Zinātniskās darbības atbalsta sistēma
Latviešu English

Publikācija: Markov Chain Modelling for Short-Term NDVI Time Series Forecasting

Publikācijas veids Publikācija RTU zinātniskajā žurnālā
Pamatdarbībai piesaistītais finansējums Nav zināms
Aizstāvēšana: ,
Publikācijas valoda English (en)
Nosaukums oriģinālvalodā Markov Chain Modelling for Short-Term NDVI Time Series Forecasting
Pētniecības nozare 2. Inženierzinātnes un tehnoloģijas
Pētniecības apakšnozare 2.2. Elektrotehnika, elektronika, informācijas un komunikāciju tehnoloģijas
Pētniecības platforma Informācijas un komunikāciju tehnoloģijas
Autori Artūrs Stepčenko
Jurijs Čižovs
Atslēgas vārdi Continuous state space, Markov chains, NDVI, short-term forecasting
Anotācija In this paper, the NDVI time series forecasting model has been developed based on the use of discrete time, continuous state Markov chain of suitable order. The normalised difference vegetation index (NDVI) is an indicator that describes the amount of chlorophyll (the green mass) and shows the relative density and health of vegetation; therefore, it is an important variable for vegetation forecasting. A Markov chain is a stochastic process that consists of a state space. This stochastic process undergoes transitions from one state to another in the state space with some probabilities. A Markov chain forecast model is flexible in accommodating various forecast assumptions and structures. The present paper discusses the considerations and techniques in building a Markov chain forecast model at each step. Continuous state Markov chain model is analytically described. Finally, the application of the proposed Markov chain model is illustrated with reference to a set of NDVI time series data
DOI: 10.1515/itms-2016-0009
Atsauce Stepčenko, A., Čižovs, J. Markov Chain Modelling for Short-Term NDVI Time Series Forecasting. Information Technology and Management Science. Nr.19, 2016, 39.-44.lpp. ISSN 2255-9086. e-ISSN 2255-9094. Pieejams: doi:10.1515/itms-2016-0009
Pilnais teksts Pilnais teksts
ID 23725