6 pozīcijās satur metilgrupas (skat. 4.3. att.). To reakcijās ar benzilamīna pārākumu ieguvām 1*H*-piridīna atvasinājumu iegūšanu mēģinājām veikt 1*H*-piridīnu **27a-f** kondensācijas reakcijas ar aldehīdu **5**. Pēc HPLC-MS analīzēm tika konstatēts, ka nevienā no gadījumiem plānotie mērķa savienojumi neveidojas, jo minētajās analīzēs var redzēt tikai signālus ar molmasām,

kas atbilst izejvielām. Plānoto mērķa savienojumu neveidošanās viens no iespējamiem skaidrojumiem ir benzilgrupas stēriskie efekti, kas traucē telpiski apjomīgajai aldehīda molekulai reaģēt ar 1*H*-piridīna atvasinājuma metilgrupu.

4.3. att. 1H-piridīna atvasinājumu iegūšana no 4H-pirāniem.

Pēc nesekmīgiem iepriekšējiem eksperimentiem mēs nolēmām vispirms veikt 1*H*pirīdīna cikla sintēzi no tādiem 4*H*-pirāna atvasinājumiem, kuri stirilgrupā saturētu N,Ndimetilamino- aizvietotājus (skat. 4.4. att.). Modeļsavienojumi **28b** (41 %) un **28c** (80 %) tika iegūti ar apmierinošiem iznākumiem. Savienojuma **23c** gadījumā pārvērtības realizēt neizdevās.

4.4. att. 1*H*-piridīna modeļsavienojumu iegūšana no luminiscējošiem 4*H*-pirāniem.

Amorfo fāzi veicinošie trifeniloksietilaizvietotājus un fenilgrupu saturošie mērķa savienojumi **29b (ZE-1Tr)** un **29c (JE-1Tr)** (skat. 4.5. att.) iegūti iepriekš sintezēto 4*H*-pirān-4-ilidēn atvasinājumu **6b (ZWK-1)** un **7c (JWK-1)** (skat. 1.2. att.) reakcijā ar benzilamīna pārākumu. Tie tika iegūti ar relatīvi augstiem iznākumiem (86–97 %).

4.5. att. 1*H*-piridīna mērķa savienojumu iegūšana no luminiscējošiem 4*H*-pirāniem.

Iegūto 1*H*-piridīna atvasinājumu HPLC-MS analīzes uzrāda divu diasereoizomēru esamību, kuru abu molmasas atbilst mērķa savienojumiem **29b** (**ZE-1Tr**) vai **29c** (**JE-1Tr**). Pēc ¹H-KMR spektru analīzes aptuveni noteikta diastereoizomēru attiecība: **28b** (3:1), **28c** (1:3), **29b** (1:1 vai 1:1.2) un **29c** (1:1 vai 1:1.2). Šo diastereoizomēru atdalīšana nebija šī darba mērķis un tālākajiem pētījumiem izmantojām attiecīgos iegūtos diastereoizomēru maisījumus.

Savienojumi **29b** un **29c** ir termiski stabili (T_d no 288 °C līdz 296 °C) (skat. 4.1. tab.), tie veido plānas amorfas filmiņas no viegli gaistošiem šķīdinātājiem (skat. 4.6. att.), tiem varēja novērot stiklošanos pirmajā un otrajā DSC sildīšanas ciklā (T_g ~ 140 °C) un tie emitē gaismu gan šķīdumos, gan plānās kārtiņās (skat. 4.2. tab.) redzamās gaismas spektra **dzeltenajā** daļā (šķīdumos: $\lambda_{max} \sim 545$ nm; kārtiņā: $\lambda_{max} \sim 600$ nm).

4.1. Tabula

Savienojums	T _g , (°C) 1. sildīšana	T _g , (°C) 2. sildīšana	Iznākums, %	k.t., (⁰C)	T _d , (°C)
29b	139	-	86	163	296
29c	140	140	97	180	288

Iegūto 1*H*-piridīna fragmentu saturošo mērķa reakcijas iznākumi un termiskie raksturojumi.

4.6. att. Optiskā mikroskopa fotogrāfijas plānām amorfām filmiņām, kuras iegūtas no apjomīgo tritiloksietilgrupu saturošiem 1*H*-piridīna atvasinājumiem.

4.2. Tabula

Savienojums	Absorbcija, λ_{max} (nm);Emisija λ_{max} (nm)lgɛ (CH2Cl2)(CH2Cl2)		Absorbcija, λ _{max} (nm); lgα (Filmiņa)	Emisija, λ _{max} (nm), (Filmiņa)
29b	418 ; 4.75	545	438 ; 4.56	603
29c	378 ; 4.52	544	391 ; 4.57	596

Iegūto 1*H*-piridīna fragmentu saturošo mērķa savienojumu optiskās īpašības.

Pašreiz sintezēto savienojumu **29b** un **29c** potenciālo izmantošanu kā gaismu emitējošo vidi fotonikas materiālos pēta Latvijas Universitātes cietvielu fizikas institūtā (*Dr. phys.* Aivars Vembris).

5. Tritilgrupu un azobenzola fragmentus saturošo molekulāro stiklu sintēze un to fotorefraktīvās īpašības

Daudz pētījumu ir veikti tādām fotorefraktīvām D- π -A tipa azobenzolu sistēmām, kurās molekulas elektronu akceptorais fragments A ir aizvietots nitrofenil- fragments³. Mūsu darba mērķis bija šādās sistēmās kā elektronu akceptoro fragmentu izmantot indān-1,3-dionil- molekulas fragmentu.

Tā realizēšanu sākām ar aldehīdgrupu saturošos azobenzola atvasinājumu **33a-b** sintēzi (skat. 5.1. att.), kuri tika iegūti ar 79–83 % iznākumiem no 4-amino-benzaldehīda (**30**) diazotēšanas un tālākās azosametināšanas reakcijā ar N,N-diaizvietotiem anilīniem **32a-b**. Gala savienojumi **35a-c** tika iegūti no azobenzoliem **33a-b** to kondensācijas reakcijas ar indān-1,3-dionu (**3b**) un iegūto starpproduktu **34a-b** sekojošām tritilēšanas vai trifenilsililēšanas reakcijām.

molekulāro stiklu sintēze.

Savienojumi **35a-c** labi veido plānas filmiņas no viegli gaistošiem šķīdinātajiem (skat. 5.2. att.), tie ir termiski stabili (T_d no 250 °C līdz 282 °C) un uzrāda stiklošanās

temperatūras DSC otrajā sildīšanas ciklā (skat. 5.1. tabulu). Lielākā termiskā stabilitāte tika konstatēta savienojumiem ar diviem trifenil**metil-** (**35b**) vai diviem trifenil**silil-** (**35c**) aizvietotājiem. Azobenzola atvasinājums **35b** uzrādīja daudz augstāku stiklošanos ($T_g =$ 98 °C), nekā gandrīz identiskas struktūras divas trifenil**silil-** aizvietotāju saturošo azobenzola atvasinājuma **35c** ($T_g = 75$ °C) un tikai vienu trifenil**metil-** grupu saturošs azobenzola atvasinājums **35a** ($T_g = 70$ °C). To iespējams skaidrot ar trifenil**silil-** grupas Si atoma lielāku diametru salīdzinot ar trifenil**metil-** C atoma diametru. Tas savukārt nodrošina trifenilsilil- grupas fenil-aizvietotāju lielāku brīvo rotāciju ap Si-Ph saiti, kā rezultātā savienojumam **35c** nepieciešams pievadīt mazāku enerģiju, lai varētu novērot tā stiklošanos un iespējamo kristalizāciju.

5.1. Tabula

Savienojums	Iznākums, %	T _g , (°C) 1. sildīšana	T _g , (°C) 2. sildīšana	k.t., (⁰C)	T _d , (°C)
35a	73	-	70	175	250
35b	90	-	98	239	280
35c	41	-	75	236	282

Iegūto azobenzola atvasinājumu 35a-c reakcijas iznākumi un termiskās īpašības.

5.2. att. Optiskā mikroskopa fotogrāfijas plānām amorfām filmiņām, kuras iegūtas no benzilidēn-indān-1,3-diona un azobenzola fragmentus saturošajiem molekulārajiem stikliem.

D- π -sistēma-A tipa savienojumi, piemēram, iepriekš sintezētie cikloheks-2-ēn-1ilidēn un 4*H*-pirān-4-ilidēn molekulu fragmentu saturoši molekulārie stikli **10**, **16a-c** raksturojas ar polāru struktūru un pagarinātu konjugācijas sistēmu. Šāda tipa savienojumi varētu tiem nodrošināt fotorefraktīvās īpašības. Mērķa realizēšanai vispirms veicām trifeniloksietilaizvietotājus un azobenzola fragmentu saturošo aldehīdu **36a-b** sintēzi (skat. 5.3. att.). Azobenzolu **36a-b** iegūšanu veicām tritilējot hidroksil- grupu saturošos aldehīdus **33a-b**. Cikloheks-2-ēn-1-ilidēn fragmentu saturošie azobenzola atvasinājumi **37a** un **37b** tika veiksmīgi iegūti "viena rektora" tipa reakcijā no izoforona (**8**), malonnitrila (**3a**) un aldehīdiem **36a-b**. Salīdzinot ar azobenzola atvasinājumiem **35a-c** (T_d no 250 °C līdz 282 °C), savienojumu **37a-b** termiskā stabilitāte (skat. 5.2. tabulu) praktiski nemainās (T_d no 288 °C līdz 289 °C) no to struktūrās ievadīto trifeniloksietilgrupu skaita.

5.3. att. Izoforona fragmentu un apjomīgo tritiloksietilgrupu saturošu azobenzolu sintēze.

5.2. Tabula

- 1	rc	C I	, v	1 1	1	· -1	•		- v-1
	IZATARANA	troomontu	anturnau nz	honzoli	1 roolzo110	17100	1m1 11m	tormialzag	10001000
			Sahirosh azi			15 1711481			IDASIDAS.
	201010110	inaginentes	bararoba az		~ 1 Calle 1 [AD ILLIMIT	witti wit	corning and	ipabioab.
		<u> </u>							1

Savienojums	Iznākums, %	T _g , (°C) 1. sildīšana	T _g , (°C) 2. sildīšana	k.t., (°C)	T_d , (°C)
37a	21	-	90	188	289
37b	22	108	105	140	288

Azobenzoliem **37a-b** var novērot stiklošanos otrajā DSC sildīšanas ciklā un tie labi veido plānas kārtiņas no viegli gaistošiem organiskajiem šķīdinātājiem (skat. 5.4. att.). Lielākās stiklošanās temperatūras tika konstatētas savienojam **37b** ($T_g = 105 \text{ }^{\circ}\text{C}$), kas satur divas tritiloksietilgrupas, līdzīgi kā azobenzola atvasinājums **35b** ($T_g = 98 \text{ }^{\circ}\text{C}$).

5.4. att. Optiskā mikroskopa fotogrāfijas plānām amorfām filmiņām, kuras iegūtas no izoforona fragmentu saturošiem azobenzola atvasinājumiem.

Iepriekš sintezētie tikai vienu kondensēties spējīgu metilgrupu saturošie 4*H*-pirān-4ilidēn atvasinājumi **16a-c**, **21a** (skat. 2. un 3. nodaļas) reakcijā ar aldehīdu **36b** veido azohromoforus **38a-c** un **39** (skat. 5.5. att.).

Iegūto 4*H*-pirān-4-ilidēn fragmentu saturošo azohromofori **38a-c** un **39** ir termiski stabili (T_d no 289 °C līdz 320 °C) (skat. 5.3. tabulu). Azohromoforiem **38a-b** otrajā DSC sildīšanas ciklā var novērot stiklošanos. Azohromofori **38c** un **39** uzrādīja lielas stiklošanās temperatūras (T_d no 176 °C līdz 180 °C).

5.3. Tabula

tormiskus ipusious.					
Savienojums	Iznākums, %	T _g , (⁰C) 1. sildīšana	T _g , (⁰C) 2. sildīšana	k.t., (°C)	T_d , (°C)
38b	13	-	120	205	289
38a	15	-	115	220	320
38c	10	-	180	276	291
39	26	-	176	271	298

Iegūto 4*H*-pirāna-4-ildidēn fragmentu saturošo azohromoforu reakcijas iznākumi un termiskās īpašības

5.5. att. Azobenzolu un tritiloksietilgrupu saturošo 4H-pirāna atvasinājumu sintēze.

Eksperimenti parādīja, ka savienojumi **38a-b**, un **39** labi veido amoru plānu kārtiņu no viegli gaistošiem šķīdinātājiem (skat. 5.6. att.), bet **38c** gadījumā iespējama ūdeņražu saišu veidošanās barbitūrskābes elektronu akceptorajā daļā, kas veicina agregātu un līdz ar to arī kristālu veidošanos. Tādēļ **38c** tālākiem hologrāfisko ierakstu pētījumiem nav izmantojams.

5.6. att. Optiskā mikroskopa fotogrāfijas plānām amorfām filmiņām, kuras iegūtas no 4*H*-pirāna-4-ildidēn fragmentu saturošiem azobenzola atvasinājumiem.

Savienojumu **35a-c**, **37a-b**, **38a-b** un **39** plānās kārtiņās absorbē gaismu no 400 nm līdz 660 nm, kas norāda to hologrāfiskā ieraksta iespējām ar 532 nm un 632.8 nm lāzeriem. To fotorefraktīvo īpašību pētījumi tika veikti Tehniskās Fizikas Institūtā *Dr. habil. phys. Prof.*, A. Ozola vadītajā darba grupā. Pētāmās filmiņas uz stikla pamatnes tika iegūtas ar rotējošās virsmas uznešanas metodi. Hologrāfiskais ieraksts ar režģa periodu 2 µm tika veikts ar diviem interferējošiem p-p polarizētiem lāzera stariem pie 532 nm un 632.8 nm. Hologrāfiskā ieraksta pašdifrakcijas efektivitāte (SDE%, kas tika mērīta tikai ar 532 nm lāzeru) un difrakcijas efektivitātes (DE%, kas tika mērīta tikai ar 632.8 nm lāzeru) vērtības tika noteiktas caurejošajā gaismā. Iegūto fotorefraktīvo īpašību mērījumu rezultāti apkopoti 5.4. tabulā.

No azobenzola atvasinājumiem **35a-c**, lielākās hologrāfiskā ieraksta pašdifrakcijas (SDE_t = 1.23 %) un difrakcijas efektivitātes (DE_t = 4.70 %) tika novērotas **35a** gadījumā. Tā kā savienojums **35a** satur tikai vienu telpiski apjomīgo tritiloksietilgrupu, tad tā lielākās SDE_t un DE_t vērtības iespējams skaidrot ar lielāku aktīvās hromofora daļas koncentrāciju vienā tilpuma vienībā. Sintezētie molekulārā tipa azobenzola atvasinājumi **35a-c** uzradīja samērā zemas SDE_t un DE_t vērtības. Tā galvenais iemesls varētu būt molekulu apgrūtināta *trans-cis-trans* fotoizomerizācija apjomīgo tritiloksietil- un indān-1,3-dionil- grupu tuvās stēriskās mijiedarbības dēļ. Neskatoties uz minētajiem trūkumiem, savienojumi **35a-c**

uzrādīja augstas gaismas absorbcijas vērtības un pašlaik tiek intensīvi pētīti kā fotoaktīvās vielas jauna tipa saules elementu materiālos (LU Cietvielu fizikas institūtā, *Dr. phys.,* Aivars Vembris).

5.4. Tabula

Iegūto tritiloksigrupu saturošo azobenzola atvasinājumu fotorefraktīvo īpašību pētījumu galvenie rezultāti.

Paraugs	Absorbcija, λ _{max} (nm), lgα (Filmiņa)	Filmiņas biezums (µm)	t, min (532nm)	SDE _t , (%)	t, min (632.8nm)	DE _t , (%)
35a	545 ; 4.67	0.5	12	1.23	12	4.70
35b	546 ; 4.65	3.9	9	0.03	12	1.40
35c	533 ; 4.70	0.2	6	0.24	8	1.30
37a	515 ; 4.52	0.9	8	3.77	9	9.00
37b	516 ; 4.62	0.7	24	12.94	24	20.40
38b	492 ; 4.67	0.2	10	1.53	12	0.40
38a	510 ; 4.79	0.2	9	1.07	10	1.00
39	518 ; 4.64	4.1	9	2.36	12	8.20

 $t - hologrāfiskā ieraksta laiks, SDE_t - pašdifrakcijas efektivitāte,$

DE_t – difrakcijas efektivitāte

No azobenzola atvasinājumiem **37a-b**, lielākās hologrāfiskā ieraksta pašdifrakcijas efektivitātes (SDE_t = 12.94 %) un difrakcijas efektivitātes (DE_t = 20.40 %) tika novērotas azobenzolam **37b**, taču tā hologrāfiskā ieraksta veikšanai nepieciešams 2–3 reizes ilgāks laiku nekā **37a** gadījumā.

Salīdzinot ar iepriekš iegūtajiem azobenzola atvasinājumiem **35a-c** var uzskatāmi redzēt, ka aizvietojot elektronu akceptoro indān-1,3-dionil- grupu ar stēriski mazāk apjomīgo dicianometilēna- grupu un cikloheksēna fragmentu, daudzkārt tiek atvieglotas mērķa savienojumu **37a** un **37b** *trans-cis-trans* fotoizomerizācijas iespējas uz ko norāda to

SDE_t un DE_t vērtību palielināšanās. Azobenzola atvasinājumu **37a (IWK-2M)** un **37b** (**IWK-2D)** fotorefraktīvo īpašību pētījumi turpinās RTU Tehniskās Fizikas institūtā (*Dr. habil. phys. Prof.*, Andris Ozols).

Veicot 4*H*-pirāna-4-ilidēn fragmentu saturošo azobenzolu **38a-b** (SDE_t = 1.53 % un DE_t = 1.00 %) izmērīto hologrāfiskā ieraksta datu apstrādi tika konstatēts, ka salīdzinot ar savienojumiem **35a-c** (SDE_t = 1.23 % un DE_t = 4.70 %) tiem netika konstatēti SDE_t un DE_t vērtību uzlabojumi. Tas norāda uz azobenzola atvasinājumu **38a-b** apgrūtinātu *trans-cis-trans* fotoizomerizāciju.

Savienojuma **39** relatīvi lielā DE_t vērtība (8.20 %) skaidrojama ar mazāk stēriski traucējošo stirilgrupu, kura atvieglo molekulas *trans-cis-trans* fotoizomerizācijas procesu, salīdzinot ar *terc*-butilgrupu saturošajiem azohromoforiem **38a-b** (DE_t = 1.00 %). Savienojumi **37a-b** uzradīja relatīvi augstas pašdifrakcijas (SDE_t = 12.94 %) un difrakcijas efektivitātes (DE_t = 20.40 %) to tālākai pētīšanai jaunu hologrāfiskā ieraksta materiālu iegūšanai.

GALVENIE SECINĀJUMI

- 2,6-Dimetil-4*H*-pirān-4-ilidēn atvasinājumu 4a-c reakcijā ar 4-(N,N-bis-(2-trititiloksietil)amino)benzaldehīdu 5 rodas *mono*-stiril- (6a, 6b, 6c) un *bis*-stiril- (7a, 7b, 7c) kondensācijas produktu maisījumus, kurus var hromatogrāfiski atdalīt vienu no otra. Tiem piemīt molekulāro stiklu īpašības. Tie veido amorfas filmiņas no viegli gaistošiem organiskajiem šķīdinātājiem un emitē gaismu 600–700 nm apgabalā. Savienojumi 6a, 6b, 6c ir perspektīvi OLED pētījumiem, bet 6a jeb DWK-1 parāda tā potenciālas izmantošanas iespējas organiskajos cietvielu lāzeros.
- 2-*terc*-Butil-6-metil-4*H*-pirān-4-ilidēn atvasinājumu 15a-f reakcijās ar 4-(N,N-bis-(2-trititiloksietil)amino)benzaldehīdu 5 ļauj iegūt tikai *mono*-stiril-4*H*-pirāna atvasinājumu molekulāros stiklus 16a-f, bet to iegūšana ir mazāk darbietilpīga. Savienojumi 16a-e, kuriem piemīt analogas optiskās īpašības kā 6a-c, ir perspektīvi kā gaismu emitējošā vide OLED pētījumos un organiskajos cietvielu lāzeros.
- 3. Sintezētajiem atšķirīgas struktūras stirilgrupas 2,6-bis-stiril-4H-pirān-4-ilidēn atvasinājumiem 20a-f, 21a-d, un 22a-b, 22d, kuri satur katrā no stirilgrupām dažādus aizvietotājus ar pretēja rakstura elektroniskajiem efektiem, arī piemīt molekulāro stiklu īpašības, bet emisijas spektru apgabals, salīdzinot ar 7a-c būtiski nemainās un tie nav perspektīvi OLED materiāliem. Iespējams tos var izmantot cietvielu lāzeru pētījumos.
- 4. Apjomīgo tritiloksietilgrupu saturošo luminoforu 6b (ZWK-1) un 6c (JWK-1) reakcijā ar benzilamīnu veidojas 1*H*-piridīna atvasinājumu 29b (ZE-1Tr) un 29c (JE-1Tr), kā attiecīgo diastereoizomēru maisījums. To gaismas emisija (λ_{max} ~ 600 nm) vairāk atrodas gaismas spektra redzamajā daļā, nekā 4*H*-pirān-4-ilidēn atvasinājumiem 6b (ZWK-1) un 6c (JWK-1) (emitē gaismu robežās no 650 nm līdz 700 nm), tādejādi palielinot energoefektivitāti uz to bāzes veidotiem OLED materiāliem.

5. Sintezētie D-π-A tipa azobenzola fragmentu saturošie atvasinājumi – 35a-c, 37ab, 38a-b, un 39 (izņemot 38c) no viegli gaistošiem organiskajiem šķīdinātājiem veido amorfu struktūru ar stabilu amorfo fāzi un mijiedarbībā ar lāzera starojumu veido virsmas reljefa režģi (hologrāfisko ierakstu). Augstākās SDE_t (12.94 %) un DE_t (20.40 %) vērtības uzrāda cikloheks-2-ēn-1-ilidēn fragmentu saturošie azobenzola atvasinājumi 37a-b, kuri tika veiksmīgi iegūti "viena rektora" tipa reakcijā. Savienojumi 35a-c uzrāda augstas gaismas absorbcijas īpašības un var kalpot kā fotoaktīvās vielas saules elementu materiālos.

PATEICĪBAS

Izsaku pateicību Jānim Jubelam, Elīnai Misiņai, Karīnai Siltānei un Tomam Puciriusam par izejvielu sintēzi. Pateicība Kristīnei Lazdovičai par termisko analīžu, IS un optisko īpašību mērījumiem. Pateicība Ilzei Neiboltei par gaismas absorbcijas, gaismas emisijas un HPLC-MS analīzēm.

Pateicība *Dr. phys.,* Aivaram Vembrim par gaismu emitējošo savienojumu fizikālo īpašību pētījumiem un paraugu optiskā mikroskopa fotogrāfijām. Paldies Andrejam Tokmakovam un *Dr. phys.,* Mārtiņam Rutkim par azobenzola atvasinājumu fizikālo īpašību mērījumiem cietā fāzē. Pateicība *Dr. habil. phys.,* Prof. Andrim Ozolam un *Dr. phys.,* Pēterim Augustovam par azobenzolu fotorefraktīvo īpašību pētījumiem.

Atzinība Jānim Jubelam, Elīnai Misiņai, Karīnai Siltānei par ieguldījumu šī zinātniskā pētījuma tapšanā. Pateicība vecākiem – Guntai Zariņai un Aldim Zariņam kā arī brālim – Oskaram Zariņam par morālo atbalstu.

Lielākā pateicība manam zinātniskajam vadītājam *Dr. chem.,* profesoram Valdim Kokaram par neatlaidību, lielu pacietību un zinātniskās darbības vadīšanu 10 gadu garumā un šī pētījuma zinātniskās kvalitātes vairākkārtīgu uzlabošanu.

CONTENTS

GENERAL OVERVIEW OF THE DOCTORAL THESIS
Introduction
Aims and Objectives
Main scientific results and novelty
Scientific publications and approbations of the doctoral thesis
MAIN SCIENTIFIC RESULTS OF THE DOCTORAL THESIS
1. Synthesis and physical properties of bulky trityloxyethyl, 6-alkyl-, 2-styryl
and symmetric 2,6-bis-styryl group containing molecular glasses of 4H-pyran-4-
ylidene
2. Synthesis and physical properties of bulky trityloxyethyl group containing
molecular glasses of isophorene and <i>tert</i> -butyl-4 <i>H</i> -pyran-4-ylidene
3. Synthesis and physical properties of bulky trityloxyethyl and non-symmetric
2,6-bis-styryl group containing molecular glasses of 4H-pyran-4-ylidene
4. Synthesis and physical properties of bulky trityloxyethyl group containing
molecular glasses of 2,6-disubstituted-1 <i>H</i> -pyridine
5. Synthesis, physical and photorefractive properties of triphenyl group
containing molecular glasses of azobenzene
MAIN CONCLUSIONS

GENERAL OVERVIEW OF THE DOCTORAL THESIS

Introduction

Organic compounds with electron donating fragment bounded through π -conjugated system with electron acceptor fragment in their molecules have attracted considerable attention of scientists due to their potential applications as materials for organic photonics¹. By absorbing the light with a certain wavelength some of these organic compounds emit light back with another, larger wavelength. Therefore such compounds with light-emitting properties could be used as potential materials for organic light emitting diode and solid state laser applications².

Organic D- π -A type compounds with azobenzene fragment in their structures could be characterized by their photorefractive properties and are studied as potential materials for information recording and storage. Such materials are able to form holographic volume and surface relief gratings (SRG) after exposure to laser radiation with two interfering laser beams, which could be useful for holographic data storage³.

Inorganic crystals, with light-emitting and information storage properties are already used for this purpose. However the production of devices based on inorganic materials is complicated and expensive and these materials themselves are heavy and fragile. The organic materials obtained in synthesis, however, are flexible, light and have low-cost fabrication possibility. One of the basic requirements for the organic compounds to be potential for light-emitting and holographic data storage applications are: they have to be transparent and amorphous in their solid^{1,3}. Amorphous solid state is known to be thermodynamically unstable and low molecular mass organic compounds are obtainable in it either by vacuum sublimation or in the result of a fast cooling, which are expensive and technologically complicated processes⁴. With synthetic polymers such problems can be avoided as most of them form amorphous structure in their solid state. But their synthesis poses a repeatability challenge as reaction products always contain a mixture of compounds with different molecular mass due to difficulties in controlling the polymerization chain lengths which all will have different physical properties¹. It is known, that low molecular

¹ L. S. Hung, C. H. Chen. *Mater. Sci. Eng:R*, **2002**, *39*, 143–222 ² I. D. W. Samuel, G.A. Turnbull. *Chem. Rev.*, **2007**, *107*, 1272–1295.

³ K. G. Yager, C.J. Barret. Polymeric Nanostructures and Their Applications, 2006, 0, 1–38

⁴ P. Strohriegel, J.V. Grazulevicius. Adv. Mater., **2002**, 14, 1439–1452.

mass organic compounds can be synthesized with better repeatability than polymers or oligomers. Furthermore if small molecules could lend themselves readily to wet coating processes, it could be of great manufacturing advantage. Therefore it is important to synthesize low molecular mass fluorescent organic compounds with a structure that forms thin amorphous solid films from volatile organic solvents.

For such purpose the organic materials with light-emitting or photorefractive properties, which consist of one particular molecular structure – the so-called molecular glasses are currently widely being studied.

Aims and Objectives

Among the most widely used red light-emitting or photorefractive materials are 4*H*pyran-4-ylidene or azobenzene fragment containing derivatives, which are conjugated in a system with electron acceptor and electron donor fragments (Fig. 1). Synthesis of such compounds is simple and reactants are available.

Fig. 1. General structures of some D- π -A type photosensitive organic compounds

Therefore the main objective of our work was the synthesis and characterization of physical properties of D- π -A type molecular glasses shown in Fig.1, which in their molecules would also contain bulky trityloxyethyl- groups. The presence of trityloxyethyl-substituents in those molecules could ensure their ability to form good optical quality glassy transparent films from non-polar organic solvents.

Main scientific results and novelty

Various derivatives of 4*H*-pyran-4-ylidene and azobenzene with incorporated trityloxyethyl- groups in their molecules have been synthesized and their physical properties have been investigated. Obtained compounds form thin solid transparent films from non-polar organic solvents with technologically simple and non-expensive "*spincoating*" approach. Synthesised compounds could be used in organic solid state lasers.

Scientific publications and approbation of the doctoral thesis

Chapter in Scientific Book:

 E. Zarins, A. Vembris, V. Kokars, I. Muzikante. Synthesis and physical properties of red luminescent glass forming pyranylidene and isophorene fragment containing derivatives. *Book: Organic Light-Emitting Devices*. 2012, ISBN: 979-953-307-810-5, 242 p. – published 36 pages long chapter.

Scientific Publications:

- A. Ozols, V. Kokars, P. Augustovs, D. Malinovskis, K. Traskovskis, E Zarins, G. Ivanovs. Self-Enhancement of Scalar and Vector Holographic Gratings in Azobenzene Molecular Glassy Films. *Optics and Photonics Journal*, 2014, *4*, 143–152.
- A. Vembris, E. Zarins, V. Kokars. Amplified spontaneous emission of glass forming DCM derivatives in PMMA films. *Proceedings of SPIE*, 2014, 9137, 91371E-1-91371E-6.
- E. Zarins, A. Tokmakovs, Z. Kalnina, V. Kokars, K. Lazdovica, A. Vembris, M. Rutkis, A. Ozols, P. Augustovs, V. Kampars. Thermal, glass-forming, nonlinear optical and holographic properties of "pull-push" type azochromophores with triphenyl moieties containing isophorene and pyranylidene fragments. *Proceedings of SPIE*, 2013, *8622*, 86221H-1-86221H-12.doi: 10.1117/12.2003085.
- A. Vembris, E. Zarins, J. Jubels, V. Kokars, I. Muzikante, A. Miasojedovas, S. Jursenas. Thermal and optical properties of red luminescent glass forming symmetric and non symmetric styryl-4H-pyran-4-ylidene fragment containing derivatives. *Optical Materials*, 2012, *34*, 1501–1506.

- E. Zarins, K. Siltane, E. Misina, V. Kokars, K. Lazdovica, A. Vembris, V. Kampars, I. Muzikante, M. Rutkis. Synthesis, optical and thermal properties of glassy trityl group containing luminescent derivatives of 2-*tert*-butyl-6-methyl-4*H*-pyran-4-one. *Proceedings of SPIE*, 2012, 8435, 84351Q-1-84351Q-7. doi: 10.1117/12.921996.
- A. Tokmakovs, M. Rutkis, K. Traskovskis, E. Zarins, L. Laipniece, V. Kokars, V. Kampars. Nonlinear optical properties of low molecular organic glasses formed by triphenyl modified chromophores, *IOP conference series: Material Sciences and Engineering*, 2012, 38, 012–034.
- Zariņš E., Puciriuss T., Siltāne K., Kokars V. One pot synthesis of 2-(3-styryl)-5,5-dimethylcyclohex-2-enylidene)malononitrile dyes as potential multifunctional optical materials. *Latvian Journal of Chemistry*, 2012, *51(1)*, 78–78.
- A. Vembris, M. Pozorovs, I. Muzikante, V .Kokars, E. Zarins. Pyranylidene indene-1,3-dione derivatives as an amorphous red electroluminescence material. *Journal of Photonics for Energy*, 2011, 1, 011001-011008.
- E. Zarins, V. Kokars, A. Ozols, P. Augustovs. Synthesis and properties of 1,3-dioxo-1*H*-inden-2(3*H*)-ylidene fragment and (3-(dicyanomethylene)-5,5-dimethylcyclohex-1-enyl)vinyl fragment containing derivatives of azobenzene for holographic recording materials. *Proceedings of SPIE*, 2011, 8074, 80740E-1 80740E-6.
- E. Zarins, J. Jubels, V. Kokars. Synthesis of red luminescent non symmetric styryl-4H-pyran-4-ylidene fragment containing derivatives for organic lightemitting diodes. *Advanced Materials Research*, 2011, 222, 271–274.
- E. Zarins, V. Kokars, M. Utinans. Synthesis and properties of red luminescent 2-(3-(4-(bis(2-(trityloxy)ethyl)amino)styryl)-5,5-dimethylcyclohex-2-enylidene) malononitrile for organic light-emitting diodes. *IOP conference series: Material Sciences and Engineering*, 2011, 23, 012–019.
- A. Vembris, M. Porozovs, I. Muzikante, J. Latvels, A. Sarakovskis, V. Kokars, E. Zarins, "Novel amorphous red electroluminescence material based on pyranylidene indene-1,3-dione", *Latvian Journal of Physics and Technical Sciences*, 2010, 47(3), 23–30.

Participation in scientific conferences with oral talk:

- E. Zarins, A. Tokmakovs, V. Kokars, M.Rutkis, A. Ozols, P. Augustovs, V. Kampars. Synthesis and physical property investigation of glassy azobenzene derivatives. "*RTU 54. International Scientific Conference*", 2013, Ķīpsala. Riga, Latvia.
- E. Zarins, A. Vembris, K. Siltane, E. Misina, V. Kokars, K. Lazdovica, S. Popova, V. Kampars, M. Rutkis. Trityloxyethyl and *tert*-butyl groups containing molecular glasses of 4*H*-pyran-4-ylidene derivatives with light-emitting and amplified spontaneous emission properties. *"RTU 53. International Scientific Conference"*, 2012, Ķīpsala. Riga, Latvia.
- E. Zarins, V. Kokars, A. Ozols, P. Augustovs. Synthesis and properties of 1,3-dioxo-1*H*-inden-2(3*H*)-ylidene fragment and (3-(dicyanomethylene)-5,5dimethylcyclohex-1-enyl)vinyl fragment containing derivatives of azobenzene for holographic recording materials. *"SPIE Optics + Optoelectronics 2011"*, 2011, 18.–21. April, Prague, Chez Republic, Prague Congress Centre.
- E. Zarins, J. Jubels, V. Kokars. Synthesis of red luminescent non symmetric stryryl-4*H*-pyran-4-ylidene fragment containing derivatives for organic lightemitting diodes. "*Inter Academia – 2010*", **2010**, 9.–12. August, Riga, Latvia.

Participation in scientific conferences with posters:

- E. Zarins, T. Puciriuss, M. Otikovs, I. Neibolte, K. Siltane, E. Misina, V. Kokars, A. Ozols, P. Augustovs, V. Kampars. Investigation of structure and physical properties of pyranylidene fragment containing molecular glasses with trytiloxyethyl and *tert*-butyl groups. "Discoveries in Optics and Communications 2013", 2013, 10–12 April, LU, CFI, Riga, Latvia.
- E. Zarins, A. Tokmakovs, Z. Kalnina, V. Kokars, K. Lazdovica, A. Vembris, M. Rutkis, A. Ozols, P. Augustovs, K. Lazdovica, V. Kampars. Thermal, glassforming, nonlinear optical and holographic properties of "pull-push" type azochromophores with triphenyl moieties containing isophorene and pyranylidene fragments. "SPIE Photonics West 2013", 2013, 2–7 February, San Francisco, California, USA.

- E. Zarins, K. Siltane, E. Misina, V. Kokars, K. Lazdovica, A. Vembris, V. Kampars, I. Muzikante, M. Rutkis. Synthesis, optical and thermal properties of glassy trityl group containing luminescent derivatives of 2-*tert*-butyl-6-methyl-4*H*-pyran-4-one. "SPIE Photonics Europe 2012", 2012, 16–19 April, Brussels, Belgium.
- E. Zariņš, J. Jubels, V. Kokars, A. Vembris, I. Muzikante. Apjomīgo tritilgrupu saturošo luminoforu sintēze un īpašības. *Apvienotais pasaules latviešu zinātnieku III. kongress un letonikas IV. kongress*, 2011, 24–27 October, Riga, Latvia.
- E. Zariņš, V. Kokars, A. Ozols, P. Augustovs. Hologrāfisko ierakstu materiāliem pētāmo 4H-pirān-4-(1,3-dioksi-1H-inden-2(3H)-ilidēn) fragmentu saturošu azobenzola atvasinājumu sintēze un īpašības. "RTU 52. International Scientific Conference", 2011, 13–15 October, Riga, Latvia.
- Zariņš E., Puciriuss T., Siltāne K., Kokars V. One pot synthesis of 2-(3-styryl)-5,5-dimethylcyclohex-2-enylidene)malononitrile dyes as potential multifunctional optical materials. "Paul Walden 7th Symposium on Organic Chemistry", 2011, 5–6 October, Riga, Latvia.
- E. Zarins, V. Kokars, M. Utinans. Synthesis and properties of red luminescent 2-(3-(4-(bis(2-(trityloxy)ethyl)amino)styryl)-5,5-dimethylcyclohex-2-enylidene) malononitrile for organic light-emitting diodes. *"Functional Materials and Nanotechnologies 2011"*, 2011, 5–8 April, LU, CFI, Riga, Latvia.
- E. Zariņš, J. Jubels, V. Kokars, A. Vembris, M. Porozovs, I. Muzikante. Synthesis and properties of red luminescent symmetric styryl-4H-pyran-4-ylidene fragment containing derivatives for organic light-emitting diodes. "*RTU 51. International Scientific Conference*". 2010, 13–15 October, Riga, Latvia.
- E. Zarins, J. Jubels, V. Kokars. Synthesis of red luminescent non symmetric stryryl-4H-pyran-4-ylidene fragment containing derivatives for organic lightemitting diodes. "Inter Academia – 2010", 2010, 9–12 August, Riga, Latvia.

MAIN SCIENTIFIC RESULTS OF THE DOCTORAL THESIS

1. Synthesis and physical properties of bulky trityloxyethyl, 6-alkyl-, 2-styryl and symmetric 2,6-*bis*-styryl group containing molecular glasses of 4*H*-pyran-4-ylidene

2,6-Dimethyl-4*H*-pyran-4-one (2) was used as the starting compound, which was synthesized from 3-acetyl-4-hydroxy-6-methyl-2*H*-pyran-2-one (1) and obtained in 86 % yield. In its further *Knoevenagel* condensation reactions with active methylene group containing compounds A (1*H*-indene-1,3(2*H*)-dione (**3b**), malononitrile (**3a**) and pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione) (**3c**) 4-substituted-4*H*-pyranes **4a-c** were obtained. The target compounds have been synthesized in reaction from 4-substituted-4*H*-pyranes **4a-c** and 4-(bis(2-(trityloxy)ethyl)amino)benzaldehyde (**5**) (see Fig. 1.1.). In all reactions, a mixture of *mono-* and *bis-* condensation products was obtained.

Fig. 1.1. Synthesis of 6-methyl-2-styryl and 2,6-*bis*-styryl substituted molecular glasses of 4*H*-pyran-4-ylidene

Accordingly, a mixture of 2-(2-(4-(bis(2-trityloxy)ethyl)amino)styryl-4*H*-pyran-4ylidene derivatives **6a** (**DWK-1**) and **7a** (**DWK-2**), a mixture of 2-(2-(4-(bis(2trityloxy)ethyl)amino)styryl-4*H*-pyran-4-ylidene derivatives **6b** (**ZWK-1**) and **7b** (**ZWK-2**) and a mixture of 2-(2-(4-(bis(2-trityloxy)ethyl)amino)styryl-4*H*-pyran-4-ylidene derivatives **6c** (**JWK-1**) and **7c** (**JWK-2**). The separation of obtained *mono*- condensation products (*mono*-styryl-4*H*-pyranes) from no *bis*- condensation products (*bis*-styryl-4*H*-pyranes) is complicating but nevertheless large part of each product were separated by liquid column chromatography and their physical properties were investigated.

The thermal properties of trityloxyethyl group containing 4*H*-pyran-4-ylidene (pyranylidene) type compounds **6a-c** and **7a-c** were measured with thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) and are shown in table 1.1.

Table 1.1.

Compound	T _g , (°C) 1. heating	T _g , (°C) 2. heating	k.t., (°C)	T _d , (⁰C)
6b	117	110	212	274
7b	122	118	144	284
6a	-	-	250	267
7a	118	112	148	296
6c	133	120	146	266
7c	135	127	144	283

Thermal properties of synthesized compounds 6a-c and 7a-c

 T_d – thermal decomposition temperature ; **m. p**. – melting point

 T_g – glass transition temperature

Glassy organic compounds with two N,N-bis-(2-trityloxyethyl)amino electron donor fragments (**7a-c**) are slightly more thermally stable than compounds containing only one such fragment, i.e. **6a-c**. The increase in thermal stability of glassy 4*H*-pyran-4-ylidene type compounds by adding another electron donor fragment is as high as 10 °C from **6b** to **7b**, 19 °C from **6c** to **7c** and 29 °C from **6a** to **7a**. The most thermally stable compound is a two electron donor fragment containing derivative of 4*H*-pyran-4-ylidene with malononitrile as the electron acceptor fragment (**7a**).

The T_g value is obtained from the second heating scan and for almost all compounds is higher than 100 °C. We could not observe glass transition for **6a**. The compounds with two N,N-bis-(2-trityloxyethyl)amino electron donor fragments (**7a-c**) have higher T_g compared to those with only one electron donor fragment (**6b-c**), which may be attributed to the different numbers of bulky trityloxyethyl groups attached to the two electron donor fragment. In a larger number of bulky groups T_g increases by 8 °C from **6b** to **7b** and 7 °C from **6c** to **7c**. Glassy compounds with barbituric acid as the electron acceptor, e.g. **6c** and **7c** have the highest T_g values compared to **6b**, **7b** and **7a**, which may be due to the additional formation of intermolecular hydrogen bonds by N-H groups of barbituric acid fragments in the molecules.

Thin solid films obtained from compound **6a-c** and **7a-c** saturated solutions of dichloromethane are shown in Fig. 1.2. In all cases, pure films obtained from two electron donor fragment containing derivatives of 4*H*-pyran-4-ylidene (**7a-c**) have an almost pure smooth and amorphous surface, but pyranylidene compounds with one electron donor fragment (**6a-c**) show several crystalline state areas.

Fig. 1.2. Optical microscope images of the pure films of glassy 4*H*-pyran-4-ylidene derivatives.

Glasses which contain barbituric acid as the electron acceptor fragment (**6c** and **7c**) show the least amount of small crystal formations on their pure film surface. The higher stability of their amorphous state could be explained by an enhancement of N-H group hydrogen bonds in the molecules. Pure films obtained from malononitrile electron acceptor

fragment containing compounds (**6a** or **DWK-1** and **7a** or **DWK-2**) contain small crystal dots, especially **6a**. This could be due to small sterical dimensions of malononitrile group, which allows more compound **6a** molecules to be concentrated in the same volume. This results in closer interaction with other molecules enabling higher possibility to form aggregates and crystallites.

Light absorption and light emission measurement results of the glassy compounds **6a-c** and **7a-c** in solutions of dichloromethane and in their solid state are shown in table 1.2.

Table 1.2.

	Absorption,	Emission,	Absorption,	Emission,
Compound	λ _{max} (nm); lgε	λ _{max} (nm)	$\lambda_{\max}(\mathbf{nm}); \mathbf{lg}\alpha$	λ _{max} (nm),
	(CH ₂ Cl ₂)	(CH ₂ Cl ₂)	(Film)	(Film)
6b	514 ; 4.76	619	505 ; 4.71	668
7b	525 ; 4.95	662	524 ; 4.67	685 and 827
6a	470 ; 4.55	583	480 ; 4.88	633
7a	489 ; 4.84	629	500; 4.62	675
6c	511 ; 4.71	626	507 ; 4.82	673
7c	505 ; 4.88	687	517;4.52	715

Optical properties of synthesized *mono-styryl-* and *bis-*styryl- substituted derivatives of 4*H*-pyran-4-ylidene.

The absorption spectra of *bis*-stryryl-4*H*-pyran-4-ylidene derivatives **7a-c** in solutions of dichloromethane (in range from 489 nm to 525 nm) as well as in their thin solid films (in range from 500 nm to 524 nm) were redshifted by 10–30 nm, comparing to the absorption of the *mono*-stryryl-4*H*-pyran-4-ylidene derivatives **6a-c** (in solution of dichloromethane in range from 470 nm to 511 nm, but in thin solid films in range from 480 nm to 507 nm). It could be explained with two N,N-bis-(2-trityloxyethyl)amino electron donor fragments in the compound **7a-c** molecules. The absorption of malononitrile electron acceptor group containing derivatives of 4*H*-pyran-4-ylidene **6a** ($\lambda_{max} \sim 475$ nm) and **7a** ($\lambda_{max} \sim 495$ nm) in solution and solid state were blueshifted by 10–35 nm comparing to indene-1,3-dione and barbituric acid fragment containing derivatives of 4*H*-pyran-4-ylidene **6b**, **6c** ($\lambda_{max} \sim 515$ nm) and **7b**, **7c** ($\lambda_{max} \sim 512$ nm). It means that the indene-1,3-

dione and barbituric acid groups have stronger electron withdrawing properties then malononitrile fragment.

In solutions of dichloromethane compounds **6a-c** and **7a-c** emit orange-red light (in range from 580 nm to 690 nm), but in their solid state they emit only red light (in range from 633 nm to 715 nm). The light emission of *mono*-stryryl-4*H*-pyranes **6a-c** in solutions (in range from 583 nm to 629 nm), and their solid state (in range from 633 nm to 673 nm), are blueshifted by 50–200 nm comparing to the light emission of *bis*-stryryl-4*H*-pyranes **7a-c** (in solution in range from 629 nm to 687 nm, but in thin solid films in range from 675 nm to 827nm).

A part of the light emission of *bis*-stryryl-4*H*-pyran-4-ylidene derivatives **7a** and **7c** are beyond 700 nm, e,g, in infrared (IR) part of the spectrum which human eye cannot see. Therefore their potential application as OLED light-emitting material would be greatly limited. Nevertheless, the obtained glassy derivatives of 4*H*-pyran-4-ylidene **6a-c** and **7a-c** could be perspective as a new materials for organic solid state laser applications.

2. Synthesis and physical properties of bulky trityloxyethyl group containing molecular glasses of isophorene and *tert*-butyl-4*H*-pyran-4-ylidene

To ensure the addition of only one molecule of N,N-bis-(2-trityloxyethyl) aminobenzaldehyde (5) in the last stage of synthesis, 3,5,5-trimethylcyclohex-2-enone (isophorene) was used as the staring reactant. In its *Knoevenagel* condensation reaction with malononitrile (3a) a 2-(3,5,5-trimethylcyclohex-2-enylidene)malononitrile (9) is obtained (see Fig.2.1.). Non separating 9 from the reaction mixture it was subjected to further reaction with aldehyde 5 affording 2-(3-(4-(bis(2-(trityloxy)ethyl)amino)styryl)-5,5-dimethylcyclohex-2-enylidene)malononitrile 10 (IWK-1D).

The derivatives of 4H-pyran-4-ylidene with light-emitting properties which contain only one styryl-fragment is possible to synthesize from *mono*-methyl-substituted-4H-pyran-4-ones. 2-*tert*-Butyl-6-methyl-4H-pyran-4-one (14) was obtain in 69 % yield from pentane-2,4-dione (11) and methyl pivalate (12) (see Fig. 2.2.). In its further *Knoevenagel condensation* reactions with active methylene group containing compounds **A** (malononitrile (3a), 1*H*-indene-1,3(2*H*)-dione (3b), pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione) (3c),1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione(3d),1,3-diethyl-2-thioxodihydropyrimidine-4,6(1H,5H)-dione(3e)and2-thioxodihydropyrimidine-4,6(1H,5H)-dione(3f)afforded 2-*tert*-butyl-6-methyl-4-substituted-4H-pyranes15a-f.

Fig. 2.1. Synthesis of trityloxyethyl group containing derivative of isophorene

The target compounds 16b (ZWK-1TB), 16a (DWK-1TB), 16c (JWK-1TB), 16d (MWK-1TB), 16e (EWK-1TB) and 16f (JWK-1TBS) have been synthesized in *Knoevenagel condensation* reaction from 2-*tert*-butyl-6-methyl-4-substituted-4*H*-pyranes 15a-f and 4-(bis(2(trityloxy)ethyl)amino)benzaldehyde (5) and obtained in 15–75 % yields after the purification by liquid column chromatography.

Synthesized glassy compounds **10** and **16a-f** are thermally stable (T_d from 242 °C to 312 °C) (see table 2.1.) and they form good optical quality transparent amorphous films from volatile organic solvents. Only the *mono*-styryl-substituted derivatives of 4*H*-pyran-4-ylidene **16c**, **16d**, **16e** and cyclohex-2-ene-1-ylidene derivative **10** showed glass transition in the second DSC heating cycle, which indicates on the increased kinetical stability of their amorphous phase in comparison to glasses **16a**, **16b** and **16f**.

From glassy compounds which showed the glass transition in second DSC heating cycle, the highest glass transition was observed for compound **16c** ($T_g = 133$ °C), which could be explained by the possible formation of the hydrogen bonds in the molecules.

Fig. 2.2. Synthesis of trityloxyethyl group containing derivatives of 2-styryl-6-*tert*-butyl-4*H*-pyran-4-ylidene

The absorption and emission properties of glassy compounds **10** and **16a-f** are summarized in table 2.2. Compound **10** and **16a-f** light absorption in their solid state (in range from 480 nm to 533 nm) are redshifted by 10 nm comparing to their absorption in solutions of dichloromethane (in range from 470 nm to 535 nm).

Ta	bl	e	2.	1	•

Compound	Yield, %	$T_g, (^{\circ}C)$	Т _g , (°С)	m.p.,	T _d , (°C)
•	,	1. heating	2. heating	(°C)	<u> </u>
10	53	-	92	190	295
16b	41	129	-	167	275
16a	75	158	-	210	309
16c	17	134	133	172	264
16d	59	114	111	180	308
16e	65	132	108	164	312
16f	20	115	-	239	242

Yields and thermal properties of synthesized compounds 10 and 16a-f.

Among the mentioned glassy compounds, the absorption of **16a** in solutions ($\lambda_{max} =$ 470 nm) and in the solid state ($\lambda_{max} =$ 480 nm) was most blue shifted, which could be attributed to the lower electron affinity of malononitrile fragment in compartment to the indene-1,3-dione and barbituric acid fragments.

Table 2.2.

	Absorption,	Emission,	Absorption,	Emission,
Compound	λ _{max} (nm);lgε	λ _{max} (nm)	λ_{max} (nm); lg α	λ_{\max} (nm),
	(CH ₂ Cl ₂)	(CH ₂ Cl ₂)	(Film)	(Film)
10	501 ; 4.51	643	510 ; 4.71	705
16b	510 ; 4.80	618	510 ; 4.61	666
16a	470 ; 4.47	584	480 ; 4.56	623
16c	507 ; 4.75	623	490 ; 4.66	656
16d	505 ; 4.74	619	490 ; 4.75	637
16e	530 ; 4.82	638	524 ; 4.84	662
16f	535 ; 4.80	640	533 ; 4.77	706

Optical properties of synthesized glassy compounds 10 and 16a-f.

The light emission of synthesized glasses **10** and **16a-f** in solutions of dichloromethane (in range from 584 nm to 643 nm) are blueshifted by 40–60 nm in comparement to their light emission in the solid films (in range from 623 nm to 706 nm).

The absorption properties of substituted and non-substituted barbituric acid containing derivatives of 4*H*-pyran-4-ylidene **16c-f** are similar, but their light emission (in range from 637 nm to 706 nm) vary from each other even by 70 nm. We believe that the reason of such large shift of light-emission is explained by the different aggregate formation of the respective compound molecules in their solid state, which influence the light emission. Unfortunately a large part of light emission of glasses **10** and **16f** in their solid state are beyond the 700 nm, which limits their potential usage in OLED applications.

The optical properties of glassy 6-*tert*-butyl-2-styryl-substituted-4*H*-pyranes **16a-f** and *mono*-styryl-substituted 4*H*-pyranes **6a-c** are similar, however glasses **16a-f** have better thermal stability and higher glass transition, but the kinetical stability of their amorphous phase is lower than of compounds **6a-c**. Nevertheless, the glasses **16a-e**, which can be obtainable in good yields, are perspective as a new amorphous light-emitting materials and their stimulated emission properties as well as their potential application in light-emitting systems are currently studied (Institute of Solid state physics, *Dr. phys.* A. Vembris).

3. Synthesis and physical properties of bulky trityloxyethyl and *non*-symmetric 2,6*bis*-styryl group containing molecular glasses of 4*H*-pyran-4-ylidene

Only one methyl group containing 4*H*-pyran-4-ones **19a-d** were successfully synthesized (see Fig. 3.1.) from 3-acetyl-4-hydroxy-6-methyl-2*H*-pyran-2-one (**1**) in its reaction with aromatic aldehydes **17a-d** followed by the following rearrangement and decarboxylation of intermediates (**18a-d**). Further 4*H*-pyran-4-one **19a-d** condensation reactions with electron acceptor group containing compounds **3a-c** afforded derivatives of 2-styryl-6-methyl-4*H*-pyran-4-ylidene **20a-d**, **21a-d** and **22a-d** in 33–71 % yields. Glassy non-symmetric 2,6-*bis*-styryl-4*H*-pyran-4-ylidene fragment containing compounds **23a-d**, **24a-d** and **25a-d** were obtained from 4*H*-pyran-4-ylidene derivatives **20a-d**, **21a-d**, **22a-d** in their reactions with aldehyde **5**.

One of the most important objectives we tried to achieve was the synthesis of such 2,6-*bis*-styryl-derivatives of 4*H*-pyran-4-ylidene, in which one of its styryl-groups would contain substituent with electron withdrawing properties. We believed that such glassy 4*H*-pyranes would emit light in yellow or orange light in the visible part of the spectrum.

For this purpose 4-(3-(4-hydroxy-6-methyl-2-oxo-2*H*-pyran-3-yl)-3-oxoprop-1-enyl) benzonitrile (**18e**) was synthesized (Fig. 3.2.) and used as the staring reactant.

Fig. 3.1. Synthesis of non-symmetric 2,6-bis-substituted derivatives of 4H-pyran-4-ylidene

However, compound **18e** further acidic rearrangement and decarboxylation reaction afforded isobutyl 4-(2-(6-methyl-4-oxo-4*H*-pyran-2-yl)vinyl)benzoate (**19f**). As we later conducted, the cyano- group hydrolyzes and further reacts with the solvent (isobuylalcohol) forming isobuthyloxycarbonyl- group. Since the carbonyl group has electron withdrawing properties, we continued the synthetic route from 4*H*-pyran-4-one **19f** as shown in (Fig. 3.1.). In reaction of **19f** with compounds **3a-c** afforded 2-(4-isobuthyloxycarbonyl)styryl-4*H*-pyrane-4-ylidene derivatives **20f**, **21f** and **22f**. As the barbituric acid containing compound **22f** was practically insoluble in organic solvents, we only used compounds **20f** and **21f** in further reactions with aldehyde **5**.

Fig. 3.2. Synthesis of 4-isobutyloxycarbonylstyryl- group containing 2,6-*bis*-substituted derivatives of 4*H*-pyran-4-ylidene

In order to obtain 4-cyano-styryl-subsituted glassy derivatives of 4*H*-pyran-4ylidene, a different synthetic route was used from compounds **4a** and **4b** as the starting reactants (see Fig. 3.2.). In the reaction of **4a** and **4b** with 4-cyano-benzaldehyde (**17e**), a mixture of *mono*- (**20e** and **21e**) and *bis*- (**24e** and **25e**) condensation products were obtained. 2-(4-Cyano-styryl,6-methyl-4*H*-pyranes **20e** and **21e** were separated from the mixture by liquid column chromatography. In further reaction with aldehyde **5**, the target compound **23e** was obtained from malononitrile group containing compound **20e**. In similar reaction of **21e** with aldehyde **5**, the HPLC-MS analysis did not show the formation of desired product.

Fig. 3.3. Synthesis of 4-cyanostyryl- group containing 2,6-*bis*-substituted derivatives of 4*H*-pyran-4-ylidene

Obtained glassy non-symmetric 2,6-*bis*-styrylsubstituted derivatives of 4*H*-pyrane-4-ylidene **23a-d**, **24a-d** and **25a-d** are thermally stable (see table 3.1) with T_d from 173 °C to 312 °C, but showed slightly lower thermal stability then 4*H*-pyranes **6a-c**, **7a-c** and **16a-f** (T_d from 242 °C to 312 °C). We could not observe the glass transition for compounds **23a**, **24a** and **25d** which is explained with the low kinetical stability of their amorphous phase. The glass transition temperatures (T_g) of glassy derivatives of 4*H*-pyranes **23b-d**, **24b-d**, **25a-b** were in range from 105 °C to 124 °C. The highest glass transition was observed for compound **25c** which contain barbituric acid as an electron acceptor fragment. Unfortunately the obtained quantity of glasses **23e** and **23f** was not enough for conducting their thermal property measurements.

Table 3.1.

Compound	Viold 9/	T_g , (°C)	T_g , (°C)	m.p.,	
Compound	r ieiu, 70	1. heating	2. heating	(°C)	$\mathbf{I}_{d}, (\mathbf{C})$
23a	41	-	-	246	280
23b	19	115	104	157	198
23c	19	139	111	165	173
23d	30	143	119	244	301
24a	19	-	-	245	306
24b	35	118	113	166	239
24c	48	126	120	158	300
24d	28	125	124	185	312
25a	21	134	113	150	261
25b	60	119	115	146	287
25c	25	158	132	186	237
25d	7	-	-	196	278

Yields and thermal properties of synthesized non-symmetric 2,6-*bis*-styryl-substituted derivatives of 4*H*-pyran-4-ylidene

Some of the thin solid amorphous films, which were obtained from some of the trityloxyethyl-group containing non-symmetric derivatives of 2,6-*bis*-styryl-4*H*-pyran-4-ylidene **23d**, **24d**, **25c** saturated solutions of dichloromethane, are shown in Fig. 3.4. A number of crystalline centres were found on the surface of compound **23d**, **24d**, **25c** neat films, which could be attributed to the low kinetical stability of their amorphous phase, possible molecular cross-packaging and aggregate formation in the solid state. The light absorption of glassy compounds **23b-d**, **24b-d**, **25a-b** in solutions of dichloromethane as well as in their solid state are in range from 400 nm to 550 nm (see table 3.2.), but their light emission in solid state is in range from 659 nm to 740 nm and are redshifted by

approximately 50 nm comparing to their light emission in solutions of dichloromethane (in range from 600 nm to 691 nm).

Fig. 3.4. Optical microscope images of the pure films of some non-symmetric
2,6-*bis*-substituted derivatives of 4*H*-pyran-4-ylidene. Dots on the neat film surface represent compound crystalline state while the rest smooth area shows amorphous solid state.

Table 3.2.

Optical properties of synthesized non-symmetric 2,6-*bis*-substituted derivatives of 4*H*-pyran-4-ylidene

	Absorption,	Emission,	Absorption,	Emission,
Compound	λ_{max} (nm); lg ϵ	λ_{max} (nm)	$\lambda_{\max}(\mathbf{nm}); \mathbf{lg}\alpha$	λ_{max} (nm),
	(CH ₂ Cl ₂)	(CH ₂ Cl ₂)	(Film)	(Film)
23a	507 ; 4.59	636	508 ; 4.67	667
23b	502 ; 4.54	633	502 ; 4.40	659
23c	487 ; 4.85	633	492 ; 4.72	682
23d	510 ; 4.56	644	502 ; 4.42	680
23e	507 ; 4.42	647	523 ; 4.52	689
23f	515 ; 4.39	599	539 ; 4.58	700
24a	541 ; 4.67	668	531 ; 4.72	702
24b	538 ; 4.72	661	479 ; 4.68	695
24c	523 ; 4.61	664	530 ; 4.79	726
24d	507 ; 4.63	675	534 ; 4.53	707
25a	545 ; 4.56	681	465 ; 4.55	722
25b	543 ; 4.54	679	480 ; 4.67	715
25c	502 ; 4.88	688	508 ; 4.54	715
25d	549 ; 4.64	691	465 ; 4.48	740

By comparing the glassy compounds 23c and 23e, we can see that the additional incorporation of electron acceptor group in 4-position in one of the styryl- substituents caused 30–50 nm hipsohromic shift of the light emission in solutions of dichloromethane. The light absorption and light emission studies of glassy compounds 23a-f, 24a-d and 25a-d have shown, that the incorporation of different substituents in 4-position in one of the styryl- fragments, including substituents with electron acceptor properties – planned and obtained target compound light emitting properties do not change much, and are similar to derivatives of 2,6-*bis*-styryl-4H-pyran-4-ylidene **7a**, **7b** and **7c** described in the previous section (1st). Obtained results indicate that the second styryl-fragment has very low impact in the light-emitting phenomena of the molecule and it mostly depends on the N,N-bis-(2trityloxyethyl)aminostyryl- electron donor substituent, 4H-pyran-4-ylidene π -system and on the electron-acceptor group.

Synthesized non-symmetric derivatives of 2,6-*bis*-styryl-4*H*-pyran-4-ylidene **23a-f**, **24a-d** and **25a-d**, which are able to form thin solid amorphous films from volatile organic solvents are perspective as molecular glasses. However, in order to obtain organic compounds with yellow-green or blue light emission properties necessary for the possible white OLED applications, another synthetic modification of 4*H*-pyrane-4-ylidene derivatives is required.

4. Synthesis and physical properties of bulky trityloxyethyl group containing molecular glasses of 2,6-disubstituted-1*H*-pyridine

The light emission of 4*H*-pyran-4-ylidene compounds described in the previous chapters was observed in the orange and red part of the visible spectra and was mostly influenced by the electron acceptor fragment and N,N-bis-(2-trityloxyethyl)aminostyryl-electron donating substituent. In order to obtain the organic compounds with yellow light-emitting properties, we conducted the synthesis of 2,6-disubstituted-1*H*-pyridines from 2,6-disubstituted-4*H*-pyranes. Such 1*H*-pyridines could be obtained from 2,6-disubstituted-4-pyranes in their reactions with primary amines according to the general reaction mechanism shown in Fig. 4.1.

Fig. 4.1. General reaction mechanism for obtaining derivates of 1*H*-pyridine from 4*H*-pyranes

It is clearly shown in the mechanism (Fig. 4.1.), the electron acceptor fragment (A) and substituents (R^1 , R^2 and R^3) do not directly participate in any of the reaction stages but their structures could influence the outcome of the reaction. In case the substituents R_1 and R_2 are not identical, the nucleofilic addition of primary amine could take place in 2 or 6 position to the 4*H*-pyran ring affording transition compound **26a**. It can further rearrange either to enole **26ba** or ketone **26b2**. Further cyclization of the enole **26b1** or ketone **26b2** which occurs through the transition ammonium compounds **26c1** or **26c2** affords 1,2-dihidro-4*H*-pyridine **26d1**. Its further dehydration leads to formation of 1*H*-pyridine derivatives **27**, which most likely will be a mixture of diastereoisomers. In this study we decided to use benzyl amine as a primary amine. The benzyl substituent in target compounds could provide a higher glass transition temperature and a higher kinetic stability of the amorphous phase.

The synthesis of amorphous phase promoting trityloxy group containing derivatives of 1*H*-pyridine **16a-N** was made from group containing 2-styryl-substituted derivative of 6*tert*-butyl-4*H*-pyran-4-ylidene **16a** (see Fig. 4.2.) according to the general reaction mechanism (see Fig. 4.1.) or from 2-*tert*-butyl-1*H*-pyridine **11a-N** in reaction with aldehyde **5**.

Fig. 4.2. Attempts to synthesize amorphous phase forming derivates of 1*H*-pyridines from *tert*-butyl group containing derivatives of 4*H*-pyran-4-ylidene

However, in both cases the formation of desired target compound **16a-N** was not observed and the HPLC-MS analysis of reaction product showed up to 40 different signals. We believe that the large sterical dimensions of *tert*-butyl, benzyl and trityloxyethyl groups was the main reason why **16a-N** was not obtained. Therefore for the synthesis of analogue trityloxyethyl group containing derivatives of 1*H*-pyridine we used derivatives of 2,6-dimethyl-4*H*-pyran-4-ylidene **4a-f** as the starting reactants. In their reaction with benzyl amine -2,6-dimethyl-1*H*-pyridines **27a-f** were successfully obtained in 46–98 % yields (see Fig. 4.3.). In compound **27a-f** further condensation reactions with aldehyde **5** the trityloxyethyl group containing derivatives of 2,6-dimethyl-1*H*-pyridine were not obtained. This could be attributed to the large sterical dimensions of benzyl-group of 1*H*-pyridines **27a-f** and trityloxyethyl groups of aldehyde **5** as the molecules cannot approach each other

close enough for a possible reaction. Thereof further in our study we decided to carry out the synthesis from 4*H*-pyran derivatives, which would contain 4-(N,N-dimethylamino)-styryl- group and one methyl group. 1*H*-Pyridines **28b** and **28c** were successfully synthesized in satisfactory yields from 4*H*-pyranes **24c** and **25c** in their reactions with benzyl-amine (see Fig. 4.4.), while in the analogue synthesis of **23c** and benzyl amine the corresponding derivative of 1*H*-pyridine was not obtained.

Fig. 4.3. Synthesis of 2,6-dimethyl-1*H*-pyridines from derivatives of 2,6-dimethyl-4*H*-pyran-4-ylidene.

Fig. 4.4. Synthesis of 2-(4-aminostyryl)-6-methyl-1*H*-pyridines from derivatives of 2-(4-aminostyryl)-6-methyl-4*H*-pyran-4-ylidene.

The target compounds **29b** (**ZE-1Tr**) and **29c** (**JE-1Tr**) (see 4.5. Fig.) were obtained in relative high yields in reaction of previously synthesized derivatives of 4*H*-pyran-4-ylidene **6b** and **6c** (see 1.2. Fig.) and benzyl amine excess. The HPLC-MS analysis showed the presence of two compounds with molecular weight corresponding to the two target compounds **29b** and **29c** which indicates the occurrence of a mixture of diastereoisomers as it was noted in the general reaction mechanism (see Fig. 4.1.). The ratio of formed diastereoisomers were approximately determined by ¹H-NMR spectra – 1:1 to 1:1.2 for **29b** and 1:1 to 1:1.2 for **29c**. For further analysis the target compounds **29b** and **29c** were used in the diastereoisomers mixture ratio in which they were obtained in the synthesis.

Fig. 4.5. Synthesis of glassy trityloxyethyl group containing derivates of 1*H*-pyridine

Synthesized glasses **29b** and **29c** are thermally stable (T_d from 288 °C to 296 °C) (see table 4.1.), they form thin solid films from volatile organic solvents (see Fig. 4.6.) and their glass transition could be observed in the first and in the second DSC heating cycle ($T_g \sim 140$ °C). The light absorption of 1*H*-pyridines **29b** and **29c** in solutions of dichloromethane as well as in their solid state are in range from 350 nm to 450 nm (see table 4.2). Glasses **29b** and **29c** emit green to yellow light in the visible part of the spectrum (see table 4.2.) in their solid state ($\lambda_{max} \sim 600$ nm) as well as in the solutions of dichloromethane ($\lambda_{max} \sim 550$ nm). The potential applications of compounds as a light-

emitting materials for organic photonic devices is currently studied at the Institute of Solid state physics of University of Latvia (*Dr. phys.* A. Vembris).

Table 4.1.

Yields and thermal properties of synthesized trityloxyethyl group containing derivatives of 1*H*-pyridine

Compound	T _g , (°C) 1.heating	T _g , (°C) 2.heating	Yield, %	т.р., (°С)	T_d , (°C)
29b	139	-	86	163	296
29c	140	140	97	180	288

JE-1Tr

Fig. 4.6. Att. Optical microscope images of the pure films of the glassy trityloxyethyl group containing derivates of 1*H*-pyridine obtained with the "*spin-coating*" approach. Dots on the neat film surface represent compound crystalline state while the rest smooth area shows amorphous solid state.

Table 4.2.

Compound	Absorption, λ _{max} (nm); lgε (CH ₂ Cl ₂)	Emission, λ _{max} (nm) (CH ₂ Cl ₂)	Absorption, λ _{max} (nm); lgα (Film)	Emission, λ _{max} (nm), (Film)
29b	418 ; 4.75	545	438 ; 4.56	603
29c	378 ; 4.52	544	391 ; 4.57	596

Optical properties of synthesized trityloxyethyl group containing derivatives of 1H-pyridine

5. Synthesis, physical and photorefractive properties of triphenyl group containing molecular glasses of azobenzene

Since the D- π -A type derivatives of azobenzene with nitro group as electron acceptor fragment are well known as photorefractive materials due to it possible *trans-cis-trans* photoisomerisation – the aim of our work was the synthesis of triphenyl group containing azobenzene derivatives with inene-1,3-dione fragment as an electron acceptor part of the molecule.

For this study azobenzene fragment containing aldehydes **33a-b** were synthesized (see Fig. 5.1.) as the starting reactants from 4-amino-benzaldehyde in it diazotation and further azocoupling reactions with N,N-disubstituted anilines **32a-b**. Condensation reactions of azobenzenes **33a-b** with indene-1,3-dione (**3b**) followed by tritylation or silylation of intermediates **34a-b** afforded target compounds **35a-c** in 41–90 % yields.

Fig. 5.1. Synthesis of glassy indene-1.3-dione fragment containing derivatives of azobenzene

Molecular glasses **35a-c** form good quality transparent amorphous films from volatile organic solvents (see Fig. 5.2.), they are thermally stable (T_d from 250 °C to 282 °C) and showed glass transition in the second DSC heating cycle (see table 5.1.). The highest thermal stability was observed for two triphenyl**methyl-** (**35b**) or two triphenyl**silyl** (**35c**) group containing azobenzenes with almost identical structure, but the glass transition of **35b** ($T_g = 98$ °C) was higher by 23 °C than of **35c** ($T_g = 75$ °C). This could be explained by the larger diameter of Si atoms in triphenyl**silyl-** (Si-Ph) group of **35c** in relation to C atoms in tripheny**methyl-** (C-Ph) groups of **35b** which leads to more rotational conformations of phenyl groups and reduced glass transition of **35c**.

Table 5.1.

Yields and thermal properties of synthesized indene-1,3-dione and triphenyl group containing derivatives of azobenzene

Compound	Yield, %	T _g , (°C) 1. heating	T _g , (°C) 2. heating	m.p., (°C)	T_d , (°C)
35a	73	-	70	175	250
35b	90	-	98	239	280
35c	41	-	75	236	282

Fig. 5.2. Optical microscope images of the pure films of the of the glassy indene-1.3-dione group containing derivatives of azobenzene.Dots on the neat film surface represent compound crystalline state while the rest smooth area shows amorphous solid state.

Organic D- π -A type compounds with incorporated cyclohex-2-ene-1-ylidene or 4*H*-pyran-4-ylidene fragments, for example, the previously synthesized molecular glasses **10**, **16a-c** have polar structure and extended conjugated system. Therefore the insertion of azobenzene group in such compounds could provide them with an additional photorefractive properties. In order to obtain the glassy azobenzene group containing

derivatives of cyclohex-2-ene-1-ylidene (isophorene) or 4*H*-pyran-4-ylidene, at first we conducted the synthesis of triphenymethyl-group containing aldehydes **36a-b** (see Fig. 5.3.) in tritylation reactions from previously synthesized azobenzenes **33a-b**. Glassy cyclohex-2-ene-1-ylidene group containing derivatives of azobenzene **37a** and **37b** were obtained in "one pot synthesis" from isophorene (**8**), malononitrile (**3a**) and aldehydes **36a-b**. In comparison to glassy azobenzenes **35a-c** (T_d from 250 °C to 282 °C), the thermal stability of isophorene fragment containing azobenzene derivatives **37a-b** (T_d from 288 °C to 289 °C) (see table 5.2.) is not influenced by the number of incorporated triphenyl groups. Compounds **37a-b** form good optical quality thin amorphous films from saturated solutions of dichloromethane (see Fig. 5.4.) and show glass transitions in the second heating cycle of DSC analysis (T_g from 90 °C to 105 °C). The highest glass transition was observed for **37b** (T_g = 105 °C) with two incorporated triphenymethyl-groups.

Fig. 5.3. Synthesis of glassy azobenzene derivatives of isophorene

Table 5.2.

Yields and thermal properties of synthesized glassy azobenzene derivatives of isophorene

Compound	Yield, %	T _g , (°C) 1. heating	T _g , (°C) 2. heating	т.р., (°С)	Τ _d , ([°] C)
37a	21	-	90	188	289
37b	22	108	105	140	288

Fig. 5.4. Optical microscope images of the pure films of the of glassy azobenzene derivatives of isophorene obtained with the "*spin-coating*" approach.

Glassy 4*H*-pyran-4-ylidene fragment containing derivatives of azobenzene **38a-c** and **39** were obtained from previously synthesized 4*H*-pyranes **16a-c**, **21a** in reaction with aldehyde **36b** (see Fig. 5.5.).

Fig. 5.5. Synthesis of glassy azobenzene derivatives of 4H-pyran-4-ylidene

Compounds **38a-c** and **39** are thermally stable (T_d from 289 °C to 320 °C) (see table 5.3.) and **38a-b** also showed glass transition (T_g from 115 °C to 120 °C) in the second heating cycle of DSC analysis. Glasses **38c** and **39** showed high glass transition values (T_g from 176 °C to 180 °C).

Table 5.3.

Compound	Yield, %	T _g , (°C) 1.heating	T _g , (°C) 2.heating	т.р., (°С)	T _d , (°C)
38b	13	-	120	205	289
38a	15	-	115	220	320
38c	10	-	180	276	291
39	26	-	176	271	298

Yields and thermal properties of synthesized glassy azobenzene derivatives of 4*H*-pyran-4-ylidene

The experiments show that it is possible to obtain thin solid amorphous films from 4*H*-pyran-4-ylidene group containing compound **38a-b** and **39** saturated solutions of dichloromethane (see Fig. 5.6.) while **38c** in its solid state is practically crystalline. Therefore compound **38c** (**JWK-2TB**) was not used in further physical property studies.

Fig. 5.6. Att. Optical microscope images of the pure films of the glassy azobenzene derivatives of 4*H*-pyran-4-ylidene obtained with the "*spin-coating*" approach.

The light absorption of compounds **35a-c**, **37a-b**, **38a-b** and **39** in their solid state is in range from 400 nm to 660 nm which make them perspective for potential photorefractive (holographic data storage) property investigation with 532 nm, and 632.8 nm lasers. The photorefractivity measurements with the grating period of 2 μ m were carried out in the Institute of Technical physics in the group of *Dr. habil., phys.,* professor A. Ozols from thin solid spin-coated amorphous films of compounds **35a-c**, **37a-b**, **38a-b** and **39** with two p-p polarized laser beams at 532 nm and 632.8 nm. Self diffraction efficiency (SDE_t , %, measured with 532 nm) and diffraction efficiency (DE_t, %, measured with 632.8 nm) were determined in the transmitted light and are shown in table 5.4.

Table 5.4.

Sample	Absorption, λ _{max} (nm);lgα (Film)	Thickness of the film (µm)	t, min (532nm)	SDE _t , (%)	t, min (632.8nm)	DE _t , (%)
35a	545 ; 4.67	0.5	12	1.23	12	4.70
35b	546 ; 4.65	3.9	9	0.03	12	1.40
35c	533 ; 4.70	0.2	6	0.24	8	1.30
37a	515 ; 4.52	0.9	8	3.77	9	9.00
37b	516 ; 4.62	0.7	24	12.94	24	20.40
38b	492 ; 4.67	0.2	10	1.53	12	0.40
38a	510 ; 4.79	0.2	9	1.07	10	1.00
39	518 ; 4.64	4.1	9	2.36	12	8.20

Main results of holographic data storage of synthesized glassy triphenyl group containing derivatives of azobenzene

t – time of the holographic recording process, SDE_t – self-diffraction efficiency, DE_t – diffraction efficiency

From indene-1,3-dione fragment containing derivatives of azobenzene **35a-c**, the highest self-diffraction (SDE_t = 1.23 %)and diffraction efficiencies (DE_t = 4.70 %) were observed for **35a**. Since it contain only one triphenymethyl-group the increases photorefractive properties could be attributed to the larger amount of chromophore molecules in the same volume comparing to the azobenzenes **35b-c**. The glasses **35a-c** overall showed low values of which could be explained by difficult *trans-cis-trans*

photoisomerisation process caused by the sterical interaction of indene-1,3-dione and triphenyl groups. Despite the low photorefractive properties of compounds **35a-c**, they show good light absorption properties in their solid state and their potential applications as photoactive components in organic solar cells are currently studied at the Institute of Solid state physics of University of Latvia (*Dr. phys.* A. Vembris).

From isophorene fragment containing derivatives of azobenzene, glass **37b** showed highest self-diffraction (SDE_t = 12.94 %) and diffraction efficiencies (DE_t = 20.40 %), but the time required for the holographic recording is 2–3 times longer than for the glass **37a**. Increased holographic data storage parameters (SDE_t and DE_t) indicate that by substituting indene-1,3-dione with sterically smaller dicyanomethylene and isophorene fragments enhances the *trans-cis-trans* photoisomerisation process of the molecules. The investigation of azocompounds **37a** (**IWK-2M**) and **37b** (**IWK-2D**) holographic data storage properties continues and is currently carried out at the Institute of Technical physics of Riga Technical university (*Dr. habil., phys.,* Prof. A. Ozols).

By analyzing the photorefractive property investigation results of glassy 4*H*-pyran-4-ylidene fragment containing azobenzenes **38a-b** (SDE_t = 1.53 % and DE_t = 1.00 %) and comparing to compounds **35a-c**, no improvement of DE_t and SDE_t values have been noted which points to the difficult *trans-cis-trans* photoisomerization of azobenzene derivatives **38a-b**. The increased DE_t (8.20 %) of **39** is explained by additional styryl- fragment as the *trans-cis-trans* photoisomerization process may occur with less sterical hindrance then glasses **38a-b** which contain sterically large *tert*-butyl groups.

MAIN CONCLUSIONS

- 1. In condensation reactions of 2,6-dimethyl-4*H*-pyranes **4a**, **4b**, **4c** with 4-(N,N-*bis*-(2-tritytiloxyethyl)amino)benzaldehyde **5** a mixture of *mono*-styryl- (**6a**, **6b**, **6c**) and symmetric *bis*-styryl- (**7a**, **7b**, **7c**) products is obtained, which separation is complicated. Nevertheless, the synthesized compounds **6a-c** and **7a-c** form thin solid amorphous films from solution with low-cost "*spin-coating*" approach and emit light in the red (600–700 nm) part of the visible light spectrum. *Mono*-styryl-substituted derivatives of 4*H*-pyran-4-ylidene **6a**, **6b**, **6c** are perspective for OLED application studies, but **6a** or **DWK-1** show potential in organic solid state lasers.
- Condensation reactions of 2-*tert*-butyl-4*H*-pyranes 15a-f with 4-(N,N-*bis*-(2-tritytiloxyethyl)amino)benzaldehyde 5 affords only *mono*-styryl-substituted derivatives of 4*H*-pyran-4-ylidene 16a-f. The physical properties of *mono*-styryl-substituted-4*H*-pyranes 16a-f are analogue to the physical properties of compounds 6a, 6b, 6c, but their synthesis and purification is simplified.
- Non-symmetric 2,6-*bis*-styryl-4*H*-pyran-4-ylidene derivatives 23a-f, 24a-d, and 25a-b, 25d, which contain substituents of different electron affinity in 4 position in each of the styryl- fragments form amorphous structure from solution and are perspective molecular glasses, however their light emission do not change much and are similar to the light-emitting properties of symmetric 2,6-*bis*-styryl-4*H*-pyranes 7a, 7b and 7c. Therefore they are not perspective for OLEDs but could be useful as materials for solid state laser application studies.
- 4. Bulky trityloxyethyl group containing molecular glasses of 1*H*-pyridine **29b** (**ZE-1Tr**) and **29c** (**JE-1Tr**), which were successfully obtained from luminophores **6b** (**ZWK-1**) and **6c** (**JWK-1**) in reaction with benzyl amine originates as a mixture of diastereoisomers. Comparing to the glassy derivatives of 4*H*-pyran-4-ylidene **6b** and **6c** (light-emission in range from 650 nm to 700 nm), the light emission of glassy 1*H*-pyridines **29b** (**ZE-1Tr**) and **29c** (**JE-1Tr**) are blue shifted to the yellow part of the spectrum ($\lambda_{max} \sim 600$ nm) which is important for OLED applications.

5. Almost all of the synthesized derivatives of azobenzene – 35a-c, 37a-b, 38a-b and 39 (except 38c) – form glassy structure with stable amorphous phase from volatile non-polar organic solvents and form surface relief gratings after exposure to laser irradiation. Isophorene fragment containing azobenzene derivatives 37a-b, successfully obtained in "one pot" synthesis showed the highest SDE_t (12.94 %) and DE_t (20.40 %) values. Glasses 35a-c show high light absorption properties in their solid state which may make them useful as a new photoactive materials for organic solar cells.