Holographic photosensitivity of azobenzene molecular and chalcogenide glassy films

P. Augustovs, A. Ozols, E.Zarins, V.Kokars
Faculty of Materials Science and Applied Chemistry, Riga Technical University
Paula Valdena iela 3/7, LV-1007, Riga, Latvia

Abstract

In this paper, we have experimentally studied photosensitivity light intensity dependence in three azobenzene molecular glassy films and in one chalcogenide As-S-Se glassy film. Transmission holographic gratings with the period of $2.0 \mu \mathrm{~m}$ were recorded in the above mentioned films by two equally strong symmetrically incident $633 \mathrm{~nm} \mathrm{He}-\mathrm{Ne}$ laser beams with $p-p$ polarizations and self-diffraction efficiency (SDE) was continuously measured. Studied azobenzene molecular glasses were synthesized by our group. They included WE-3 or 2-(4-((4-(bis(2-triphenylsilyloxy)ethyl)amino)phenyl)diazenyl)benzylidene)-1H-indene-1,3(2H)dione, ZWK-3 or 2-(2-(4-((4-(bis(2-trityloxy)ethyl)amino)-phenyl)diazenyl)styryl)-6-styryl-4H-pyran-4-ylidene)-1H-indene-1,3(2H)-dione, ZWK-2TB or 2-(2-(4-((4-(bis(2-(trityloxy)ethyl)amino)phenyl)diazenyl)-styryl)-6-tert-butyl-4H-pyran-4-ylidene)-1H-indene-1,3(2H)-dione. About $3 \mu \mathrm{~m}$ thick films were spin-coated onto the glass substrates. To characterize the film photosensitivity we have determined the recording energies $E=/ t$ corresponding to $S D E=0.096 \%$ and $S D E=0.25 \%$ at certain intensity values $I=0.011,0.034,0.10,0.32$ and 1.13 $\mathrm{W} / \mathrm{cm}^{2}$ (t-exposure time). Besides, so called Lin sensitivities, $S=(S D E)^{0.5} E^{-1}$ corresponding to $S D E_{\max }$ were determined, too. The main result in the case of all films is that photosensitivity generally increases when the recording light intensity is increased A simple model is proposed explaining the observed intensity dependences. Acknowledgment This work has been supported by the European Social Fund within the project No.2013/0028/1DP/1.1.1.2.0/13/APAI/VIAA/054.

