
Information Technology and Management Science doi: 10.1515/itms-2015-0012

__2015 / 18

78

Learning Ontology from Object-Relational Database

Andrejs Kaulins1, Arkady Borisov2
1, 2 Riga Technical University

Abstract – This article describes a method of transformation of

object-relational model into ontology. The offered method uses

learning rules for such complex data types as object tables and

collections – arrays of a variable size, as well as nested tables.

Object types and their transformation into ontologies are

insufficiently considered in scientific literature. This fact served

as motivation for the authors to investigate this issue and to write

the article on this matter. In the beginning, we acquaint the

reader with complex data types and object-oriented databases.

Then we describe an algorithm of transformation of complex

data types into ontologies. At the end of the article, some

examples of ontologies described in the OWL language are given.

Keywords – Complex data types, object-relational model,

ontology, ontology learning.

I. INTRODUCTION

Many systems use object-oriented databases in the

architecture [1]–[4]. The process of ontology creation from

such databases is insufficiently well described in scientific

articles and literature. Object-oriented database (OOD) is a

database in which data are modelled in the form of objects,

their attributes, methods and classes.

This article describes a transformation algorithm of object-

relational model into ontology [8]–[12]. The algorithm is

constructed on application of compliance rules for complex

data types, which are implemented in a relational database

from Oracle Corporation. In the beginning, we consider

complex data types, then the algorithm of transformation, and

in conclusion we describe some examples of transformation of

complex data types into ontologies.

II. COMPLEX DATA TYPES

For modelling real objects, for example, such as clients,

orders and payments, complex data types are used in

databases. Oracle company in its own database product allows

one to implement the following types of data: object tables,

collections – variable length arrays and nested tables.

The created object types may contain the built-in data types,

earlier defined object types, references to objects and

collections. Object data types can be used for processing

video, audio and graphic information.

The model of object types is similar to the mechanism of

classes in object-focused programming implemented in such

languages as C++, Java. Likewise classes, object types can

also be reused, which makes the process of application

programming of databases more effective and fast.

Let us consider the main characteristics of object-oriented

databases.

III. CHARACTERISTICS OF OBJECT-ORIENTED DATABASES

Object-oriented databases are usually recommended for

those cases when high-performance data processing is

required, having complex data structure.

Characteristics of OOD are considered in the OOD

manifesto [5]. Their choice is based on two criteria: the system

has to be object-oriented and represent a database.

In what follows, we will list obligatory characteristics of

object-oriented databases.

Support of complex objects. A possibility of creation of

compound objects due to application of constructors of

compound objects has to be provided in the system. It is

required that constructors of objects are orthogonal, that is,

any constructor would be possible to apply to any object.

Support of identity of objects. All objects have to have the

unique identifier, which does not depend on the values of

object attributes.

Encapsulation support. Correct encapsulation is reached

because programmers have the right of access only to the

specification of the interface of methods, and data and

implementation of methods are hidden in objects.

Support of types and classes. It is required that in the

OOD at least one concept of distinction between types and

classes was supported. (The term “type” rather corresponds to

the concept of abstract type of data. The variable appears in

programming languages with the indication of its type. The

compiler can use this information to check the operations,

which are carried out from a variable on compatibility with its

type that allows one to guarantee software correctness. On the

other hand, the class is a certain template for the creation of

objects and provides methods, which can be applied to these

objects. Thus, the concept “class” belongs to the time of

execution rather than to the time of compilation.)

Support of inheritance of types and classes from their

ancestors. The subtype, or a subclass, has to inherit attributes

and methods from its super type, or a super class, respectively.

Overload in combination with full binding. Methods have

to be applied to objects of different types. Implementation of a

method has to depend on type of objects, to which this method

is applied. For ensuring this functionality, binding of names of

methods in the system should not be carried out until

execution of the program.

Computing completeness. Data manipulation language has

to be a programming language of general purpose.

The data types have to be expandable. The user has to

have tools for new types of the predetermined system types

given on the basis of the existing set. Moreover, there should

be no distinctions between ways of use of the system and user

types of data.

DE GRUYTER

OPEN

©2015 Andrejs Kaulins and Arkady Borisov. This is an open access article licensed under the Creative Commons Attribution-NonCommercial-
NoDerivs License (http://creativecommons.org/licenses/by/4.0), in the manner agreed with De Gruyter Open.

Information Technology and Management Science

__2015 / 18

79

Apart from obligatory characteristics, there are also optional

ones:

1. Multiple inheritance;

2. Check of types;

3. Distribution;

4. Design transactions.

IV. OBJECT DATA TYPES

Object data types in application are similar to simple types,

such as NUMBER or VARCHAR2. They consist of attributes

and methods [6]. If we have preset values of attributes, the

object type is called an exemplar (object instance). In Fig. 1,

an example of object type and several exemplars is shown.

Fig. 1. Object type and exemplars.

Program code by which it is possible to set an object type in

a database is shown below:

CREATE TYPE person_typ AS OBJECT (

idno NUMBER,

first_name VARCHAR2(20),

last_name VARCHAR2(25),

email VARCHAR2(25),

phone VARCHAR2(20),

MAP MEMBER FUNCTION get_idno RETURN NUMBER,

MEMBER PROCEDURE display_details (SELF IN

OUT NOCOPY person_typ));

/

Methods of object type are defined as follows:

CREATE TYPE BODY person_typ AS

MAP MEMBER FUNCTION get_idno RETURN NUMBER

IS

BEGIN

 RETURN idno;

END;

MEMBER PROCEDURE display_details (SELF IN

OUT NOCOPY person_typ) IS

BEGIN

DBMS_OUTPUT.PUT_LINE(TO_CHAR(idno) || ' '

|| first_name || ' ' || last_name);

DBMS_OUTPUT.PUT_LINE(email || ' ' ||

phone);

END;

END;

The variable of object type is an exemplar. Object types

consist of attributes and methods (Fig. 2).

Fig. 2. Object attributes and methods.

After definition of object type, it is possible to create the

tables having one or several columns of object type. An

example of this kind of table is given below:

CREATE TABLE contacts (

contact person_typ,

contact_date DATE

);

The table contacts contains a column of earlier defined

object type – person_type. The objects contained in the

columns of the table are called column objects.

Such a table can be filled in with data by means of a

standard data modification language (DML), for example,

with operator INSERT:

INSERT INTO contacts VALUES (

person_typ(

65,'Verna','Mills',

'vmills@example.com','1-650-555-0125'

),

to_date('24 Jun 2003','dd Mon YYYY')

);

Methods of object are performed functions or procedures

determined by the user. The methods can be of several types:

Member methods. These methods implement access to

attributes of object, and also the procedure and operation over

attributes.

Static methods. Implement operations over exemplars of

objects. For example, it is possible to define operation of

object comparison. Such operations are defined by static

methods.

Constructor methods. By means of exemplar constructor,

exemplars of the set type are created. The constructor is set

implicitly for any object; however, the user can make

necessary changes that influence the process of creation of

exemplars.

External implemented methods. External methods can be

implemented in C/C++ and are stored in a type of libraries

outside a database.

An example of using a method for the previously

considered person_typ types and the table contacts is given

below:

select c.contact.get_idno() from contacts c;

Information Technology and Management Science

__2015 / 18

80

This query will print on display attribute of idno for all

objects from the table contacts.

A. Object Tables

A table containing only objects is called object table. Every

record in such a table represents the whole object. In such

tables, it is possible to refer to objects from other objects or a

program code. For such references in the database, special

identifiers of objects are used.

Such object identifiers can be of two types:

1. Systemically generated (are applied by default).

2. Based on the primary keys.

For use of identifiers, the construction REF is used, which

allows addressing an object.

An example of creation of the object table for the

previously defined type person_typ is as follows:

CREATE TABLE person_obj_table OF person_typ;

Further, the object table can be filled in with data:

INSERT INTO person_obj_table VALUES (

person_typ(101, 'John', 'Smith',

'jsmith@example.com', '1-650-555-0135')

);

A reference to object (REF) can be used as follows:

CREATE TYPE emp_person_typ AS OBJECT (

name VARCHAR2(30),manager REF emp_person_typ

);

/

CREATE TABLE emp_person_obj_table OF

emp_person_typ;

INSERT INTO emp_person_obj_table VALUES (

emp_person_typ ('John Smith', NULL));

INSERT INTO emp_person_obj_table SELECT

emp_person_typ ('Bob Jones', REF(e))

FROM emp_person_obj_table e WHERE e.name =

'John Smith';

select * from emp_person_obj_table e;

NAME MANAGER

---------- ------------------------------

John Smith

Bob Jones

 0000220208424E801067C2EABBE040578CE70A070742

4E801067C1EABBE040578CE70A0707

For reference types it is possible to use restrictions:

CREATE TABLE contacts_ref (contact_ref REF

person_typ SCOPE IS person_obj_table,

contact_date DATE);

According to the references, it is possible to address objects

(implicit dereferencing):

SELECT e.name, e.manager.name FROM

emp_person_obj_table e

WHERE e.name = 'Bob Jones';

SELECT DEREF(e.manager) FROM

emp_person_obj_table e;

DEREF(E.MANAGER)(NAME, MANAGER)

--

EMP_PERSON_TYP('John Smith', NULL)

A PL/SQL code example is presented below:

DECLARE

 person_ref REF person_typ;

 person person_typ;

BEGIN

 SELECT REF(p) INTO person_ref FROM

person_obj_table p WHERE p.idno = 101;

 select deref(person_ref) into person

from dual;

 person.display_details();

END;

B. Oracle Collections

Collections in the databases are used for modelling multiple

attributes (multi-valued attributes) and relations “many to

many”.

Collections can be of two types – variable length arrays

(VARRAY) and nested tables. Collections can serve as type of

data in objects or simple tables (as certain columns).

 We will give an example of collection:

CREATE TYPE people_typ AS TABLE OF

person_typ;

Now this complex type can be used for the definition of

other type:

CREATE TYPE dept_persons_typ AS OBJECT (

dept_no CHAR(5),

dept_name CHAR(20),

dept_mgr person_typ,

dept_emps people_typ);

/

The attribute of dept_emps is the table supporting the

employees working at a certain department.

V. COMPLEX DATA TYPE TRANSFORMATION ALGORITHM

The algorithm is an expansion of the method of

transformation of relational data model [7]. For each complex

data type of object-relational model, the group of learning

rules is defined, which maps objects from the database into

ontology. The general algorithm is shown in Fig. 3.

Information Technology and Management Science

__2015 / 18

81

Is there more

objects?

Read database

dictionary

Determine

data type

Take complex

data type

Proceed to

collections

Proceed to

object tables

Add objects

to ontology

no

yes

start

end

Fig. 3. Complex data type transformation steps.

VI. LEARNING RULES

A. Learning Rules for Object Tables

For object types we use several learning rules, which allow

us to create classes, attributes and instances in ontology.

Let us consider an example:

CREATE TYPE person_typ AS OBJECT (

idno NUMBER,

first_name VARCHAR2(20),

last_name VARCHAR2(25),

email VARCHAR2(25),

phone VARCHAR2(20),

MAP MEMBER FUNCTION get_idno RETURN NUMBER,

MEMBER PROCEDURE display_details (

SELF IN OUT NOCOPY person_typ));

/

CREATE TABLE contacts (

contact person_typ,

contact_date DATE

);

INSERT INTO contacts VALUES (person_typ

(65, 'Verna', 'Mills', 'vmills@example.com',

'1-650-555-0125'), to_date('24 Jun 2015', 'dd

Mon YYYY'));

INSERT INTO contacts VALUES (person_typ

(66, 'John', 'Smith',

'jsmith@example.com', '1-650-555-0325'),

to_date('26 Jun 2015', 'dd Mon YYYY'));

Rule 1. Every certain type defined by a user will be

transformed into an ontology class.

Ontology(<http://www.my.example.com/example>

Declaration(Class(a:Person_Type)))

Rule 2. Attributes of object type will be transformed into

attributes of a class of ontology.

Ontology(<http://www.my.example.com/example>

DataPropertyDomain (a:hasIdno a:Person_type)

DataPropertyDomain (a:hasFirstName

a:Person_type)

DataPropertyDomain (a:hasLastName

a:Person_type)

DataPropertyDomain (a:hasEmail

a:Person_type)

DataPropertyDomain (a:hasPhone

a:Person_type)

DataPropertyRange (a:hasIdno xsd:int)

DataPropertyRange (a:hasFirstName

xsd:string)

DataPropertyRange (a:hasLastName xsd:string)

DataPropertyRange (a:hasEmail xsd:string)

DataPropertyRange (a:hasPhone xsd:string)

)

Rule 3. Concrete values of attributes form instances in

ontology.

Ontology(<http://www.my.example.com/example>

DataPropertyAssertion(a:hasIdno

a:Person_type “65” ^^ xsd:int)

DataPropertyAssertion(a:hasFirstName

a:Person_type “Verna” ^^ xsd:string)

DataPropertyAssertion(a:hasLastName

a:Person_type “Mills” ^^ xsd:string)

DataPropertyAssertion(a:hasEmail

a:Person_type “vmills@example.com” ^^

xsd:string)

DataPropertyAssertion(a:hasPhone

a:Person_type “1-650-555-0125” ^^ xsd:string)

DataPropertyAssertion(a:hasIdno

a:Person_type “66” ^^ xsd:int)

DataPropertyAssertion(a:hasFirstName

a:Person_type “John” ^^ xsd:string)

DataPropertyAssertion(a:hasLastName

a:Person_type “Smith” ^^ xsd:string)

DataPropertyAssertion(a:hasEmail

a:Person_type “jsmith@example.com” ^^

xsd:string)

DataPropertyAssertion(a:hasPhone

a:Person_type “1-650-555-0325” ^^ xsd:string)

)

B. Learning Rules for Collections

Let us define object like a Course:

CREATE TYPE Course AS OBJECT (

 course_no NUMBER(4),

 title VARCHAR2(35),

 credits NUMBER(1));

Now define TABLE type CourseList which contains objects

of Course:

CREATE TYPE CourseList AS TABLE OF Course;

Information Technology and Management Science

__2015 / 18

82

We will create the table department which contains a

CourseList column:

CREATE TABLE department (

 name VARCHAR2(30),

 director VARCHAR2(40),

 office VARCHAR2(40),

 courses CourseList)

 NESTED TABLE courses STORE AS courses_tab;

An example of filling the table with data is provided below:

INSERT INTO department

VALUES('Psychology', 'Irene Friedman', 'Fulton

Hall 133', CourseList(Course(1000,

'General Psychology', 5),

 Course(2100, 'Experimental Psychology', 4),

 Course(4320, 'Cognitive Processes', 4),

 Course(4410, 'Abnormal Psychology', 4)));

Rule 1. Nested tables will be transformed to a separate class

of ontology.

Ontology(<http://www.my.example.com/example>

Declaration(Class(a:Department))

Declaration(Class(a:Course))

)

Rule 2. Attributes of the nested table will be transformed

into attributes of this class of ontology.

Ontology(<http://www.my.example.com/example>

DataPropertyDomain (a:hasCourseno a:Course)

DataPropertyDomain (a:hasTitle a:Course)

DataPropertyDomain (a:hasCredits a:Course)

DataPropertyRange (a:hasCourseno xsd:int)

DataPropertyRange (a:hasTitle xsd:string)

DataPropertyRange (a:hasCredits xsd:int)

)

Rule 3. Concrete values of attributes form instances in

ontology.

Ontology(<http://www.my.example.com/example>

DataPropertyAssertion(a:hasCourseno a:Course

“2100” ^^ xsd:int)

DataPropertyAssertion(a:hasTitle a:Course

“General Psychology” ^^ xsd:string)

DataPropertyAssertion(a:hasCredits a:Course

“5” ^^ xsd:int)

DataPropertyAssertion(a:hasCourseno a:Course

“1000” ^^ xsd:int)

DataPropertyAssertion(a:hasTitle a:Course

“'Experimental Psychology” ^^ xsd:string)

DataPropertyAssertion(a:hasCredits a:Course

“4” ^^ xsd:int)

DataPropertyAssertion(a:hasCourseno a:Course

“4320” ^^ xsd:int)

DataPropertyAssertion(a:hasTitle a:Course

“Cognitive Processes” ^^ xsd:string)

DataPropertyAssertion(a:hasCredits a:Course

“4” ^^ xsd:int)

DataPropertyAssertion(a:hasCourseno a:Course

“4410” ^^ xsd:int)

DataPropertyAssertion(a:hasTitle a:Course

“Abnormal Psychology” ^^ xsd:string)

DataPropertyAssertion(a:hasCredits a:Course

“4” ^^ xsd:int)

)

The built ontology can be represented graphically (Fig. 4).

Class

Department

Class

Course

DataTypeProperty

hasTitle

DataTypeProperty

hasCourseNo

DataTypeProperty

hasCredits

xsd:integer

xsd:integer

xsd:string

DataTypeProperty

hasName

xsd:string

DataTypeProperty

hasDirector

xsd:string

DataTypeProperty

hasOffice

xsd:string

ObjectProperty

Offers

Class

CourseList

ObjectProperty

ConsistOf

Instance

«Psychology»

Instance

«Irene

Friedman»

Instance

«Fulton Hall

133»

Instance

«2100»

Instance

«General Psychology»

Instance

«5»

Fig. 4. Ontology example built using learning rules.

Information Technology and Management Science

__2015 / 18

83

VII. CONCLUSION

This article has introduced the complex data type

transformation algorithm from a database into ontology. In the

beginning, definitions of object-oriented databases have been

given. The main characteristics of such database types have

been considered.

To be specific, examples of complex data types

implemented in the Oracle database have been provided. Then

steps of transformation of object data types into ontology are

shown.

For each complex data type, a set of learning rules has been

provided, which is used for the transformation of database

objects into ontology.

In conclusion, examples of transformation from a database

into ontologies described in the OWL language have been

considered, which confirms the applicability of the algorithm.

REFERENCES

[1] M. Rapaport, “Object-Oriented Data Bases: The Next Step in DBMS
Evolution,” Comp. Lang. vol. 5, no. 10, 1988, pp. 91–98.

[2] M. Stonebraker, “Future Trends in Database Systems”, IEEE Trans.

Knowledge and Data Eng. vol. 1, no. 1, 1989, pp. 33–44.
http://dx.doi.org/10.1109/69.43402

[3] O. Nierstrasz, “A Survey of Object-Oriented Concepts”, ACM Press

and Addison-Wesley, 1989, pp. 3–21.
[4] M. A. Garvey, M. S. Jackson, “Introduction to Object-Oriented

Databases”, Inf. and Software Technol. vol. 31, no. 10, 1989, pp. 521–

528. http://dx.doi.org/10.1016/0950-5849(89)90173-0
[5] M. Atkinson, F. Bancilhon, D. Dewitt, K. Dittrich, D. Maier, S. Zdonik,

“The Object-Oriented Database System Manifesto”, In Proc. of the

First Int. Conf. on Deductive and Object-Oriented Databases” , Kyoto,
Japan, 1989, pp. 223–240.

[6] J. Greenberg, Oracle Database Object-Relational Developer's Guide

12c Release 1, Oracle corp., 2014.

[7] A. Kaulins, A. Borisovs, “A. Building Ontology from Relational
Database”, Information Technology and Management Science, vol. 17,

2014, pp. 45–49.

[8] S. Staab, R. Studer, “Handbook on Ontologies”, International
Handbooks on Information Systems, Springer Science and Business

Media, 2013.

[9] B. Bennett, C. Fellbaum, “Formal Ontology in Information Systems”,
Proc. of the Fourth Int. Conf. FOIS 2006, IOS Press, 2006.

[10] L. W. Lacy, Owl: Representing Information Using the Web Ontology

Language, Trafford Publishing, 2005.
[11] R. Poli, M. Healy, A. Kameas, “Theory and Applications of Ontology”,

Computer Applications, Springer Science and Business Media, 2010.

http://dx.doi.org/10.1007/978-90-481-8847-5
[12] K. Munn, B. Smith, “Applied Ontology: An Introduction”,

Metaphysical Research, vol. 9, Walter de Gruyter, 2008.

http://dx.doi.org/10.1515/9783110324860

Andrejs Kaulins received the B. Sc. and M. Sc. degrees in 1993 and 2002

from Riga Technical University and the University of Latvia. Since 2013 he
has been studying at Riga Technical University to obtain a Doctoral degree in

Computer Science. Currently, major field of study is complex IT system

design based on ontologies.
E-mail: andrejs.kaulins@rtu.lv

Arkady Borisov received his Doctoral degree in Technical Cybernetics from
Riga Polytechnic Institute in 1970 and Dr. habil. sc. comp. degree in

Technical Cybernetics from Taganrog State Radio Engineering University in

1986. He is a Professor of Computer Science at the Faculty of Computer
Science and Information Technology, Riga Technical University (Latvia). His

research interests include fuzzy sets, fuzzy logic and computational

intelligence. He has 235 publications in the field. He has supervised a number
of national research grants and participated in the European research project

ECLIPS. He is a member of IFSA European Fuzzy System Working Group,

Russian Fuzzy System and Soft Computing Association, honorary member of
the Scientific Board, member of the Scientific Advisory Board of the Fuzzy

Initiative Nordrhein-Westfalen (Dortmund, Germany).

E-mail: arkadijs.borisovs@cs.rtu.lv

http://dx.doi.org/10.1109/69.43402
http://dx.doi.org/10.1016/0950-5849(89)90173-0
http://dx.doi.org/10.1007/978-90-481-8847-5
http://dx.doi.org/10.1515/9783110324860
mailto:andrejs.kaulins@rtu.lv

