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Abstract — Stability of shock absorbers with thin-multilayered
rubber-metal elements (TRME) of flat, circular shape is
considered in this work. TRME packages that are used as
vibration isolators usually work under heavy compressive loads,
which may lead to buckling failure.

Next, formulas for package design are derived: the dependence of
the critical force on geometry of layer, on mechanical properties
of material of elastomeric layers, on packages end-fixity
conditions. The dependence of mechanical modules of elastomeric
on the compressive load level is taken into account. The obtained
solutions are compared to experimental data of other authors.

Keywords — Buckling, elastomeric, multilayer devices, stiffness,
variational method.

|. INTRODUCTION

Rubber (natural and synthetic) as construction material has a
number of valuable properties: high elasticity, resistance to
environmental influences, good dynamic characteristics [1],
[2]. Laminated elastomer is the anisotropic elastic element of
alternating thin layers of rubber and metal (or hard plastic)
assembled by gluing or vulcanizing in a package of three or
more layers having a large load carrying capacity (more than
30 MPa) in normal to the layer direction and higher compliance
(0-80 % of relative deformation) in the transversal direction.
This allows to obtain structures, which have axial compression
stiffness that is several orders greater than shear stiffness.
Packages of thin-layered rubber-metal elements (hereinafter
referred to as TRME) are successfully used as vibration
isolators, shock absorbers, compensating devices, bearings,
joints, etc. [1], [3]. In practice TRME packages of different
geometrical form are used: flat of various shapes, cylindrical,
conical, etc. Elastomeric layer is considered to be thin if its
width/thickness ratio is much more than 10. Multilayered
packets of TRME have extensive use in almost all spheres of
engineering and construction (joints and bearings for various
applications, support of engineering structures, vibration and
shock absorbers etc.). In flat-type packages working under
significant compressive loads, the buckling of the middle layers
of packet is observed, i.e. package loses buckling stability,
which leads to decrease of performance capabilities of packages
and their failure. Buckling has shear instability form (the layers
are shifted sidewise), rather than bending (as in the classical
theory of rods stability). This occurs because of TRME stiffness
under axial compression and bending stiffness are in several
orders greater than the shear stiffness.

111

Gent A. N. considers the stability of structures with thick
rubber layers (with the shape factor ~1) based on the classical
Timoshenko theory of rods [3]. This approach and the main
position of Gent’s work was later used by many authors [5], [6],
but further investigations show that application of these
solutions to thin rubber-metal elements leads to significant
errors [2], [4]. Many successive works deal with TRME
package buckling stability [7]-[9], the method of bending
stiffness calculation based on the assumption that middle
surface of elastomeric layer remains flat under deformation was
elaborated.

When designing TRME packages, it is necessary to have an
analytical expression (preferably in a simple manner) to
calculate the critical external load taking into account TRME
geometric parameters, scheme of external load imposing and
method of TRME packet fastening, as well as mechanical
properties of materials to improve their operational
characteristics and increase permissible rate of compressive
loads.

In this study all factors mentioned above are taken into
account for the example of critical force calculation for the flat-
type TRME of circular shape (Fig. 1).

Il. ANANALYTICAL DECISIONS FOR THE MATHEMATICAL
MOoDEL oF TRME PACKET

In studies mentioned above it is assumed that:
nonelastomeric layers are nondeformable, external forces are
conservative, elastomeric and nonelastomeric layers are rigidly
connected to each other, the deformation of each individual
TRME is linear. Besides that, the assumptions are introduced
that the elastomeric material layer is volumetrically
incompressible and its mechanical properties are not dependent
on the rate of external loading. But there is no argumentation
for applicability domain of the assumptions listed above and
estimation of their influence on numerical value of the critical
forces. In this paper the methodology of calculation of the
critical force for TRME package buckling taking into account
the weak compressibility of elastomeric layers and shear
modulus dependence on the load level (which were not
considered in the works [2]), is discussed. For example, the
stability problem of a circular-type, flat TRME package under
axial compression between two flat parallel plates with force P
is considered. In Fig. 3 the forms of loss of stability of TRME
device under axial compression are shown; because the
compression and tension stiffness are much greater than share
stiffness, the considerion of buckled shape includes share



Transport and Engineering. Mechanics

2015/ 36

deformation (Fig. 3c). TRME package (of thickness H = h¢N)
consists of N individual identical sections. Each section
(thickness he = he + hg) consists of nondeformable metal plate
(thickness — hg) and is vulcanized to an elastomeric layer
(thickness — he and sectional area — F), deformation of which is
considered small. When calculating the shear stiffness of
elastomeric element Ky of shear force Py scheme of simple share
is applied; for bending stiffness T calculation — scheme in which
metal plates are rotated in respect to each other, relative to the
axis of symmetry.

b)

a)

Fig. 1. Examples of multilayer elastomeric structures:
a) flat, rectangular, b) flat, circular.
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Fig. 2. Scheme of compression of a TRME section.

I1l. MODELS OF TRME PACKAGE

Based on Timoshenko beam model, the critical force was
derived in [2] for scheme a) and c). In paper [2] the loss of
stability of TRME package with the square section of rubber
layer and fixed end point is discussed; in particular, Euler
buckling with share contribution. The condition of stability and
the critical force for this case is:
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Shear stiffness of the elastomeric layer Ky, determined from
pure shear scheme, and bending stiffness T without accounting
of elastomeric layer low compressibility is:
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where: G — shear modulus of the elastomer; Ix — axial moment
of inertia of the cross section of element of the TRME package;
@ - shape factor; y — empirical coefficient; F;— loaded surface
area of the block; Fr — free surface area.

|
Pz

a)

Fig. 3a. Loss of stability of TRME device under axial compression: Euler
buckling.

Fig. 3b. Loss of stability of TRME device under axial compression: pure shear
buckling.
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Fig. 3c. Loss of stability of TRME device under axial compression: Euler
buckling with share contribution.

The dependence (1) gives acceptable results for elastomeric
layers with a shape factor 1-2 (or b/he < 5), small deformations
(< 10-15 %) and for specific axial load P./F till 5-10 MPa [3].

Presented articles task is to determine the critical axial
compression force for small and middle (15-60 %)
deformations domain with thin layers (b/h >10) and high
specific axial loads (P./F > 10 MPa). In this case instead of
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stiffness (2) to substitute shear Ky and bending T, stiffness is
calculated accounting to weak compressibility of elastomeric
layer and the loading level effect on the shear modulus of the
elastomeric material.

IV. MATHEMATICAL MODELS OF SIMPLE TRME LAYER

Flat, circular TRME is considered in cylindrical coordinate
system r, ¢, z (Fig. 1).
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Fig. 4. Scheme of shear for TRME section.
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Fig. 5. Scheme of bending for TRME section.

Shear stiffness of the precompressed thin elastomeric layer
Ky that is determined from pure shear scheme (Fig. 4) is
calculated using the formula:

« _GF
Y he

A 3
where 5:1__,

e
A — axial deformation of the elastomeric layer (Fig. 2).

This dependence is confirmed by shear deformation
experiments on the preloaded TRME [7], [8]. Flat circular
TRME is considered in cylindrical coordinates. Required
dependences “P, — A” and “M - g~ (“axial force -
displacement” and “bending moment — rotation angle™) are
defined by means of the Ritz’s method, minimizing the
additional strain energy [7], subject to the weak compressibility
of elastomer, assuming that metal layers are nondeformable
either (or may undergo only a plane tensile strain):
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Here: K and ¢ — accordingly, bulk modulus and Poisson ratio
of elastomeric layer, o — average stress (called specific
hydrostatic pressure S). Stress state of the elastomeric layer is
determined by the superposition of shear stress on the
hydrostatic pressure [7], [8]. Stress components must satisfy the
equilibrium equations and boundary conditions for the
components of stress on the elastomeric layer, where loading is
set.

In the case of bending (load scheme is given in Fig. 5) for the
stress distribution in the middle layer of flat TRME, the
hypothesis is applied [8]:

Oy ROyy = S(r,9),

6, =019, 0, =0.

With regard to this, the equation of equilibrium in the volume
of the elastomeric layer will be satisfied if:
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Boundary conditions for stress on the free surface of the
elastomeric layer are:
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Taking into account the boundary conditions, equations for
stress functions are chosen:
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Constants C,, Cp, Cz are found by minimizing of the
functional (4) of additional energy.
IT=T1I(C,,C,,C,) , from system of functional
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The dependence “M — £ and, hence, bending stiffness is A b2
defined from the equation: P, =3FG—|1+0.5— (11)
he hZ
2n b
M :_J‘ J’ 6. CoSh—o._sind)ridrdd = Depengjences (10), (11) are used in the case of low axial
( z ¢ m d)) ¢ deformation. In case of average deformation “P, — A”,
2z ° ° dependence taken into account of elastomeric layer low
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Bending stiffness of elastomeric layer with accounting of
elastomeric layer weak compressibility is:
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Bending stiffness T1 without accounting of elastomeric layer

low compressibility (K — o) is:
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Dependences (6) and (7) may be used in the case of the

precompressed TRME at low axial deformation under

preloading. In case of average deformation the dependence may

be obtained from (6) using the delta method of integration

[8].[10]:
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Bending stiffness without accounting of elastomeric layer

low compressibility is:
M  Gnrb* 1 b? A
1=——= 3+— 2a2 | 8:1__ .
B 4hs | 2h% h,
In the case of axial compression (load scheme is given in Fig.

2) “P, — A” dependence is defined the same way. “P, — A”
dependence accounting low compressibility of elastomer is:

©)

-1

2sz
-l 2
3K) |, 2b°G

+
G G
1+ — — |h?
3K (1+3theK

b_ 3FG Al 1P’ (1 (10)

a 1+ -—

( Gjhe 2 h

1+—
3K

“P, — A4” dependence without elastomeric layer low
compressibility taken into account is:

compressibility, is obtained using the delta — method of
integration [7], [8]:
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“P, — A” dependences without accounting of elastomeric
layer low compressibility are:
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(3

(13)

5=1-2
h

e

V. MATERIAL MODEL OF ELASTOMER

Results of experiments on thin TRME compression [2], [9]
show that at relatively small strains (up to 10-15 %), specific
loading (P/F) may reach 200 MPa. The dependence of the
"force-displacement" has highly nonlinear character, indicating
that the mechanical modules of elastomer depend on the level
of specific compressive strength even in small deformations
area. In experimental studies it is shown that shear and bulk
modulus of elastomeric layer G and K depend on the intensity
of the specific loading if S = P,/F is more than 5 MPa [9].

In order to take into account load intensity influence on
"force — displacement” dependence and on the critical force, it
is proposed to substitute the values G(S) and K(S) instead of
modules G and K. For thin, flat elastomeric layers it can be
assumed with sufficient accuracy that S = P,/F (where F — the
area of plane layer). This approach allows calculation of G(S)
and K(S) from the volumetric “tension — compression”
experiments with accuracy up to the assumption of small
deformations. Due to the lack of experimental data, it is
proposed in [9] at first approximation to assume that the
dependence of G(S) and K(S) has the same type:

G(S)/G ~ K(S)/K =1+S B, (14)
where g — empirical coefficient is defined from experiment on
pure volumetric compression.
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These equations (6)—(14) using (1) allow to estimate critical
force for large values of specific external compressive load. The
order of critical buckling force calculation: in accordance with
(1), (2) the preliminary force is defined; for this P, hydrostatic
pressure S and displacement A in accordance with (10), (12),
(14) are defined; depending on A value bending and shear
stiffness (T, Ky) are defined using equation (6), (8), (3); (14);
received T and Ky are substituted in (1) and P is calculated. If
necessary, calculation is repeated till the coincidence of
received and previous critical forces.

V1. NUMERICAL EXAMPLES

The results of critical force calculation for flat rectangular
TRME package with typical in industrial application
dimensions are presented below. Plots of buckling force
dependence on the number of sections in packet are given for
TRME, which is presented in [2]. For thin, layered packages
experimental critical force is much greater than the calculated
in accordance with conventional equations (1) and (2).

In Fig. 6 the critical buckling force plots for sample with
brass bonded layers are given; layer dimensions: b = 27.5 mm,
he=1.0mm, ho=0.1mm, section height hc.=he+hy=
1.10 mm, @ = 27.5, TRME package height H = h.N + h, where
N — number of sections. Mechanical properties of elastomers:
G =1.17 MPa, K = 2760 MPa, « = 0.49936, 5 = 0.001.
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Fig. 6. Plots of critical force dependence on the number of sections with

he=1mm: —— — in accordance with equations (1) and (2), «-:=—in

accordance with (8), (12), (3), (1), — — — in accordance with (8), (12), (3),

(1), taking into account (13).
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Fig. 7. Plots of critical force dependence on the number of sections with
he =0.5 mm: —— — in accordance with equations (1) and (2), «- -+« —in
accordance with (7), (11), (3), (1), — — — in accordance with (6), (10),
(3), (1) and (13).
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In Fig. 7 critical buckling force plots are presented for the
sample of the same material with the same b and h,, but
he = 0.5 mm, he= 0.6 mm, shape factor @ = 55.

Specific load in all cases is more than 100 MPa. It is seen
from the plots how critical force value depends on the
thickness of elastomeric layers and on the number of
sections.

VII. CONCLUSION

This work presents the methodology of the buckling force
calculation for thin-layered rubber-metal packages widely used
as vibroisolators, shock absorbers, and compensation devices.
Such devices usually carry a very large load and should be
checked for buckling. Three approaches are discussed:
conventional, taking into account the thickness of elastomeric
layers, taking into account the thickness of elastomeric layers
and changing of the elastomeric mechanical properties (shear
and bulk modules) depending on pressure. The results of
numerical examples show, that when the number of layers in
package increases, the critical force value becomes closer. Each
type of TRME demands an individual approach.
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Vladimirs Gonca, Egons Lavendelis, Maris Eiduks. Multislanu gumijas-metala amortizatora stabilitate

Saja darba apskatitas daudzslanu gumijas — metéla plakanu elementu paketes (TRME), kas tiek pielietotas ka vibraciju izolatori pie bides un kompresijas
slogojumiem dazadas masSinblives nozarés, ka ar1 celtniecibas konstrukeijas. Vibraciju izolatoriem paredz&tajas TRME paketgs pie ass virziena spiedes slogojuma
galvena bistamiba saistds ar iesp&jamibu zaudét garenvirziena stabilitati. Pielietojot Timo$enko matematisko modeli, nemot véra skérsspeku, tiek sastadits
matematiskais modelis TRME pakeSu garenvirziena stabilitates p&tiSanai ass virziena spiedé. Nemot véra: slanu skaitu, geometriskas Tpasibas, iestiprina$anas veidu,
mazas un vidgjas elastoméru slanu garenvirziena deformacijas — iegiti analitiskie vienadojumi TRME pakesu kritiska spéka noteik$anai. Pielietojot dazadu autoru
eksperimentalos rezultatus, tiek nemta véra elastoméra fiziska nelinearitate — atkariba no bides modula un elastoméra tilpuma modula atkaribas no hidrostatiska
spiediena elastoméra. legiitas analitiskas atkaribas sniedz iespéju projektét TRME paketes ar to dazada veida iespgjam stiprina$anai, nodroSinot garenvirziena
stabilitati nepiecieSamaja darba slodzu diapazona. Analitiski izteiktie TRME pakesu stinguma raksturlielumi pie bides, izlieces un garenvirziena spiedes iegiti ar
Ritca metodi, pielietojot pievienoto deformaciju potencialas energijas minimuma principu. P&tjjuma rezultati tiek salidzinati ar teorétiskiem un eksperimentali
ieglitiem rezultatiem no citu autoru darbiem.
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