Publikācijas veids | Publikācija RTU zinātniskajā žurnālā |
---|---|
Pamatdarbībai piesaistītais finansējums | Nav zināms |
Aizstāvēšana: | , |
Publikācijas valoda | English (en) |
Nosaukums oriģinālvalodā | Markov Chain Modelling for Short-Term NDVI Time Series Forecasting |
Pētniecības nozare | 2. Inženierzinātnes un tehnoloģijas |
Pētniecības apakšnozare | 2.2. Elektrotehnika, elektronika, informācijas un komunikāciju tehnoloģijas |
Pētniecības platforma | Informācijas un komunikāciju tehnoloģijas |
Autori |
Artūrs Stepčenko
Jurijs Čižovs |
Atslēgas vārdi | Continuous state space, Markov chains, NDVI, short-term forecasting |
Anotācija | In this paper, the NDVI time series forecasting model has been developed based on the use of discrete time, continuous state Markov chain of suitable order. The normalised difference vegetation index (NDVI) is an indicator that describes the amount of chlorophyll (the green mass) and shows the relative density and health of vegetation; therefore, it is an important variable for vegetation forecasting. A Markov chain is a stochastic process that consists of a state space. This stochastic process undergoes transitions from one state to another in the state space with some probabilities. A Markov chain forecast model is flexible in accommodating various forecast assumptions and structures. The present paper discusses the considerations and techniques in building a Markov chain forecast model at each step. Continuous state Markov chain model is analytically described. Finally, the application of the proposed Markov chain model is illustrated with reference to a set of NDVI time series data |
DOI: | 10.1515/itms-2016-0009 |
Atsauce | Stepčenko, A., Čižovs, J. Markov Chain Modelling for Short-Term NDVI Time Series Forecasting. Information Technology and Management Science. Nr.19, 2016, 39.-44.lpp. ISSN 2255-9086. e-ISSN 2255-9094. Pieejams: doi:10.1515/itms-2016-0009 |
Pilnais teksts | Pilnais teksts |
ID | 23725 |