
Applied Computer Systems doi: 10.1515/acss-2015-0013

___ 2015/18

5

Comparison of the Two-Hemisphere Model-Driven

Approach to Other Methods for Model-Driven

Software Development

Oksana Nikiforova1, Ludmila Kozacenko2, Dace Ahilcenoka3, Konstantins Gusarovs4, Dainis Ungurs5, Maris Jukss6
1–5 Riga Technical University, Latvia, 6 McGill University, Canada

Abstract – Models are widely used not only in computer science

field, but also in other fields. They are an effective way to show

relevant information in a convenient way. Model-driven software

development uses models and transformations as first-class

citizens. That makes software development phases more related

to each other, those links later help to make changes or modify

software product more freely. At the moment there are a lot of

methods and techniques to create those models and transform

them into each other. Since 2004, authors have been developing

the so called 2HMD approach to bridge the gap between problem

domain and software components by using models and model

transformation. The goal of this research is to compare different

methods positioned for performing the same tasks as the 2HMD

approach and to understand the state of the art in the area of

model-driven software development.

Keywords – Two-Hemisphere Model, Model-Driven Software

Development, problem domain modelling, UML modelling.

I. INTRODUCTION

Developers have always been looking at ways to improve

software development. Since then the development process

has undergone several paradigm shifts, for example, from

functional to object-oriented. One of the newest paradigms is

model-driven approach, which is based on models and their

interrelated transformations.

The so-called “software crisis” [1], identified in 1968, led to

new solutions to formalize and structure development process.

A lot of different development models and their improvements

appeared both heavy-weight and light-weight and their

combinations. Crisis still exists [2] and its causes still remain

the same as in 1968, e.g., projects fail or they are completed

with greater time and resource costs than originally estimated,

the software is low quality or is missing functionality.

Therefore, developers are still searching for ways to solve the

“software crisis”.

One of the new and promising techniques is Model-Driven

Software Development (MDSD), which is based on models

and their transformations [3]. MDSD proposes to use models

at different stages of software project. Recent research [4], [5]

and [6] show, that mostly methods and transformations

associated with later development stages are studied. So on the

one hand models are used, but on the other – models in the

later development stages are not connected to the initial stages

of the software development. As a result, significant amount

of quality is lost in final software solution. The authors of this

paper offer the two-hemisphere model driven (2HMD)

approach. It is one of the methods to link information about

problem domain and system analysis to system design phase

and further software development. This paper aims to show

2HMD approach and compares it with other methods for the

initial information modelling and model transformation to the

design stage model.

The paper is structured as follows. The next section

describes the position of the 2HMD approach within the

framework of MDSD and offers a brief history of the

approach development. Section 3 explains the basic elements

of the approach, where the main principles of the

transformations used to generate the UML diagrams from the

two-hemisphere model are mentioned in the fourth section.

Section 5 is a summary of the results of the 2HMD approach

in comparison to other MDSD methods able to generate UML

diagrams from the problem domain model. Several

conclusions on the application of BrainTool and directions for

future research are stated in the sixth section.

II. THE 2HMD APPROACH WITHIN THE AREA OF MDSD

MDSD is a relatively new paradigm, however, it already

has a vast amount of model transformation techniques, which

are classified by [7], [8] and [9]. The research done by [4]

studies 85 papers about requirement engineering using model-

driven approach and shows an increasing number of different

model-driven methods.

Models are the main elements in MDSD, however their

nature or use is not innovative in software development. Back

in 1971, Ned Chapin created a flowchart diagram [10], a

graphical means of documenting a sequence of operations.

After that Larry Constantine and his colleagues from IBM

developed data flow diagram [11] notation, which helped to

split complex system into modules, depicting processes and

information flows. One of the most significant models is the

entity-relationship diagram (ER), offered by Peter Chen in

1976 [12]. It shows system structure, using entities and

relationships between them. ER can be considered a

predecessor of the Unified Modelling Language’s (UML)

class diagram. Subsequently, in 1997, Object Management

Group introduced UML [13]. With an increase of software

complexity, models serve as a sketch in summarizing

knowledge about the system. In contrast, MDSD utilizes

models not only as an auxiliary, but also as one of the key

artefacts. Models are like building blocks that can be

combined to construct system skeleton, which can then be

DE GRUYTER

OPEN

Applied Computer Systems

 ___ 2015/18

6

directly transformed into system code. Therefore, effort should

be made to create correct and accurate models, as this will

ensure the correctness of the final system. As accented by

several authors in [14], [15], the way software is developed,

without the use of model driven approach, can be compared to

the 17th and 18th century hand crafting. At the time the

components were handmade and unique. It was impossible to

establish a standardization process, because it was impossible

to create tools for mass production of said components.

Nowadays software is developed similarly to that. Each

software project is a unique piece of handy work that requires

the developer to actively participate in its creation. Despite the

existence of reusable component approach, software

component addition is still a manual task [14]. One of the

main reasons for that is a lack of unified approach, tool and

standardization.

MDSD is an attempt to move over from manual to partial or

completely automated development, because it offers

standards and formal methods for the creation of new

components. MDSD approach creates software by the use of

modelling [15]. Drawing differs from modelling in the fact

that it creates an image that may or may not confer with rules

and semantics, while modelling on the other hand is more

complex, because it clearly defines semantics. Because of that,

modelling offers several advantages, such as model validation,

ability to run and transform models, as well as debugging. The

two-hemisphere model driven (2HMD) approach [16] is

positioned as one of methodologies that can be used in the

process of software development based on model driven

development principles.

2HMD approach ideas were first published in 2002. In [17]

the author proposes object oriented software framework that is

based on the use of two linked models, where one of the

models displays the structure of the system while the other

displays the systems processes. The innovation at the time was

the combination of these two models in a single abstraction

level, which was not achieved in any other notations or

modelling tools [18]. The [16] continues the development of

the framework described in [17], as well as names the model

used in it as the two-hemisphere model. The title is chosen

because in cognitive psychology [19] the human brain is

divided into two-hemispheres, one of which governs logic and

the other- concepts. Coordinated work of both hemispheres

ensures proper human functionality. Similarly the two-

hemisphere concept is taken over to software development,

because it is based on the display of problem domain in two

mutually connected diagrams. Since the left hemisphere of the

brain governs logic, the left part of the 2HM displays the

business processes. And the right side displays conceptual

class diagram.

Initially 2HMD approach was developed as a manual

approach for the development of design of model object

oriented system. However, after the emerging and evolution of

model driven architecture, the author of [16] expresses an idea

for the use of automated transformations in 2HMD approach.

The author of [20] for the first time introduces transformation

principles from the two-hemisphere model, focusing on which

class objects will execute which methods. In 2008 a prototype

of a tool is developed [21]. In 2010, the author in [22]

conceptually describes transformation from the two-

hemisphere model to the UML sequence diagram, focusing on

the time aspect of methods’ call. During this time

transformation for the generation of the UML class diagram is

refined regarding different types of class relationships [22].

In 2012 a tool named BrainTool (version 1.0) is developed

that supports the 2HMD [23]. The tool supports the creation,

validation and transformation of the 2HM to the UML class

diagram as well as export of the XML file with the UML class

diagram to Sparx EA 7.5. In the same year the authors develop

the software that converts 2HM description in XML file from

BrainTool into the UML sequence diagram with a defined

element set and layout, usable by Sparx EA. In [24] the author

discusses several issues within the model interchange between

tools due to the problems with standard for file format

exchange between various tools, so far a decision to adapt

XML file structure for UML from Sparx EA is made. This is

done to prove that at least theoretically tool compatibility is

possible.

Inspired by the evolution in the area of model-driven

software development with respect to modelling tools and

IDEs for their development, the authors in 2013 developed

BrainTool version 2.0 from scratch in Java programming

language, using JGraphX [24] library for graph visualization.

The tool offers a new, more mainstream GUI and features an

improved transformation implementation. The research

described in [25] showcases that BrainTool v2.0 supports

2HM creation, validation as well as the UML class and

sequence diagram generation. It also supports the export of

generated diagrams to Sparx EA 7.5. Year 2014 brings the

research into the UML diagram layout [26], offering a new

UML class diagram layout algorithm. As well as following

research into the UML sequence diagram automatic layout, the

author of [26] offers the algorithm that features a wider array

of criteria and elements, compared to a variety of other

available sequence diagram layout algorithms.

III. THE BASIC ELEMENTS OF THE TWO-HEMISPHERE MODEL

Two-hemisphere model consists of two diagrams – business

process diagram and conceptual class diagram. The inclusion

of these diagrams is not random, it is not only based on the

previously mentioned analogy with the human brain, but also

based on the information shown in these diagrams helping to

describe the system from different points of view, which is

important in system development.

Business process modelling, as mentioned in [27],

developed as a result of solutions made by Management

Science and Computer Science in the 70ies of the 20th

century. Besides, nowadays the importance of business

process modelling has not decreased. The importance of

business process modelling is confirmed in [28] presenting

regular studies on the importance and usability of these

processes. The studies confirm, that management of business

processes is important and companies pay attention to it. The

research also shows, that companies over time learn the

Applied Computer Systems

 ___ 2015/18

7

existing business process modelling notations and

methodologies. Thereby, one advantage of using two-

hemisphere model is that there is no need to make additional

models to use it, but the user can be sure, that the business

model consisting of elements required by two-hemisphere in

the organization already exists. As the two-hemisphere model

serves as a bridge between the problem domain and software

design phase, the business model is understandable to both −

business people and developers.

The inclusion of concept model in the approach is

motivated by the principles of object-oriented paradigm and

general context of data analysis. Usually at the beginning of

software development data dictionary is created or there is any

other agreement about the terminology used in software

development and documentation. In [29] the author describes

conceptual modelling as basis of software development,

without which good design cannot be performed. Conceptual

models are high-level software description, which contains

concepts. Any kind of things, events and living beings that are

important to a given problem domain can be considered as

concepts. Concepts are described by attributes, but methods

show actions specific to these concepts. Peter Chen’s [12]

created Entity-Relationship (ER) diagram as mentioned in [30]

was used in database design, but later it was also used in

software system design as conceptual model. In [31] it is

indicated, that nowadays it is topical to use ontology not only

in artificial intelligence (robot, agent) systems, but also to

create unified terminology, so that all stakeholders could

communicate. In [32] it is shown that ontology represents

classes of objects, class relations, attributes and axioms. It

provides the basis for choosing the model that represents

problem domain concepts as the other model. Therefore the

other diagram of two-hemisphere model is the conceptual

model, consisting of concepts and its attributes, where model

notation is similar to the same in ER diagram.

The two-hemisphere model consists of one conceptual

model and one or more process models. A fragment of two-

hemisphere model of conference support system is shown in

Fig. 1. BrainTool [9] (see its general view in Fig. 1) is

positioned as one of the CASE tools, which enables system

modeling and model transformation according to the

requirements stated in the previous section.
2HMD approach uses its own notation considering process

model elements, which is described in Fig. 1. It combines

good practices from the data flow diagram [11] and BPMN

[33] notations to represent business processes, leaving only the

minimum range of elements, that further will be used in

transformations. The conceptual model in two-hemisphere

model is similar to ER diagram, consisting of concepts and

their attributes (see Fig. 1).

The difference between the classical ER diagram and two-

hemisphere conceptual model is that the conceptual model

does not include relations between concepts, the relations are

generated taking into account the links between concepts and

process model’s data flows. The linkage between these two

models is an innovative usage of two models in software

development. The assigning of data structure (concept) from

the conceptual model to process model’s data flow provides

the linkage between models [17]. Every data flow has only

one assigned concept, but one concept might define the data

type of many data flows.

External

process

Internal

process

a

2

1
b

3
c

4

5

d

Performer

Process model Concept model

1

2

3

4

5

e

f

g

Fig. 1. The fragment of the two-hemisphere model for conference support system.

Applied Computer Systems

 ___ 2015/18

8

Further transformations are basis for determining

responsibilities to object classes. They allow the assignment of

methods to class objects based on object-oriented paradigm.

The linkage also provides basis to define the relationship type

between classes in the UML class diagram.

IV. THE ESSENCE OF THE TWO-HEMISPHERE MODEL

TRANSFORMATIONS TO THE UML DIAGRAMS

The 2HMD approach enables generation of UML diagrams.

Since 2002, the approach has undergone several changes,

which were caused by addition of new resulting UML

diagrams and generated diagram element amount. Currently

the 2HMD approach has defined transformations, which are

described in subsections below. The transformations to the

UML class and sequence diagrams are supported by a tool,

called BrainTool [34].

This diagram choice is not accidental; it is based on the

following arguments. Firstly, when designing a system, it is

important to reflect the system from a different point of view,

thus showing both structural side as well as dynamic side of

the system. The structure helps to show the parts and

components of the system, while the dynamic parts allow to

see how these parts interact with each other. The UML use

case diagram is typically used in system design as a basis for

requirements specification [13].

In addition, class and object interaction diagrams are main

reflectors of the system’s structural and dynamic aspect.

Secondly, as show in [35] study only more than 50 % of the

UML users regularly utilize class diagram. Sequence and use

case diagrams are used approximately by 50 % of users. In

turn, state machine diagrams show class method executed

order, which is another type of dynamic representation and is

used in software testing. Therefore it can be stated that the

2HMD approach provides minimum necessary set of

diagrams, which are used in system design.

A. The UML Class Diagram Transformations

The transformations from the two-hemisphere model into

the UML class diagram are shown in Table I. The

transformation description briefly explains the essence of

which elements of the two-hemisphere model are taken as the

basis for which UML class diagram elements generation. In

details, these transformations are explained in authors’ papers

[16], [22], [25]. Fig. 2 shows the UML class diagram, which is

generated from the two-hemisphere model shown in Fig. 1.

The layout algorithm for the UML class diagram offered by

authors operates in four major steps [26]. Prior to these steps,

the algorithm gathers data on all the classes and their

relationships in the diagram and places them in specific data

types and constructs, for easier usage. First of all, each class is

assigned a score. Then all the classes are divided into small

groups. The groups are created around the classes with the

highest scores. The third step covers the layout of individual

groups.

TABLE I

LIST OF THE UML CLASS DIAGRAM GENERATED FROM THE

TWO-HEMISPHERE MODEL

Element

Transformation description

Class For each concept in conceptual diagram a class is

created

Class

attribute

Each concept’s attribute is transferred to the

relevant class as a class attribute.

Class

method

Class methods can be determined by the link

between conceptual and process diagram. Every

data flow has an assigned concept, in other words

every data flow belongs to a class. Class method

is an internal or external process. Class method is

added to a class, which is defined on the outgoing

data flow.

Dependency Dependency is obtained if incoming and outgoing

data flows have different concepts. As well as in

cases, when process has several incoming data

flows, and one of the incoming data flows has the

same concept as the outgoing data flow.

Aggregation Aggregation is obtained, if a process has several

incoming data flows with different concepts and

one or more outgoing data flows with the same

concept.

Association Association is obtained, when two classes have

different bidirectional relationships, for example,

there is aggregation from A to B and dependency

from B to A.

Generalizati

on

Generalization is obtained after aggregation,

dependency and association is defined. When a

process has one or more incoming data flows

with the same concept and there are several

outgoing data flows with the same concept,

generalization rule is applied.

Interface If several concepts, which are transformed to

classes, can be given the same method for

executing, and it is not possible to clearly define

which one will execute it, interface is created.

This method will be given to interface, and

classes will inherit the method from interface.

B. The UML Sequence Diagram Transformations

The transformations from the two-hemisphere model into

the UML sequence diagram are summarized in Table II. For

the moment not all the elements of the UML sequence

diagram are defined to be generated from the two-hemisphere

model. Additional to the elements the same in the UML class

diagram, the transformations are focused to the dynamic

aspect of the two-hemisphere model, i.e. sequence of the

processes to be performed within the time aspect. Fig. 3 shows

the UML sequence diagram, which is generated from the two-

hemisphere model shown in Fig. 1.

Applied Computer Systems

 ___ 2015/18

9

a

b

c

d

e

f

g

Fig. 2. The UML class diagram generated from the two-hemisphere model.

Considering the specificity of sequence diagram, where the

objects are allocated horizontally at the top of the diagram and

the life lines are drawn vertically top-down, the authors

propose to use an algorithm, which is based on topology-

shape-metrics planarization step [36] and uses one principle of

force-directed approach [37] – object tends to attract the

objects with which it communicates. The algorithm places the

elements as close as possible and tries to arrange the

communicating participants beside, based on priorities. The

priorities are calculated considering object attraction forces –

the more messages between the elements the higher the

priority for them to be beside. The layout algorithm calculates

the distance between the elements considering the length of

messages and class object names.

Algorithm places elements as close as possible by taking

into account the diagram flow (e.g., interacting objects are

being placed beside if possible) [26].

TABLE II

LIST OF THE UML SEQUENCE DIAGRAM GENERATED FROM THE

TWO-HEMISPHERE MODEL

Element

Transformation description

Object

Lifeline

Lifeline is created for each concept, which interacts.

Object Every concept, which is assigned to the data flow in a

process diagram, is transformed as the object’s class.

Actor Every performer from process diagram is transferred

as an actor

Message Internal processes are transformed into messages

(only between two class objects).

External processes are transformed into messages

(between actor and class object or vice versa).

Set of

messages

Usually processes which have several incoming or

outgoing data flows are grouped in interaction

fragments.

Applied Computer Systems

 ___ 2015/18

10

par

c a g b

1

2

3

3

4

5

Fig. 3. The UML sequence diagram generated from the two-hemisphere model.

C. UML State Machine Diagram Transformations

Since it is possible to generate the UML sequence diagram

from the two-hemisphere model, the authors are investigating

the ability to generate the UML state diagram presenting the

behavior of the certain class. The initial result of this research

is published in [22], but still the defined transformations are

not implemented in BrainTool. The basic principles of this set

of transformations are described in Table III.

TABLE III

LIST OF THE UML STATE DIAGRAM POTENTIALLY GENERATED FROM THE

TWO-HEMISPHERE MODEL

Element

Transformation description

Initial state One initial state is created for the state

diagram.

Final state At least one final state is created for the state

diagram.

State Each state is reflected as incoming or

outgoing message.

Transition Defined according to sequence of method

calls.

Fork/Join

pseudo state

The separate “branch” of states is defined for

each class behavior in certain sequence

diagram using fork/join pseudo state

construction.

D. UML Use Case Diagram Transformations

For the moment authors are investigating the ability to

generate the UML use case diagram from the two-hemisphere

model. Transformations still are at the theoretical point of the

research and are not implemented in BrainTool. Authors offer

to obtain actors using an external performer of the process.

This way all performers from all process diagrams are

transferred to the use case actors. Each process diagram in

2HM can be considered as a use case. Associations between

use cases and actors are defined by the performer which is

mentioned in the respective process diagram.

V. COMPARISON

To compare the 2HMD approach with other methods,

which support model-driven principles, international

electronic libraries were used, such as ACM Digital Library,

EBSCO Host un ScienceDirect and also related literature [5],

[38], [39] about method comparison were used. The methods

were selected using MDSD keywords such as “problem

domain model”, “computer independent model”, “platform

independent model”. In addition, only papers in English were

selected and those which have been published after 2000,

because model-driven development appeared around this time.

After automatic search was completed authors of the paper

examined each paper in detail and selected only those which

were longer than five pages. Table IV shows summarized

comparison results of 21 methods, which have been chosen

based on the selection strategy described above. The methods

are arranged in alphabetical order by their developer names,

which are listed in the second column. We do not give

references to method descriptions in order not to expand the

list of the bibliography due to limitations of paper volume, but

it is possible to search the method by its author’s name. In the

third column of the table problem domain notations offered by

the emethod developers are listed. In the fourth column

solution domain notations are listed, which are obtained from

problem domain by help of transformations. This way it is

possible to evaluate the knowledge that software developer

should have to work with the given methods. Table IV shows

that approximately 64 % of problem domain methods use

other notation rather than UML.

Applied Computer Systems

 ___ 2015/18

11

TABLE IV

 THE TYPE OF MODEL PRESENTATION OFFERED AT DIFFERENT ABSTRACTION LEVEL IN COMPARED METHODS

No. Method Problem domain Solution (software) domain

1. Bousetta, et al UML Use case, BPMN UML class, sequence + Business rules

2. Cetinkaya, et al BPMN DEVS

3. De Castro, et al e3 value & BPMN UML Use case, activity

4. Fatolahi, et al UML Use case scenarios UML State machine

5. Harbouche, et al UML activity with collaboration UML State machine

6. Trujillo, u.c. i* with refinement UML profile for data warehouse

7. Kherraf, et al UML activity UML Class

8. Kardos, Drozdova Data flow diagrams UML use case, activity, class, sequence

9. Koch, et al UML use case, activity UML activity, class, state machine

10. Meertens, et al Archimate models and SVBR Mendix, Microflow

11. Nikiforova, et al Two-hemisphare model UML use case, class, sequence

12. Osis, et al Topological functioning model TopUML profile

13. Penserini, et al i* Not given

14. Prat, et al CommonKADS model UML class, activity

15. Rodriguez, et al UML activity, BPSec process model UML class, use case (UMLsec)

16. Rodriguez-Dominguez, et

al

UML class UML class

17. Raj, et al SBVR dictionary, rules UML activity, class, sequence

18. Wu, et al UML use case, activity UML sequence, state machine, class

19. Zdravkovic, et al OeBTO process model IBM UML profile service

20. Zhang, Mei, et al Feature model Not given

21. Zhang, Feng, et al Processes in OWL UML class

These other notations mainly are BPMN, data flow

diagrams or other process notation diagrams. Most used UML

diagrams in business level are the use case diagrams (62 %)

and activity diagrams (62 %). Otherwise, at the solution

domain 86 % of the methods use UML. The leader of UML

diagrams is the class diagram (63 %), followed by activity

diagram (31 %), then sequence, state machine and use case

diagrams (26%). In 15% of the cases specific UML diagram is

not offered to use.

Table V combines comparison results for the same 21

methods in correspondence with the following 11 criteria:

1. Business objects.

2. Business processes.

3. Design level system structure.

4. Design level system behavior.

5. Level of automation. This criterion provides insight in

system’s readiness to be used. “M” or “Manual” shows

that no transformation rules are present. “P” or “Partial”

shows that some transformation rules are present. “A” or

“Automated” shows that the method has tool support that

has implemented transformations.

6. Layout.

7. Transformation direction. “O” − one-way transformation

shows that the target model is generated from source

model. “T” − two-way transformation shows that the

target model can be generated from the source model and

the source model can be generated from the target model.

8. Result of transformations. Criterion describes the type of

automated transformation result. It can be diagram, XML

file, or some other type.

9. Model traceability. This criterion describes how changes

are passed down to subsequent model abstraction levels.

“+” means that changes automatically transfer to other

models. “P” or “Partially” means that it offers to make

changes in other abstraction levels. “-” means, that it

warns if changes would affect other abstraction levels or

outright forbid making such changes.

10. Area of application. If the method is offered for the

specific application the area is defined in the table

according to the evaluation of the 10th criterion,

otherwise it is noted “G” (general).

11. Approbation type. This criterion shows how the

method is showcased by its authors: Case Study (CS),

System Development (SD) or no testing (-).

A star (*) in Table V next to several cases of the 5th

criterion shows methods that claim to have a tool support,

however authors have failed to locate such tools. A question

mark (?) next to several cases of the 8th criterion shows that,

since authors could not gain access to the tool, it was

impossible to determine how the method represents the model

after transformation.

All the methods represent processes at the business level,

however not all of them display system objects. Only 71% of

the methods do that. In Design level 90% of methods display

system structure and 85% show system dynamics. However in

both CIM and PIM levels, if a method does not display one

half of the system, it always displays the other half. In general

only half of the methods display all four of the mentioned

criteria. Authors point out that a situation appears where in

higher abstraction levels objects and processes are displayed,

however in lower levels one of these elements is not included.

This is notable in the 6th and 16th method where dynamic

aspect is lost in design level.

Applied Computer Systems

 ___ 2015/18

12

TABLE V

METHOD COMPARISON BASED ON SELECTED CRITERIA

No. Criteria

1 2 3 4 5 6 7 8 9 10 11

1. + + + + P − O − − G CS

2. + + + + A − O ? − Modelling and simulation −

3. + + + + A* − O ? − G CS

4. − + − + A* − O XML − Web application CS

5. − + − + A* − O ? − Artificial intelligence CS

6. + + + − A − O SQL + Data warehouse SD

7. + + + + M − O − − G CS

8. − + + + M − O − − G CS

9. + + + + P − O − − Web application −

10. + + + + M − O − − G −

11. + + + + A + O XML − G CS

12. + + + + P − O − − G CS

13. + + + + A − O XML − G CS

14. + + + + P − O − − Knowledge engineering CS

15. − + + + A* − O ? − G CS

16. + + + − A − O XML − middleware CS

17. − + + + A* − O ? − G CS

18. + + + + A* − O ? − GUI modelling −

19. + + + + M − O − − Web application −

20. − + + − M − O − P G −

21. + + + + P − O − − G −

Breakdown between method automation is rather

homogeneous, five methods or 23 % have not defined

transformations, the same amount – 23 % have defined

transformations. For 23 % of the methods authors have gained

access to tools that implement them, 28 % of the methods

claim they have a tool, but authors have not managed to locate

or access it.

Three methods with tool support offer to store models in

XML files with XMI structure. However, it is not entirely

clear if the 13th and 16th method XML files are compatible

with other UML tools, like it can be done in the 2HMD

approach. Since the 6th method is used for the creation of data

warehouse, the result is displayed as SQL code. All methods

support only one-way transformations.

Only the 6th method provides traceability and the 20th

method describes it but only theoretically, because the method

does not have an implementation tool. None of the methods

except the 2HMD focus on layout problems. That means that

even with tool support additional time will be consumed to

deal with the layout. Twelve methods or 57 % are not specific

enough for the development of a particular information

system. Some methods are more specific and are used for the

creation of web based or other application software. 62 % of

the methods show their practical application using system

analysis; one method is showcased by the use of a full-fledged

system. 33% of methods do not even describe any possible

applications. This means that the potential users of the method

method cannot determine how the method will work in

practical environment and if it will work at all.

In conclusion of the comparison authors point out that only

three methods satisfy the criterion most. These are the 6th,

11th (2HMD approach) and 13th method. The 6th method

should be used in case of creating data warehouses, is

showcased in a real system environment and is the only

method that supports traceability. The 11th and 13th method

are more general and can be used in the development of

variety of software systems. The 11th method, also known as

2HMD, surpasses the 13th method in the fact that it also

supports automatic layout. That is valuable as it lets the

developers to save time and resources otherwise spent to deal

with this problem. It is also unknown if the 13th method

supports XML file export to other tools.

VI. CONCLUSION

A relatively new development paradigm − MDSD − is

based on the models and their transformations up to the code,

which gives an opportunity to improve the quality of software

development due to linking models built at various levels of

abstraction. Linking would provide the consistency throughout

the whole development process. The 2HMD approach, its

twelve-year evolution, the basic elements and possible

transformation into UML diagrams supported by BrainTool is

presented in the paper as one of MDSD methods. Authors

have made a comparison of the 2HMD approach with twenty

MDSD methods based on eleven selected criteria. The

comparison result shows that only few methods are supported

by a tool, where some of them are just the tool’s prototypes.

Therefore, the main limitation of MDSD methods application

for software development is a lack of automatization to

support model transformations offered by a wide range of
MDSD methods. So far, the main contribution of the

research group is the work on the development and

formalization of the two-hemisphere model-driven approach

Applied Computer Systems

 ___ 2015/18

13

with the ability to implement the defined model

transformation in a tool.

The need to create another new software development

approach is justified by the fact that the 2HMD approach links

the problem domain with software system at the design phase,

thus preparing a wide set of design artefacts for future code

generation directly from problem domain model. The benefit

in this case, first of all, is reduced time and human resource

consumption. Secondly, the design of software system based

on formally defined transformations of problem domain model

allows reducing the risks of "manual" software class design.

These risks are the loss of information, inconsistency and

duplication.

Based on the research performed and results achieved

authors should stress the following conclusions:

• The two-hemisphere model contains enough information

about the problem domain to generate elements for

design model of system structure and behavior;

• The approach offered by authors is formalized to develop

the tool to support model transformations defined by the

method;

• The transformations offered by the approach pay

attention also to the diagram layout and use newly

invented layout algorithm for UML diagrams.

• Only one method from the compared ones supports the

traceability of the model at different abstraction levels.

This indicates that traceability is possible, but not

sufficiently developed, so it is a potential direction
for the improvement.

Additionally to supporting the traceability, the future

research directions can deal with the layout of the two-

hemisphere model, refinement of the element set to be

generated from the two-hemisphere model and expand the

notational conventions of the model itself.

ACKNOWLEDGMENT

The research presented in the paper is supported by Latvian

Council of Science, Project No. 342/2012 "Development of

Models and Methods Based on Distributed Artificial

Intelligence, Knowledge Management and Advanced Web

Technologies".

REFERENCES

[1] Haigh, T., “Crisis, What Crisis? Reconsidering the Software Crisis of
the 1960s and the Origins of Software Engineering,” Thomas Haigh,

2011. Available: http://www.tomandmaria.com/tom/Writing/

SoftwareCrisis_SofiaDRAFT.pdf
[2] Jones, C., “Software Quality in 2012: A Survey of the State of the Art,”

Software Quality Group of New England, 2012. Available:

http://sqgne.org/2012-13.html

[3] Stahl, T., Volter, M., Bettin, J., Haase, A., et al. Model-Driven Software

Development: Technology, Engineering, Management, 1 ed. USA: John

Wiley & Sons, 2006. 446 p.
[4] Loniewski, G., Insfran, E., Abrah, S. “A Systematic Review of the Use

of Requirements Engineering Techniques in Model-Driven

Development,” in Proc. of 13th Int. Conf. MODELS 2010, Norway,
Oslo, October 3-8, II part. Berlin: Springer Berlin Heidelberg, pp. 213–

227, 2010 http://dx.doi.org/10.1007/978-3-642-16129-2_16

[5] Sharifi, H.R., Mohsenzadeh, M., Hashemi, S.M., “CIM to PIM
Transformation: An Analytical Survey,” IJ of Computer Technology &

Applications, vol. 3, pp.791–796, 2012.

[6] Kriouile, A., Gadi, T., Balouki, Y., “IM to PIM Transformation: A

criteria Based Evaluation,” IJ of Computer Technology & Applications,

vol. 4, no. 4, pp. 616–625, 2013.
[7] Czarnecki, K., Helsen, S., “Feature-Based Survey of Model

Transformation Approaches,” IBM Systems Journal-Model-driven

software development, vol. 45, pp. 621–645, 2006.
[8] Mens, T., Gorp, P.V., “A Taxonomy of Model Transformations,”

Electronic Notes in Theoretical Computer Science (ENTCS). vol. 152,

pp. 125–42, 2006. http://dx.doi.org/10.1016/j.entcs.2005.10.021
[9] Lano, K., Kolahdouz-Rahimi, S., Poernomo, I., “Comparative

Evaluation of Model Transformation Specification Approaches,” IJ of

Software and Informatics, vol. 6, no. 2, pp. 233–269, 2012.
[10] Chapin, N., Flowcharts. New York, USA: Petrocelli Books, 1971

[11] Stevens, W., Myers, G., Constantine, L., “Structured Design,” IBM

Systems Journal, vol. 13, no. 2, pp. 115–139, 1974.
http://dx.doi.org/10.1147/sj.132.0115

[12] Chen, P.P., “The Entity-Relationship Model: Toward a Unified View of

Data,” ACM Transactions on Database Systems, vol. 1, pp. 9–36, 1976.
[13] OMG, OMG Unified Modelling LanguageTM (OMG UML),

Superstructure. OMG, 2014. Available:

http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF
[14] Guttman, M., Parodi, J., Real-Life MDA. 1st ed. USA: Morgan

Kaufmann, 224 p., 2007.

[15] Brambilla, M., Cabot, J., Wimmer, M., Model-Driven Software
Engineering in Practice. 1st ed. USA: Morgan & Claypool Publishers,

182 p., 2012.
[16] Nikiforova, O., Kirikova, M., “Two-Hemisphere Model-Driven

Approach: Engineering Based Software Development.” in Proc. of 16th

International Conference, CAiSE 2004, Riga, Latvia, June 7–11, vol.
3084. Springer Berlin Heidelberg, pp. 219–233, 2004.

http://dx.doi.org/10.1007/978-3-540-25975-6_17

[17] Nikiforova, O., “General Framework for Object-Oriented Software
Development Process,” in Scientific Proc. of RTU. Computer Sciences,

vol. 13, pp. 132–144, 2002.

[18] Gartner Predicts 2002: Top 10 Predictions, Gartner, 2002.
[19] Anderson, J.R., Cognitive psychology and its implications, Worth

Publishers, 469 p., 2010.

[20] Nikiforova, O., Kirikova, M., Pavlova, N., “Two-Hemisphere Driven
Approach: Application for Knowledge Modelling,” in Proc. of the

Seventh International Baltic Conf. on Databases and Information

Systems, (Baltic DB&IS 2006), O. Vasilecas, J. Eder, A. Caplinskas
(eds.), Lithuania, Vilnius, 3–6 July, IEEE, pp. 244–250, 2006.

http://dx.doi.org/10.1109/DBIS.2006.1678503

[21] Nikiforova, O., Pavlova, N., Grigorjevs, J., “Several Facilities of Class
Diagram Generation from Two-Hemisphere Model in the Framework of

MDA,” in Proc. of the 23rd International Symposium on Computer and

Information Science, Istanbul, Turkey, October 27–29, p. 6., 2008.
http://dx.doi.org/10.1109/iscis.2008.4717956

[22] Nikiforova, O., “System Modelling in UML with Two-Hemisphere

Model Driven Approach,” Scientific Journal of RTU. Computer
Sciences. 2010, vol. 21, pp. 37–44.

[23] Nikiforova, O., Gusarovs, K., Gorbiks, O., Pavlova N., “BrainTool A

Tool for Generation of the UML Class Diagrams,” in Proc. of the 7th
International Conference on Software Engineering Advances, Lisbon,

Portugal, 18-23 Novemer, IARIA, 60-69.lpp (2012)

[24] JGraph. jGraph-connectiong the dots. Available: http://www.jgraph.com/
[25] Nikiforova, O., Kozacenko, L., Ungurs, D., Ahilcenoka, D., Bajovs, A.,

Skindre, N., Gusarovs, K., “BrainTool for Software Modelling in

UML,” Scientific Journal of RTU: Applied Computer Systems,
Grundspenkis J. et al. (Eds), vol. 16, pp. 33–42, 2014.

http://dx.doi.org/10.1515/acss-2014-0011

[26] Nikiforova, O., Ahilcenoka, D., Ungurs, D., Gusarovs, K.,
Kozacenko, L., “Several Issues on the Layout of the UML Sequence and

Class Diagram,” in Proc. of the 9th Int. Conf. on Software Eng.

Advances, Mannaert H. et. al (Eds), October 12–16, Nice, France,
IARIA, pp. 40–47, 2014.

[27] Polak, P., “BPMN Impact on Process Modelling,” in Proc. of the 2nd

International Business and Systems Conference BSC, Riga, Latvia,
November 5, pp. 26–35, 2013.

[28] Harmon, P, Wolf, C.: The State of Business Process Management,

BPTrends, 2014. Available: http://www.bptrends.com/
[29] Johnason, J., Henderson, A., Conceptual Models. Core to Good Design,

1st ed. Morgan & Claypool Publishers, 2011. 110 p.

[30] Hesse, W., “Ontologies in the Software Engineering process,” in Proc.
of the 12th Int. Workshop on Exploring Modelling Methods for Systems

http://dx.doi.org/10.1007/978-3-642-16129-2_16
http://dx.doi.org/10.1016/j.entcs.2005.10.021
http://dx.doi.org/10.1147/sj.132.0115
http://dx.doi.org/10.1007/978-3-540-25975-6_17
http://dx.doi.org/10.1109/DBIS.2006.1678503
http://dx.doi.org/10.1109/iscis.2008.4717956
http://dx.doi.org/10.1515/acss-2014-0011

Applied Computer Systems

 ___ 2015/18

14

Analysis and Design, (EMMSAD-2007), Trondheim, Norway, 11–15

June, pp. 1–13, 2007.

[31] Graudina, V., Grundspenkis, J., “Algorithm of Concept Map
Transformation to Ontology for Usage in Intelligent Knowledge

Assessment System,” in Proc. of the 12th International Conference on

Computer Systems and Technologies, Vienna, Austria, June 16–17,
2011. http://dx.doi.org/10.1145/2023607.2023627

[32] Mädche, A., Schnurr, H.P., Staab, S., Studer, R., “Representation-

Language-Neutral Modelling of Ontologies,” J. Ebert, U. Frank (Hrsg.):
Modelle und Modellierungssprachen in Informatik und

Wirtschaftsinformatik. Proc. "Modellierung 2000". Koblenz: Fölbach-

Verlag, pp. 143–150, 2000.
[33] OMG, Business Process Model and Notation, Available:

http://www.bpmn.org/

[34] RTU, BrainTool webpage, Available: http://braintool.rtu.lv
[35] Dobing, B., Parsons, J., “How UML is used,” Communications of the

ACM. May 2006, vol. 49, no. 5, pp. 109–113, 2006.

[36] Eiglsperger, M., “Automatic Layout of UML Class Diagrams: A
Topology-Shape-Metrics Approach,” Thesis. Tübingen, Germany:

Eberhard Karls Universitat, p. 173, 2003.

[37] Dwyer, T., “Three dimensional UML using force directed layout.
Australian Symposium on Information Visualisation,” Australian

Computer Society, Inc, pp. 77–85, 2001.

[38] Siqueira, F. L., Silva, P. S. M., “Analyzing CIM to PIM Transformations
Using the WRSPM model,” in Proc. of the 2nd Int. Conf. on Advanced

Communications and Computation, Venice, Italy, October 21–26,
IARIA, pp. 41–50, 2012.

[39] Al-Jamini, H., Ahmed, M., “Transition from Analysis to Software

Design: A Review and New Perspective,” in Proc. of Int. Conf. on Soft
Computing and Software Engineering, vol. 3, no. 3, pp. 169–176, 2013.

Oksana Nikiforova received the doctoral degree in
information technologies (system analysis, modeling

and design) from Riga Technical University, Latvia,

in 2001.
She is presently a Professor with the Department of

Applied Computer Science, Riga Technical

University, where she has been on the faculty since
2000. Her current research interests include object-

oriented system analysis and modelling, especially

the issues on Model Driven Software Development.
E-mail: oksana.nikiforova@rtu.lv

Ludmila Kozacenko received the Master degree in
computer systems from Riga Technical University,

Latvia, in 2014. She is presently a scientific assistant

at the Department of Applied Computer Science,
Riga Technical University. Her current research

interests include transformation approach

classification and realization of transformation using
general purpose programming language Java.

E-mail: ludmila.kozacenko@rtu.lv

Dace Ahilcenoka received the Master degree in

computer systems from Riga Technical University,

Latvia, in 2014.
She is presently a Scientific Assistant with the

Department of Applied Computer Science, Riga

Technical University. Her current research interests
include UML diagram layout, algorithms of diagram

layout.

E-mail: dace.ahilcenoka@rtu.lv

Konstantins Gusarovs received the Master degree
in computer systems from Riga Technical

University, Latvia, in 2012. He is Java developer in

Forticom Ltd.
His current research interests include object-oriented

software development and automatic obtaining of

program code.
E-mail: konstantins.gusarovs@gmail.com

Dainis Ungurs received the Master degree in
computer systems from Riga Technical University,

Latvia, in 2014.

His current research interests include original ways
of UML class diagram layout in system modelling

tools.
E-mail: dainis.ungurs@rtu.lv

Maris Jukss is a third year PhD student at the

Modelling, Simulation and Design Lab in School of

Computer Science at McGill University, Canada.
His current research interest is efficient and usable

model transformations.

E-mail: maris.jukss@mail.mcgill.ca

http://dx.doi.org/10.1145/2023607.2023627

