
RIGA TECHNICAL UNIVERSITY

Faculty of Computer Science and Information Technology

Institute of Applied Computer Systems

Gusts Linkevičs

Student of the Doctoral Study Program “Computer Systems”

Supporting Implementation of the Agile Paradigm in

Software Development Companies

Summary of the Doctoral Thesis

 Scientific Supervisor

 Dr.sc.ing., Professor

 U. SUKOVSKIS

RTU Press

Riga 2016

2

Linkevičs G. Supporting Implementation of the Agile Paradigm in Software Development

Companies. Summary of the Doctoral Thesis. – R.: RTU Press, 2016. – 43 pp.

Printed according to the decision of the Board meeting of the Institute of Applied Computer

Systems, Faculty of Computer Science and Information Technology, Riga Technical University

on May 26, 2016, Minutes No. 12300-4.1/4.

ISBN 978-9934-10-902-7

3

THE DOCTORAL THESIS PROPOSED TO RIGA TECHNICAL UNIVERSITY

FOR THE PROMOTION TO THE SCIENTIFIC DEGREE OF DOCTOR OF

ENGINEERING SCIENCE

To be granted the scientific degree of Doctor of Engineering Sciences, the present

Doctoral Thesis has been submitted for the defence at the open meeting at the Faculty of

Computer Science and Information Technology, Riga Technical University, 1 Setas Street,

auditorium 202, at 1430, on February 06, 2017.

OFFICIAL REVIEWERS

Professor, Dr. sc. ing. Jānis Grabis

Riga Technical University, Latvia

Professor, Dr. sc. comp. Rudīte Čevere

Latvia University of Agriculture, Latvia

Professor, Dr. Albertas Čaplinskas

Vilnius University, Lithuania

DECLARATION OF ACADEMIC INTEGRITY

I hereby declare that I have developed this thesis submitted for the doctoral degree

at Riga Technical University. I confirm that this Doctoral Thesis has not been submitted to

any other university for the promotion of other scientific degree.

Gusts Linkevičs
 signature

Date

The Doctoral Thesis is written in Latvian and includes introduction, 5 sections, result

analysis and conclusions, bibliography, 6 appendices, 123 tables, 63 figures, overall – 227

pages. The bibliography contains 123 references.

4

Table of Contents

Introduction .. 5

1.1. Motivation of the Research ... 7

1.2. The Aim and Tasks of the Doctoral Thesis ... 7

1.3. Research Object and Methods ... 8

1.4. Scientific Novelty and Practical Value ... 9

1.5. Approbation of the Research Result .. 9

1.6. Outline of the Doctoral Thesis .. 10

2. Agile Software Development ... 12

2.1. Advantages and Risks of Agile Software Development 12

2.2. Terminology Problem ... 12

2.3. Topicality Index .. 13

3. Agile Methods and Practices .. 18

4. Organizational Agility .. 18

4.1. Organizational Agility Model (OAM) .. 18

4.2. Agility Impact Index (AII) .. 22

5. Determination of Agility Level .. 23

5.1. The ODA Method .. 23

5.2. Question Set Generation and Visualization of the Gathered Information 25

5.3. Using the FOIL (First-Order Inductive Learner) Algorithm 28

5.4. Agility Determination Tool ... 29

6. Verification of the ODA Method .. 31

6.1. Verification Organizations .. 31

6.2. Verification Results ... 32

Key Results and Conclusion .. 34

Bibliography .. 37

5

Introduction

Contemporary business environment is very dynamic and customers are forced to change

software requirements frequently, so that they can meet new environmental and business

conditions. Customers require frequent and quick software deliveries and upgrades.

Traditional software development methods fail to provide the necessary flexibility, which is

provided by agile methods.

The first reference to agile software development can be found in 1957, the approach

being mentioned in an article by Craig Larman and Victor Basili [112].

In 1970, Dr. Winston Royce presented his article “Managing the Development of

Large Software Systems” [106], where he criticizes sequential software development. In the

same year, E. A. Edmonds prepared his article “A process for the Development of Software

for Nontechnical Users as an Adaptive System”, which he wanted to publish in the journal

“Computer Aided Design”, but publishing of article was refused with comments, “If you

don’t know what you will do before you start, don’t start at all”. The article was published

later in 1974, in the journal “General Systems” [113].

Irrespective of resistance, agile methods continued developing, for example,

“Scrum” (1986) [113], “Extreme Programming” (1999) [19], etc. The meeting of agile

method experts and creation of “agile manifesto” in 2001 became the turning point in the

agile software development [7].

Today, software development companies of different sizes partially or fully switch

to agile software development. The number of successfully developed projects using the

agile approach is the main reason for the switch, and this was confirmed by Standish Group

research in 2012 [109]. Research shows that 42% of successful projects have been developed

using agile methods and only 14% have been developed using a more traditional approach

(Figure 0.1.).

Figure 0.1. Standish Group research results 2012.

Similar tendencies regarding agile software development were noticed by Scott

Ambler from AmbySoft [110], where 68 % of successful projects used iterative methods and

0 50 100 150

Successful

Problematical

Unsuccessful

14

57

29

42

49

9

Traditional

Agile

6

67 % used the agile approach, with about half of projects succeeding using traditional

methods (Figure 0.2.).

Figure 0.2. Successful projects based on AmbySoft research.

Forrester Research studies [111] found that the number of projects developed using

the agile approach increased from 35.4 % in 2009 to 38.6 % in 2010. The number of

traditionally developed projects decreased from 13.4 % to 13.0 % (Figure 0.3.).

Figure 0.3. Results of research conducted by Forrester Research.

Research results analyzed in this Doctoral Thesis indicate that the usage of agile

methods has increased and that agile projects have been more successful. However, there are

also indications that not all agile projects have been successful. Standish Group research

(Figure 0.1.) shows that 9 % of agile projects are unsuccessful, whilst 49 % had considerable

problems.

72

61

68
70

60

6766

48
50

62

46
49

45

50

55

60

65

70

75

2008 2010 2011

Iterative methods Agile methods

Traditional methods Ad-hoc methods

7

1.1. Motivation of the Research

The motivation of each organization to implement the agile paradigm differs. In most

cases, it is desirable to obtain more successful software development projects in a company

portfolio. Some organizations have been successful in transforming into agile software

development, but there are also organizations where the transformational process is

unsuccessful.

There is a necessity to find a way to help software development companies successfully

and quickly adopt the agile paradigm in order to make software development more

successful.

One of the most significant motivations to develop this Doctoral Thesis about transition

to agile software development is bad experience of the author within several projects aimed

at transformation into agile software development. The author has spent more than 6 years

researching this problem, with other organizations experiencing similar problems when

transforming into agile software development and this is also reflected in conference reports

[1][2][3][4][5].

The author of this Doctoral Thesis has worked in five software development companies,

which have tried to implement the agile paradigm. In the author's opinion, only one

transformation has been successful. For this very reason, the author has decided to find the

best solution to this problem.

The term “organizational agility” in the context of this Doctoral Thesis has a narrowed

meaning and applies only to the software development company's ability to develop software

using agile methods and practices.

1.2. The Aim and Tasks of the Doctoral Thesis

The aim of this Doctoral Thesis is to create a method and a tool to support

implementation of the agile paradigm in a software development company.

The proposed aim is based on the following hypotheses:

 organizations have low awareness of agile methods, and this creates problems

in the implementation of the agile paradigm;

 by using methods and tools, it is possible to evaluate the agility level of an

organization;

 knowledge regarding the current agility level of an organization helps to create

appropriate improvement plans in order to improve their organizational agility

level.

8

To achieve the given aim, the following tasks have been defined:

 to investigate the advantages and risks of agile methods, practices and their

significant properties;

 to create a dictionary of regularly used terms. This glossary of terms is required

to define the Topicality Index (TI) and is used to determine the TI value for

agile methods, practices and keywords;

 to define organizational agility and create an Organizational Agility Model

(OAM), identifying which practices influence particular OAM elements;

 to define Agility Impact Index (AII) and determine AII values for OAM

elements;

 to create an Organization Domain Agility level determination method (ODA)

and a question generation algorithm to be employed by the method;

 to approbate the algorithm FOIL (First-Order Inductive Learner) to determine

top-level agility;

 to approbate the method and tool at one or more organizations.

1.3. Research Object and Methods

The object of this Doctoral Thesis is the usage of agile methods in software

development companies.

The subject of this Doctoral Thesis is the development of a method and a tool for

determination of organizational agility level.

Analysis of literature, conference materials and internet articles was used to identify

significant features, advantages and risks of agile methods.

Analysis of dictionaries and literature was used to create a glossary of terms. The

glossary will be visualized using Mind Map software.

Research of conference materials from 2008 to 2012 was used to define TI values for

methods, practices and keywords. Information about methods, practices and keywords is

stored in a database, exclusively created by the author for data analysis.

Analysis of literature and author’s personal experience was used to define the OAM

model, and it was verified by the agile method expert network.

Expert network and the DELPHI method were used to define Agility Influence Index

(AII) values for each OAM model element.

Results of the method ODA were verified by evaluating the organizational agility level

of three software development companies. The companies differed in size, they also work

9

on different types of projects. One of the companies used agile software development within

only one specific project for a particular client.

1.4. Scientific Novelty and Practical Value

Scientific novelty:

 definition of TI has been provided based on term research and creation of

glossary “Mind Map”. TI values have been calculated for agile methods,

practices and keywords;

 organizational agility definition has been given and an Organizational Agility

Model (OAM) has been created. OAM has been used to develop the agility

determination method ODA;

 AII definition has been provided and AII values have been defined for each OAM

element using the agility expert network. Domain, Subdomain and Attribute

value tree (DSA) has been developed to make graphical representations of AII

values;

 the ODA method collects data from employees, and not to overburden employees

with a large number of questions, a question generation algorithm has been

created. The question generation algorithm generates small sets of questions for

each employee for each survey iteration.

Practical value

The practical value of this Doctoral Thesis lies in the fact that it may help software

development companies successfully transform from traditional software development

models to the agile paradigm by highlighting problematic areas. Problematic areas are

identified by using a developed ODA method and question generation algorithm, which are

implemented in an organizational agility level determination software prototype.

1.5. Approbation of the Research Result

Research results are reflected in five publications:

1. Linkevics, G., Adopting to Agile Software Development, volume 16 “Applied

Computer Systems”, 2014. – Latvia, Riga, RTU, 2014 –64–71 pp. (EBSCO).

2. Linkevics, G., Sukovskis, U., Evaluation of the Agility Level of the Organization,

volume 18 “Applied Computer Systems”, 2015. – Latvia, Riga, RTU, 2015 –21-26

pp. (De Gruyter).

10

3. Linkevics, G., Evaluation of Agility in Software Development Company //

Proceedings of the Joint International Conference on Engineering Education &

International Conference on Information Technology (ICEE/ICIT 2014), Latvia,

Riga, 2-6 June, 2014 -320-332 pp.

4. Linkevics, G., Sukovskis, U., Determining Agility Impact Index and generating

employee based questions to assess organizational agility // Proceedings of the

International Conference on Engineering Education (ICEE 2015), Croatia, Zagreb,

20-24 July, 2015.

5. Linkevics, G., Sukovskis, U., Using ODA Method and FOIL Algorithm to

Determine Organizational Agility Level // Proceedings of the 10th International

Multi-Conference on Computing in the Global Information Technology (ICCGI

2015), Malta, St. Julians, 11-16 October, 2015 -93-100 pp.

Research results were presented at five conferences:

1. Linkevics, G., Adopting to Agile Software Development. RTU 53rd International

Scientific Conference, Riga, Latvia, 11-12 October, 2012.

2. Linkevics, G., Sukovskis, U., Evaluation of the Agility Level of the Organization.

RTU 56th International Scientific Conference, Riga, Latvia, 14-16 October, 2015.

3. Linkevics, G., Evaluation of Agility in Software Development Company. Joint

International Conference on Engineering Education & International Conference on

Information Technology (ICEE/ICIT 2014), Riga, Latvia, 2-6 June, 2014.

4. Linkevics, G., Sukovskis, U., Determining Agility Impact Index and generating

employee based questions to assess organizational agility. International Conference

on Engineering Education (ICEE 2015), Croatia, Zagreb, 20-24 July, 2015.

5. Linkevics, G., Sukovskis, U., Using ODA Method and FOIL Algorithm to Determine

Organizational Agility Level. 10th International Multi-Conference on Computing in

the Global Information Technology (ICCGI 2015), Malta, St. Julians, 11-16 October,

2015.

1.6. Outline of the Doctoral Thesis

This Doctoral Thesis consists of an introduction, 5 chapters, a conclusion, bibliography

and 6 appendices.

The introduction contains information about the topicality of the subject matter,

motivation for the research, the list of aims and tasks, description of the research methods

and information about scientific novelty and practical value of the Thesis. Information about

11

approbation and outline of this Doctoral Thesis are presented at the end of the introductory

chapter.

The first chapter describes agile software development and analysis, its advantages and

risks. The agile methodology terminology problem is examined and the terms used in this

Doctoral Thesis are described. A great deal of attention in this chapter is dedicated to

determination of the Topicality Index (TI) for agile methods, practices and keywords.

Definition of dynamic environment is given at the end of the chapter.

The second chapter of the Doctoral Thesis describes agile methods and practices with

the highest TI. It allows identification of the common and different features of various agile

methods. Based on the analyzed data, the Organizational Agility Model (OAM) is built.

The focus of the third chapter is organizational agility. Organizational agility definition

is provided and the OAM model developed. OAM model consists of several domains,

subdomains and attributes. OAM top level domains are: Organization, Productivity, Quality,

Process, Value and Project domains. Definition of the Agility Impact Index (AII) is provided

and the detailed AII value determination process is developed. AII values are determined

using the agility expert network and the DELPHI expert evaluation method.

The fourth chapter focuses on the conceptual model of agility level determination and

organization domain agility level evaluation method ODA. The ODA method is developed

and the question generation algorithm is used by the method created. Domain, Subdomain

and Attribute value tree (DSA) is created to visualize expert evaluated AII values and

Employee Evaluated (EEV) values. Approbation of the FOIL algorithm is performed to

generate rules for DSA value tree processing. Data flow diagrams, architecture and tool

prototype are developed to determine the organizational agility level.

The fifth chapter describes approbation of the ODA method by determining the agility

level of three different organizations.

Brief conclusions are made at the end of each chapter, with key results and overall

conclusions presented in the final section of this Doctoral Thesis.

This Doctoral Thesis has six appendices. Information about agile methods and their TI

values are summarized in Appendix 1. Information about keywords used at the conferences

and their TI values are summarized in Appendix 2. Appendix 3 contains information about

agile practices. Detailed information about using the FOIL algorithm and rules generated by

the algorithm for classes C2 and C3 are presented in Appendix 4. Appendix 5 contains expert

evaluated AII values for all OAM elements, and Appendix 6 reports on approbation results

of the ODA method.

12

2. Agile Software Development

There is no single definition of agile software development, various sources provide

several definitions of the term ‘agile software development’. Some sources, e.g. [103][106],

mention that agile software development is a methodology, whilst others [104][105] say that

it is a common term, which combines agile methods and practices. Seven from eight sources

make reference to the agile software development manifesto [7]. One of these definitions is

as follows:

Agile Software Development is an umbrella term for a set of methods and practices based

on the values and principles expressed in the Agile Manifesto [104].

2.1. Advantages and Risks of Agile Software Development

Agile method coach Dave Moran in his article mentioned 10 advantages of agile software

development (and the author of this Doctoral Thesis agrees with the list) [8]. According to

Moran, agile development delivers systems quicker, embraces business agility; reduces

risks; increases productivity; creates a sustainable development environment; enables

emergent innovation; builds trust and relationships; expects continuous improvement; is

motivating and engaging; and addresses the realities of software development and business

needs.

There are also some risks in using agile development methods. Organizations and

teams should take these into account [9], including: unprofessional teams, bad

communication with the customer or inside the team, poor specifications, unclear or

unrealistic requirements, retrospect is not used or implemented [108], knowledge is not

shared or stored, metrics are not used or used incorrectly, planned time is not precise, scope

of project or iteration is unclear, complicated or erroneous contracts and an insufficient level

of knowledge.

2.2. Terminology Problem

Different teams and individuals work in various organizations and their knowledge

level varies considerably. Problems emerge, then different sources describe the same items

using various definitions. To solve the problem, it is required to perform term analysis and

achieve common denominators using the context of this Doctoral Thesis.

Term definitions from 28 various sources are used to build a “Mind Map” of terms and

their descriptions. Mostly the terms “Methodology”, “Method”, “Principle”, “Practice” and

“Procedure” are used (Figure 2.1.).

13

Methodology

Principle

System of

Particular
discipline or area

Set of rules

System of

Study of methods

Set of guidlines

Offers theoretical
explanation

Study of methods
not methods
themselves

Framework

Documented
process

Subset of

Fundamental
truth

Proposition

Rule Law

Basis

Tenet

Principles how
tools are

deployed or
interpreted

Solving different
problems Subset of

System of

any system

created to

impose order

Method

Practice

Procedure

Figure 2.1. Terminology map (fragment).

The term “Methodology” is described as “particular discipline or area”, “Offers

theoretical explanation”, “Framework”, “Documented process”, etc. In short,

“Methodology” is a system of methods and practices.

The term “Method” is described as “Tool of scientific investigation”, “Way of solving

problem”, “Logically ordered plan”, “Generalized concept”, “Established way”, etc.

“Method” can consist of several procedures, which, when ordered and executed in particular

way, can give a defined result.

The term “Practice” is well described as “Routine”, “Habit”, “Contrast to theory” and

“Could not be documented”. “Practice” consists of various procedures, which are not

generalized and are systematic.

In the context of this Doctoral Thesis, it was decided that the term “Methodology” is

defined –as follows, “Methodology is a system of methods and principles which are used in

a particular area” [51] and “Methodology is a study of methods, not the method itself” [52].

The term “Method” is defined as “Regular and systematic way to achieve a goal” [50].

2.3. Topicality Index

Topicality Index (TI) is an indicator, which defines to what extent organizations and

teams are interested in a particular method, practice or problem. Definition of TI is based on

the analysis of conference materials and is expressed with the equation:

IOAm =
100 ∙ 𝐴m

𝐴y
, (1)

where IOAm – TI of the method;

14

Am – number of articles where the method is mentioned;

Ay – total number of articles in a year.

In accordance with the terminology map, the methods are defined as “Scrum”,

“Extreme Programming”, “Lean”, “Dynamic System Development”, “Crystal”, “Feature

Driven Development” and “Agile Model Driven Development”.

The TI method values are determined from 2008 up to 2012 and are based on the

analysis of those conference materials. Conferences are organized by “Agile Alliance”,

which is a non-profit organization and one of the main players in the agile software

development field. Conferences organized by “Agile Alliance” fully reflect the tendencies

in the field.

Determination of TI values consists of five steps. The first step is to create an agile

method list, the second step is to crosscheck each element on the list against the term map

(Figure 2.1.). The third stage is to create a software tool and database for data analysis. The

fourth step is to gather and save the conference data. The stored information contains the

name of the article, description, year, article category or area and URL address (Uniform

Resource Locator). Identification of the keywords is a manual process, keywords are

identified by the context of the article and not the appearance of a particular keyword. The

fifth and final stage is grouping, sorting and merging of the gathered data. At the end of this

process, the agile method TI values are defined (Table 2.1).

Table 2.1.

TI of agile methods

Method 2008 2009 2010 2011 2012

Scrum 18.75 16.78 15.00 13.51 16.82

Extreme programming 8.16 5.77 3.26 1.93 1.66

Lean 7.91 5.77 7.39 8.69 11.14

Dynamic System Development Method 0.51 0.70 0.00 0.00 0.00

Crystal 1.02 0.35 0.00 0.00 0.00

Feature Driven Development 0.00 0.52 0.22 0.00 0.24

Agile Model Driven Development 0.26 0.00 0.43 0.00 0.00

“Scrum” is the method with the highest TI, followed by the “Lean” approach. Similar

research results have been shown by “VersionOne”. Research results show that in 2011

“Scrum” was the most popular method (Figure 2.2.) and it was used by 52% of participants,

whilst 14% of participants used “Scrum” hybrid methods [115].

The “Scrum” method displays the highest TI during the entire researched period from

2008 to 2012. The TI of the “Lean” approach increases every year, whilst the TI of the

“Extreme Programming” decreases every year. The TI of other methods is considerably

15

lower and it would not be recommended to use them as a basis for transformation purposes

in agile software development. Selecting an appropriate agile method is very important

during the transformation process, but it is not the only important decision an organization

and its team has to make. It is important to select appropriate agile practices, which in

combination with the selected method could help achieve the desired results. Selection of an

agile practice depends on the organization and the team. In most cases it is the responsibility

of the team and it is influenced by different factors, for example, particular project, particular

stakeholder (client) or some other factor.

Figure 2.2. Usage of agile methods.

To determine TI values of agile practices information from previous steps is used.

Determination of the practice TI value consists of several steps. The first step is to create a

list of agile practices. The initial practice list consisted of 176 practices and was acquired

based on the analysis of 22 sources. The second step is to remove duplicate practices from

the list. As a result of these steps and merging the lists, only 111 practices were left. The

third step is to check the list against keywords saved in the database. After cross checking

the list, there are only 70 agile practices left in the final list. This Doctoral Thesis contains

information about only 35 agile practices (Table 2.2.) which have the highest TI values in

the research period.

52%

14%

9%

8%

3%

3%
2%

2%
2% 2% 1% 1%

1%

Scrum

Scrum/XP Hybrid

Custom Hybrid

Unknown

Kanban

Scrumban

Feature-Driven Development

Extreme Programming XP

Lean

Other

16

Table 2.2.

TI of agile practices

Practice 2008 2009 2010 2011 2012

Test Driven Development 12.88 10.84 3.04 6.56 5.69

Retrospective 11.48 15.73 3.91 2.70 4.74

Review 8.55 8.22 0.87 1.74 2.61

INVEST 8.42 7.34 0.87 1.16 5.69

Code Refactoring 7.14 5.59 1.96 2.90 3.79

User stories 6.76 6.12 3.48 4.44 6.64

Continuous deployment 6.63 8.04 1.30 1.54 1.42

Backlog usage 6.38 7.34 4.13 1.93 6.64

Pair programming 6.12 5.77 2.61 3.47 3.08

Measurements 5.36 6.47 3.48 1.54 3.32

Automated testing 4.08 1.31 0.43 1.54 0.00

Automated unit testing 3.95 2.45 1.30 1.16 1.90

Continuous integration 3.83 6.99 0.87 1.93 1.42

Acceptance testing 3.57 2.27 1.30 2.32 0.95

Release Planning 3.57 2.27 0.00 0.39 0.95

Iteration Planning 3.32 2.80 1.30 0.00 0.47

Estimation 2.81 1.40 1.74 0.77 2.37

Daily Stand up meeting 2.81 1.40 1.30 0.39 0.47

Behavior Driven Development 2.81 3.50 1.74 1.35 1.42

Planning game 2.30 1.57 0.65 0.00 0.95

Working software 1.79 2.10 1.30 0.77 1.42

Source Control 1.53 1.40 0.00 0.77 0.47

Active Stakeholder Participation 1.28 2.80 0.43 0.39 1.90

Definition of Done 1.02 0.52 0.22 0.19 2.13

Emergent Design 1.02 1.57 0.00 0.19 1.66

Exploratory testing 1.02 0.70 0.43 0.77 0.47

Facilitation 0.89 2.10 0.22 0.39 1.18

Cross-functional team 0.26 1.40 0.00 0.77 3.32

Usability testing 0.38 1.05 1.30 0.39 0.00

Code review 0.26 1.05 0.43 0.00 0.47

Story mapping 0.26 0.00 0.43 0.39 0.95

Sustainable pace 0.26 0.70 0.43 0.00 0.47

Kanban board 0.26 0.70 0.43 0.00 0.95

Acceptance Test Driven Development 0.38 0.52 0.00 1.16 1.66

Automated build 0.38 0.87 0.43 0.00 1.42

Determination of keyword TI values is a good way to find information about trends of

other organizations and interests of their teams. Keywords are the terms which identify a

direction of interest, for example, “Learning” or “Coaching”.

Preparation of keyword data consisted of three steps. The first step is to manually

identify keywords in the conference materials. Manual identification of keywords is based

on the article's context, not just the instance of a particular keyword. Such an approach

improves the quality of data. During research and analysis, 1,257 keywords were identified.

Some keywords are synonyms and are merged during the next step. The third step is

grouping of keywords by year. The final list consists of 37 keywords (Table 2.3.) with the

highest TI values.

17

Table 2.3.

Keywords with highest TI

Keyword 2008 2009 2010 2011 2012

Agile adoption 16.58 21.33 13.48 20.08 23.70

Experience report 16.33 11.19 2.61 9.65 10.90

Agile team 16.07 6.29 13.91 11.58 18.01

Practices 14.80 14.69 31.74 20.08 21.33

Testing 14.80 14.34 9.13 7.34 9.00

Leadership 14.54 13.99 12.61 6.56 8.53

Organizational culture 14.29 13.64 8.26 10.04 13.74

Tools 11.99 11.54 9.57 15.83 8.53

Business value 10.97 8.74 3.04 3.47 9.95

Customer 10.46 6.64 2.61 6.95 11.85

Distributed agile 10.20 8.04 7.83 1.93 3.79

Development 9.69 11.54 9.13 6.18 8.53

Learning 8.93 7.69 3.48 12.74 6.16

Large scale agile 7.40 6.64 10.00 5.79 8.53

Transition 7.40 6.29 15.22 15.44 16.59

Quality 7.40 4.55 2.61 7.34 7.58

Collaboration 6.89 8.39 7.83 17.37 20.85

Communication 6.89 5.59 5.22 5.41 5.21

Organization 6.63 5.94 11.74 4.25 1.42

Coaching 4.08 11.54 5.22 10.04 12.32

Enterprise 3.57 6.99 16.96 9.27 12.32

User experience 5.10 6.99 6.96 5.41 8.06

Environment 4.85 6.64 7.83 5.79 7.58

Planning 3.06 6.29 3.04 3.47 4.27

Product management 0.77 5.94 6.09 0.39 0.47

Requirements 1.79 4.90 10.00 3.86 4.27

Teambuilding 1.02 2.45 6.96 1.93 2.84

Project management 2.81 2.45 6.96 6.56 0.95

Problems 4.08 4.20 6.52 5.79 5.69

Research 2.55 1.75 5.65 5.79 4.74

Hands on labs 0.26 2.10 3.04 8.49 6.64

Business 0.51 1.05 1.30 7.34 1.42

Mentoring 0.77 2.10 0.43 6.18 7.58

Innovation 1.53 4.55 2.17 5.79 5.21

Principles 0.00 0.70 2.17 1.93 7.11

Scaling agile 2.30 5.59 4.35 3.47 6.64

Not all organizations have the ability to hire agile method coaches and experts, as they

are rather expensive, so there is a need for an alternative solution. It is proposed in this

Doctoral Thesis to develop a new method for determination of organization’s agility level,

so it could be used during organization’s transformation process and after it. The method

should help determine problematic areas while transforming to the agile method, without

hiring expensive experts each time.

18

3. Agile Methods and Practices

Software development companies usually use some of the agile methods as a basis for

agile software development. Information about each researched agile method included in

this Doctoral Thesis consists of basic information, information about process, main

components and essential features. Emphasis is made on using the “Scrum” method, as it

has demonstrated the highest TI value during the research period (Table 2.1).

Various organizations, projects and teams in addition to a particular method should

use various agile practices, which help to finish development of a project successfully.

This Doctoral Thesis contains a short description, the English name, known

synonyms, positive and negative features of each practice described in Table 2.2. Table 2.2.

lists practices with the highest TI value in the research period. Detailed information about

agile practices can be found in Appendix 3 of this Doctoral Thesis.

When an organization has determined its agility level and identified problematic areas,

it can use information about these practices to create an appropriate improvement plan.

4. Organizational Agility

Organizational agility is the ability of a software development company to transform

from traditional development models to the agile development model; to successfully

develop various software development projects using agile methods and to be able to quickly

react to issues and changes in their environment.

4.1. Organizational Agility Model (OAM)

Organizations that wish to use agile software development should consider their agility

level determination. Determination of their agility level helps organizations to evaluate how

well they would deal with agile software development and at what level of suitability they

are. This will help organizations determine what extra knowledge is required and what

actions should be taken to adapt to agile software development more successfully.

Organizations are complex and sophisticated entities, and for this reason it is difficult to

evaluate them directly. It is proposed that organizations are evaluated from different domain

perspectives. The term “domain” in the context of this Doctoral Thesis describes a particular

area of the organization. For example, “Development domain” describes, analyses and

evaluates an area of the organization that is connected with the development of software.

The Organizational Agility Model (OAM) (Figure 4.1.) consists of six domains.

19

Top level domain

Subdomain – describes top
level domain in more details

Arrow direction indicates
relationship
 child - parent

Organization

Process

Development Quality

Value

Organization
agility

Project

Figure 4.1. Organizational Agility Model (OAM).

The model developed in this Doctoral Thesis is based on the author's experience and

has been considerably updated with information gathered from experts during determination

of AII (Agility Impact Index) values. Research of literature has shown that studies from

“Scrum.org” have a similar vision of top level domain structure [121].

“Organization domain” analyses and evaluates organizational areas, which are

connected to overall organization attributes, for example, “Organization size” or

“Organization experience with agile methods”. “Development domain” evaluates and

analyses the process of software development. The “Quality domain”, as the name suggests,

is concerned with ensuring the quality of the delivered software. The “Process domain”

evaluates how well “Scrum” processes are working. The “Value domain” analyses and

evaluates delivery of business value to customers. The “Project domain” deals with the

analysis and evaluation of projects developed by the organization. The summary contains

only some information about the “Organization domain”. Detailed information about other

domains is included in Chapter 3.1. of this Doctoral Thesis.

Organization domain describes an area of the organization where organization level

subdomains and attributes are constantly evaluated and improved. (Figure 4.2.).

Organization

Process change
managment

Process change
managment

Availability

Responsible

Size

Experience

Communication

Communication
evaluation
attributes

Communication
frequency
attributes

Communication
type

Evaluation

Learning

Process change
implementation

Process of building
teams

Process of building
teams

Time for learning

Financing per
person

Financing for
certification

GoalsGoals

20

Figure 4.2. Organization domain.

Organization domain consists of eight subdomains and can be extended:

 process change management is required in order to evaluate how processes are used

and implemented in an organization. Process change management requires

sensibility and responsibility to be undertaken;

 communication plays an important role in agile methods. It is important to evaluate

internal and external communication, for example, communication with distributed

teams differs from communication between team members located in one room;

 the learning subdomain characterizes organization’s ability to learn and is tightly

connected with the knowledge subdomain;

 organizational size has to be taken into account, as different agile practices should

be used in certain cases;

 organization’s experience plays an important role in an organization’s agility level,

as some organizations have worked with agile methods for some time and have

already found practices that work. Sometimes, these established practices may not

work well under particular circumstances. Some organizations may have just started

working with agile methods and have not tried and tested other methods and

practices;

 the team building subdomain describes and evaluates how teams are built.

Each domain is described by subdomains and each subdomain is described by their

attributes, for example, “Size”. Organizational size attributes vary according to their physical

locations. Size information described in this Doctoral Thesis is valid within the Europe

Union (Table 4.1.) [95].

Table 4.1.

The number of people in an organization

Name Value 1 Value 2

Big x >250 >50 million EUR

Average 50 < x < 250 <=50 million EUR

Small 11 < x < 50 <=10 million EUR

Micro x < 10 <=2 million EUR

The developed attributes and their values take up approximately 40 pages of this

Doctoral Thesis, for this reason the summary reports only on “Organizational size”

attributes. Other attributes and their values can be found in Chapter 3.1. of this Doctoral

Thesis, where all domains, subdomains and attributes are described in more detail.

21

Organizations can modify the OAM model to suite their individual needs. In case of

changes to the OAM model, organizations have to reevaluate AII values of the changed items

(reevaluation is done by experts). The Doctoral Thesis contains information on how to create

new attribute values in order to extend the OAM model.

Various practices influence different parts of the OAM model. Usage of particular

practice can increase or decrease agility level for a particular OAM element. Practice

compliance to a particular domain is created based on practice description analysis, author’s

experience and expert opinion. In order to shorten domain names in Table 4.2. The following

abbreviations are used: Organization Domain (OD), Development Domain (PD), Quality

Domain (KD), Process Domain (PRD), Value Domain (VD) and Project Domain (PRJD).

Table 4.2.

Agile practices and their influence domains

Practice OD PD KD PRD VD PRJD

Test Driven Development x x x

Retrospective x x x

Review x x

INVEST x x

Code Refactoring x x

User Stories x x

Continuous Deployment x x x

Backlog Usage x x

Pair Programming x x

Measurements x x x x x x

Automated Testing x

Automated Unit Testing x

Continuous Integration x x

Acceptance Testing x

Release Planning x x

Iteration Planning x x

Estimation x x x

Daily Stand Up Meeting x x

Behavior Driven Development x x

Planning Game x x

Working Software x x x

Source Control x x x x

Active Stakeholder Participation x x x x x

Definition of Done x

Emergent Design x x

Exploratory Testing x

Facilitation x

Cross-Functional Team x

Usability Testing x

Code Review x x

Story Mapping x x

Sustainable Pace x x x

Kanban Board x x x

Acceptance Test Driven Development x

Automated Build x x x

22

4.2. Agility Impact Index (AII)

Determination of the AII value is an important part of this Doctoral Thesis, as AII

values for various domains, subdomains and attributes are not the same. The AII value

determines how a particular OAM element influences organizational agility level. The scale

from 0 to 10 is used and it is a modified Likert scale [122], where a value of 5 means that an

element is not improving or worsening the agility level. Values above 5 improve agility level

and values below 5 worsen the agility level. The modified scale with 0 is used, because of

“Primary Intelligence” research [123] where it has been determined that 0 allows

identification of the direction of the scale more quickly.

The expert questionnaire DELPHI method [99][100] is used to identify weight value

of domains, subdomains and attributes. The formation of an expert group is very challenging,

as it is necessary to gather a group of 10-20 experts [99] and they need to have the same

level of expertise. Creation of an expert group is complicated by the fact that all experts

should be available during the research. Taking into account that agile experts are busy, the

questionnaire process was organized on the Internet.

Expert group is defined with the equation:

EG = {𝑆, 𝐾, 𝑀}, (2)

where EG – group of experts;

S – experts who worked or work as a “Scrum Master”;

K – experts who are part of an agile team;

M – experts with extensive knowledge of agile software development. These experts use

agile software development on a daily basis and have participated in transformations to agile

software development in several cases.

To find experts, the author used the network of contacts from his professional life

and their contact networks. All involved experts have experience from 5 to 15 years.

Experts evaluated 141 domains/subdomains and 578 attributes. A full list of the

evaluated items can be found in Appendix 5 of this Doctoral Thesis. Results of each iteration

are processed and experts can see them on a survey website. The survey is repeated until

expert coherence is reached. Expert coherence is reached, when the calculated Coherence

Coefficient (CC) for each element is smaller than 1 and this was reached after 2 iterations.

Expert coherence coefficient is calculated with the equation:

23

CC = max {𝐸𝑖} − avg{𝐸𝑖}, (14)

where CC – Coherence Coefficient;

Ei – Expert evaluation value for element i.

The summary of this Doctoral Thesis includes only a small part of the defined AII values

(Table 4.3.). Full results can be found in Appendix 5 to this Doctoral Thesis.

Table 4.3.

Expert determined AII values of the DSA elements (fragment)

Code Name AII

1 Organization domain 7

...

2 Productivity domain 8

2.1 Communication 9

 2.1.1 Communication type 8

 2.1.1.1 Face-to-face 8

 2.1.1.2 By phone 6

 2.1.1.3 Written 5

 2.1.1.4 Skype or some alternative tool 6

...

3 Quality domain 8

...

4 Process domain 8

...

5 Value domain 7

...

6 Project domain 7

...

5. Determination of Agility Level

A systematic approach is required for agility level determination. The aims of this

Doctoral Thesis will be reached by using an iterative approach for agility level

determination.

5.1. The ODA Method

The ODA method is intended for regular evaluation of organization, project or team’s

agility level. In order to achieve the desired agility level, it is necessary to provide regular

usage of the method. The method gives the opportunity to identify problematic areas and

improve the agility level in those areas. The method can be used by organizations which plan

to use agile software development. The ODA method is intended to be used in combination

with the “Scrum” method, but can also be adapted to work with other agile methods.

24

The process of the ODA method consists of several sub-processes. The most essential

are “OAM element evaluation” and “Question generation” (Figure 5.1.).

Create or modify
domain and
subdomain
information

Evaluate domains
and subdomains

Create SII

Is it required to renew
domain and subdomain

information ?

Begin

Yes

No
Generate
questions

Send interviewing
invitation to
employees

Summarization of
information

Determine
organization
agility level

Generate reports

Expected agility
level is reached

YesNo
Create

improvement
plan

Implement
improvement plan

End

Define expected
agility level

Figure 5.1. Process of the ODA method.

Method consists of 11 sub-processes (Table 5.1.)

Table 5.1.

Processes of the ODA method

Process Description

Create or modify domain and

subdomain information

Domains, subdomains and attributes are created or modified. Initial

OAM structure is already provided

Evaluate domains and subdomains OAM elements are evaluated or reevaluated by experts. DELPHI

method is used to get evaluation values
Create AII As a result of expert survey AII values of OAM elements are created

Define expected agility level Organization or team defines expected agility level

Question generation AII value is used to generate question set for each employee

Send interviewing invitation to

employees

Each participant of evaluation receives the link to the survey with the

generated questions

Summarization of information Survey results are summarized

Determine organizational agility

level

Summarized information and defined AII values are used to determine

agility level of the organization, project or team

Generate reports Based on the defined agility level and desired agility level reports are

created, so users can analyze the situation and its dynamics

Create improvement plan In case if the desired agility level is not achieved, organization or team

creates improvement plan to improve agility level

Implement improvement plan Based on improvement plan some actions are made to increase agility

level

The agility improvement process is repeated frequently, with frequency of repetitions

dependent on an organization and its team. The number of questions in each iteration is

25

determined by an organization. It is important to take into consideration that a large number

of questions is usually met with reluctance and the quality of answers decreases. The

recommended number of questions is 10 and questionnaires should require 5 to 10 minutes

to fill out [102].

5.2. Question Set Generation and Visualization of the Gathered

Information

The question generation component is an important part of the ODA method. This

component is needed to generate a small question set for each employee during each

questioning iteration. The question generator takes this into account and generates questions

based on AII value (Figure 5.2.).

A question set generator generates a subset of questions for each employee from the

full question set, which is defined by the equation:

𝑄 = {𝑞1, 𝑞2, 𝑞3 … 𝑞𝑚}, (3)

where Q – set of all questions;

q1...m – questions, where m is the total number of questions.

Employee question set is a subset of all questions and is defined by the equation:

𝐴1…𝑛 ∈ 𝑄, (4)

where Q – set of all questions;

A1...n – subset of employee questions, where n is the total number of employees, who

participate in the questionnaire.

A question set of each employee consists of three types of questions and is defined

by the equation:

𝐴1…𝑛 = {𝑃, 𝑁𝑛, 𝑂𝑛}, (5)

where A1...n – subset of employee questions, where n is the total number of employees, who

participate in the questionnaire;

P – set of priority questions – initiator of the questioning marks some priority questions,

answer to which is required. Priority questions are added to every employee question set and

form 20% of all questions;

Nn – unanswered questions are sorted by AII, where n is a particular employee. Unanswered

questions with high AII value are added to the set, after priority questions. These questions

form 60% of the question set;

26

On – previously answered questions are ordered by AII, where n is a particular employee.

There are often important questions that require a compulsory answer. These questions form

the remaining 20 % of the question set.

Get questions for set
k[i]

Q

Add question to set
k[i]

Is set k[i] full?
Does more

questions exist in
set k[i]

No

Yes

No

End

Are there more
employees?

Yes

No
Yes

Begin Get employee i = i + 1

Employees

P N Ok [], ,P N Ok [], ,

i = 0

Figure 5.2. Question set generation process.

After questions are generated, they are sent to an appropriate employee. After

interviewing results are ready, the DSA value tree is constructed.

The DSA value tree is a convenient way to represent the gathered information and

identify problematic areas. Expert evaluated AII values are viewed alongside the processed

employee evaluation values (Figure 5.3.).

Organization
agility

Domain 1Domain ...

S. Domain 1 S. Domain 2

Attribute 1Attribute 2Attribute ...

S. Domain ...

978

6 97

98

796

7.3 89

8.17

8 8.56.6

7 8 8

7.5 8.5

27

Figure 5.3. DSA Value Tree.

Each element of the DSA value tree has two values at each node. The expert

evaluated AII value is on the left side of the node and the employee evaluated value (EEV)

is on the right side.

The EEV value of each DSA value tree node is calculated by the equation:

𝑥 =
∑ 𝑥𝑖

𝑛
𝑖=1

𝑛
,

(6)

where 𝑥 – attribute EEV value;

xi – attribute evaluation is given by employee i;

n – number of employees who have evaluated a particular attribute.

The value of each EEV element is calculated by the equation:

𝑦 =
∑ 𝑤𝑖𝑥𝑖

𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

,
(7)

where 𝑦 – EEV value of a domain or subdomain;

xi – EEV value of an attribute or subdomain;

wi – AII value of an attribute or subdomain (weight).

Only on rear occasions there is just one project and team. If an organization is working

on several projects with several teams, it is necessary to filter the DSA value tree at different

levels. It is possible to determine agility at different levels: organization, project and team

levels (Figure 5.4.).

Organization
agility

Team 3
agility

Team 4
agility

Project 1
agility

Project 2
agility

Project n
agility

Team 1
agility

Team 2
agility

Team n
agility

Team 1
agility

Team 2
agility

Team n
agility

8 6 7 9 9 7 7 9 9 8

8 8.46 7.3 8 8

6.7 8 8.2

8.58887

Figure 5.4. Agility grouping levels.

28

In case of several projects and teams there are some more steps required for agility

evaluation. One of the steps is the identification of the Team Impact Index (TII) and the

second step is a Project Impact Index (PII) determination.

Team Impact Index (TII) is a way to identify how influential a particular team is in

the context of a particular project. Determination of the TII value is the responsibility of

project management and the teams.

Project Impact Index (PII) is a way to identify how influential a particular project

is in the context of an organization. For example, if most people in an organization work on

project A, and project A brings in most of the revenue. At the same time, project B may be

less influential, it can be a smaller internal project with only a small team. Thus, the influence

of both projects on an organization’s agility will differ. Determination of PII value is the

responsibility of the top management.

 PII and TII values can be reevaluated if such a situation occurs.

5.3. Using the FOIL (First-Order Inductive Learner) Algorithm

FOIL is a rule-based learning algorithm which can be used to solve classification tasks

[89]. The FOIL algorithm uses a learning data set to generate rules. A learning data set

contains verified information (expert evaluation) which identifies mapping from domain

values to agility classes. A larger learning data set allows for the generation of more precise

rules. The learning data set included in this Doctoral Thesis is test data and is included only

to demonstrate how the algorithm works. Creation of real learning data is a time-consuming

process and it is not planned to create it in the context of this Doctoral Thesis. In order to

create high quality data, it is recommended that a list of 20 enterprises is prepared to

participate in the evaluation process by the expert network, which should consist of 10 to 20

experts. The test learning data set contains information about three agility classes C1=Not

agile, C2=Partly agile, C3=Agile and three classes are used for simplification purposes. The

FOIL learning data set contains information about 24 cases, where C1 class has 15 samples,

C2 class has 5 samples and C3 class has 4 samples. Using the FOIL algorithm on the learning

data set produced 9 rules (Table 5.2.).

Table 5.2.

Rules generated by FOIL algorithm

C1  C1 ← D4(X, 1) [1]

 C1 ← D1(X,1) ˄ D4(X,2) ˄ D3(X, 2) ˄ D2(X, 1) [2]

 C1 ← D1(X, 1) ˄ D4(X,2) ˄ D3(X,1) ˄ D2(X, 2) [3]

 C1 ← D1(X,2) ˄ D3(X,2) ˄ D2(X,1) [4]

29

C2  C2 ← D4(X, 2) ˄ D3(X, 1) ˄ D2(X, 1) [5]

 C2 ← D4(X, 2) ˄ D3(X,1) ˄ D2(X, 2) ˄ D1(X, 3) [6]

 C2 ← D3(X, 1) ˄ D4(X, 2) ˄ D1(X, 2) [7]

C3  C3 ← D4(X, 2) ˄ D3(X, 2) ˄ D1(X, 3) [8]

 C3 ← D4(X, 2) ˄ D3(X, 2) ˄ D2(X, 2) [9]

5.4. Agility Determination Tool

Determination of an agility level is iterative and there is a necessity for a tool, which

can be used by experts for AII value determination and by employees for EEV value

determination. The tool should provide a convenient way to represent the gathered

information.

There are five user stories, which describe how the tool will be used: “Answering of

questions” (Figure 5.5.), “Report generation”, “Configuration of tool”, “AII value

determination”, and “Creation of improvement plan”.

Answers to question

includes

Get saved questionary

Employee

Manager

ScrumMaster

Product Owner

Team

Generates questions

Interval service

Save questionary

includes

Figure 5.5. Question answering user story.

Question generation can be initiated by some employee or automatically by “Interval

service”. “Interval service” can be configured to different intervals and it is an organization

or team’s decision, how often they want to execute it. This and other user stories help create

an appropriate architecture for the tool.

Tool consists of seven modules, where each module is responsible for a specific

functionality (Table 5.3.).

30

Data service Database

Report module

Questioning module

Organization module Team module

Administration module

Domain module Attribute module

Domain evaluation module Attribute evaluation module Practice evaluation module

Evaluation module

Interviewing timer Report generator Question generator

Interval service

Retrospective knowledge
module

Practice knowledge module Process knowledge module

Knowledge module

Notification service

Figure. 5.6. Architecture of the ODA tool.

Table 5.3.

Description of architecture modules

Name Description

Questioning module Module provides survey process. In the survey module employees see their

questions and mark their answers

Report module Provides report generation initialization and report viewing

Knowledge module Gathers and stores knowledge so it could be used later

Interval service Wraps up processes which can be executed in the determined intervals:

questioning timer, report generator, notification service and question

generation service

Evaluation module Provides experts with ability to evaluate domain, subdomain and attribute AII

values

Administration module Gives the opportunity to administrate the tool

Data service Tools data layer, provides data storage channel

A tool created for method verification was developed using Microsoft ASP.NET MVC

5, and hosted on Microsoft developed platform Microsoft Azure. Database is based on the

Microsoft SQL Server engine. Program code is developed using C# development language

and uses HTML (Hypertext Markup Language), CSS (Cascading Style Sheets), JavaScript,

jQuery and jQuery UI library to provide the required functionality.

The tool provides the opportunity to identify problematic domains of an organization in

a convenient way (Figure 5.7.).

31

Figure 5.7. Graphical representation of the results in top level domain context.

Experts can connect to the tool and perform evaluation of OAM elements. Employees

in their module can answer the generated questions. Employee with appropriate access rights

can create and view generated reports, for example, top level domain report (Figure 5.7.).

6. Verification of the ODA Method

Verification of the method is done by analyzing three organizations, which have

transformed to agile software development.

6.1. Verification Organizations

This chapter contains descriptions of verification organizations. These organizations

have been selected by the author, because the author worked there during transformation

processes (Table 6.4.).

Table 6.4.

Verification organizations

Name Description Reason for transformation

Organization 1 More than 10 years works with one

client. Work with particular client takes

~90 % of company’s resources.

Development is done using “Waterfall”

model.

There are problems with delivering on time and

number of bugs. The client proposes to switch

development to “Scrum”. This offer is accepted

and development continues with “Scrum”

method.

Organization 2 Had not been working with software

development prior to transformation. All

software development had been done by

third parties using “Waterfall” model.

There was bad experience with previous 3rd

party development company. Organization

decides to increase delivery times and quality

of the project by creating internal software

development department. It is decided to use

32

Name Description Reason for transformation

“Scrum” method as this method was

recommended by an external expert.

Organization 3 For more than 20 years develops

software using “Waterfall” model.

Organization wants to add agile software

development competence to its portfolio. Such

opportunity appears when there is project with

short development time and superficial

documentation. It is decided to use “Scrum”

method.

6.2. Verification Results

Agility level of all three organizations is determined by gathering answers to all

questions from the question set Q. In cases where answers are not available for all questions,

agility level is determined using only the available answers. Information about how many

questions have been answered is indicated in the agility level report. The agility level

determination tool prototype developed for this Doctoral Thesis is used to process the

answers to the questions. The summary of this Doctoral Thesis includes information only

about top level domains (Table 6.2.). Full information with all DSA tree elements is available

in Appendix 6 to this Doctoral Thesis.

Table 6.2.

Results of organizational agility levels

 Organization 1 Organization 2 Organization 3

Code Name AII EEV EEV EEV

1 Organization domain 7 3.71 7.40 5.73

2 Development domain 8 3.84 6.69 3.99

3 Quality domain 8 3.67 8.00 5.67

4 Process domain 8 5.28 8.35 7.08

5 Value domain 7 5.58 8.19 6.30

6 Project domain 7 5.60 5.94 6.13

By analyzing information in the six domain context, it can be noticed that Organization

2 has the highest agility level (Table 6.2.) and EEV values are the closest to the expert

defined AII values. By using the developed prototype, it is possible to view data in more

details for each domain and subdomains. Such an approach allows identification of

problematic areas more precisely and facilitates development of an appropriate improvement

plan.

The summary of this Doctoral Thesis contains information only about “Organization

domain” (Figure 6.1.), detailed information is available in Chapter 5 of this Doctoral Thesis.

By viewing the data in Figure 6.1., it is possible to conclude that the agility level of

33

Organization 1 in the organization domain context is lower than the agility level of

Organization 2 and Organization 3.

Figure 6.1. Comparison of verification organizations in organization domain context.

Organization 2 has the highest agility level in the context of organization domain.

Organization 2 is one of the verified organizations where top level management decided that

all software development projects should be developed by using the agile approach. For this

method to work, experts were invited and additional employee training was held.

After viewing DSA data and analyzing it, it is possible to make conclusions and start

creation of an improvement plan. The data indicate which domains and subdomains have to

be offset. This helps organizations and teams to select appropriate practices described in the

chapter of this Doctoral Thesis. As an additional help, information from Table 4.2. can be

used. It contains information about practices and their influence areas on the OAM model.

Organizations and teams can decide which practices from Table 4.2. will be used or tried

during implementation of the next improvement plan.

After viewing and analyzing the research results, the author has determined that further

research is required to make additional changes to the OAM model in order to add a more

detailed breakdown of some elements. From the author’s point of view, such necessity could

0

1

2

3

4

5

6

7

8

9

10

5

2.26
3

2.33

0.08

3.94

2.33

3.707749767

5

6.68

5

6.84

0

7.5

9.33

7.396825397

5

6.26

4

5.43

3.02

6.34
5.67 5.732026144

Organization 1 Organization 2 Organization 3

34

arise after investigating other organizations and their processes, which may not be fully

explained by the existing OAM model.

Key Results and Conclusion

The aim of this Doctoral Thesis was to create a method, the concept of the tool,

architecture for the tool and a tool prototype for determination of organizational agility level.

As additional aims, it was decided to approbate the created tool prototype by evaluating the

organizational agility level in several organizations. The following tasks were completed to

achieve the proposed aim:

 the history of agile methods has been researched. Advantages and risks of agile

software development have been identified. The significant features of agile

methods and practices have been described;

 a terminology map with most often used terms has been created. Definition of

the term TI has been provided and the TI values of agile methods, practices and

keywords have been identified;

 organizational agility level definition has been provided and an OAM model has

been created;

 the term AII has been defined and its value for each OAM element has been

determined;

 the organizational agility level evaluation ODA method has been created and a

question generation algorithm has been developed;

 a conceptual model and architecture of the agility level determination tool has

been created;

 implementation of the proposed architecture has been completed;

 experimental verification of the developed prototype has been performed by

evaluating the agility level of three organizations.

All aims and tasks defined in this Doctoral Thesis have been reached. The following

main theoretical and practical results have been achieved:

 the term TI has been coined, it is used to denote the level of interest shown in a

particular agile method or practice by an organization or team. TI values of agile

methods, practices and keywords have been defined using the research period

from 2008 to 2012;

35

 organizational agility level definition has been developed and agility level of

three verification organizations has been evaluated;

 the OAM model has been created to evaluate organization’s agility level. The

OAM model describes an organization using 6 domains, subdomains and an

attribute system;

 definition of the term AII has been given; it defines how a particular OAM

element influences organizational agility level. AII values are defined for all

OAM elements using an expert network;

 organization agility level determination method ODA has been created based on

the developed OAM model. The process and steps of the ODA method have been

defined and described;

 a question generation algorithm has been created; it provides a small set of

questions for each employee during each evaluation iteration;

 a conceptual model and architecture of the tool have been developed to verify the

ODA method. Agility level determination tool prototype has been created based

on the developed conceptual model and architecture. Verification has been done

by evaluating the agility level of three organizations using the created prototype;

All three hypotheses proposed at the beginning of the Doctoral Thesis have been validated:

 organizations have low awareness of agile methods, and this creates problems in the

implementation of the agile paradigm – the ODA method was used to evaluate three

organizations. Each organization used a different approach to implement agile

software development. Analysis of evaluation showed that the agility level of

organizations, which did not use external experts and did not perform additional

training of employees, was considerably lower;

 by using methods and tools it is possible to evaluate the agility level of an

organization – the created ODA method and developed agility level determination

tool prototype helped determine the agility level of domains of the three verification

organizations;

 knowledge regarding the current agility level of an organization helps create

appropriate improvement plans in order to improve its organizational agility level –

using evaluated domain agility level values, it is possible to create an appropriate

improvement plan, as values indicate which areas are problematic. By using

appropriate practices, the agility level of those areas can be improved.

36

Following conclusions have been made within this research:

 the interest in agile software development demonstrated by software

development companies has increased, as agile methods can help solve some of

their problems. Agile methods are strongly oriented to the satisfying the client’s

requirements as quickly as possible, and provide the possibility to change

requirements late in the project development process;

 agile methods have various advantages over traditional software development

methods, but there are also risks connected to agile software development. Those

risks have to be taken into account by organizations and teams, which have to

consider the usage of appropriate agile practices to decrease the impact of those

risks;

 a wide range of literature is available regarding agile methods and practices, but

it is important to use it correctly, as novice users often interpret information

differently, and this can lead to additional problems;

 most organizations are using or plan to use “Scrum” as their agile software

development method and it is confirmed by the determined TI values and other

sources. Method “Scrum” in combination with agile practices provides a better

chance of achieving successful results. Various organizations and teams can use

different agile practices to achieve the desired result. All agile practices described

in this Doctoral Thesis have their advantages and disadvantages. It is the team’s

responsibility to select the appropriate practice after analysis of all advantages

and disadvantages;

 the determined AII values in combination with OAM model and agility level

determination method ODA provide opportunity to evaluate an organization’s

agility level in the context of the six created domains;

 the DELPHI method and expert network have been used to determined AII

values, but is has to be remembered that experts are not easily available and not

always forthcoming with answers, which complicates AII value determination;

 comprehensive agility level determination requires the usage of FOIL or a similar

algorithm and a learning data set. It has to be taken into account that the gathering

of comprehensive learning data is a complicated and time-consuming process,

and analysis of enterprise data just in Latvia is insufficient. As a matter of fact,

37

the work load is so high that additional research is required to accomplish this,

and this task lies beyond the scope of this Doctoral Thesis;

 the obtained domain agility level information is sufficient to create an

improvement plan and the lack of learning data does not hinder determination of

problematic areas;

 by making some adjustments to the OAM model, it is possible to use the ODA

method with other agile methods.

These research results can be used by organizations, which plan to transform or have

already transformed to use agile software development. The developed method and tool will

help organizations to determine problematic areas and help develop an improvement plan.

The created terminology map in combination with the information about methods and

practices will help beginners to better understand the available literature and master the agile

approach.

Potential directions for further research:

 to analyze more enterprises, which use agile methods, in order to create a more

complete set of learning data to be used by FOIL or similar algorithm;

 to investigate the opportunity to improve the developed prototype in order to use

it as a service for organizational agility level determination;

 by extending the expert network, the OAM model can also be extended within

further research.

Bibliography

[1] Agile Alliance Conference 2008. Agile Alliance. http://agile2008.agilealliance.org/

(retrieved: 17.05.2012).

[2] Agile Alliance Conference 2009. Agile Alliance. http://agile2009.agilealliance.org/

(retrieved: 19.05.2012).

[3] Agile Alliance Conference 2010. Agile Alliance. http://agile2010.agilealliance.org/

(retrieved: 25.05.2012).

[4] Agile Alliance Conference 2011. Agile Alliance. http://agile2011.agilealliance.org/

(retrieved: 30.05.2012).

[5] Agile Alliance Conference 2012. Agile Alliance. http://agile2012.agilealliance.org/

(retrieved: 10.06.2012).

[6] Agile Software Development. Wikipedia, free encyclopedia.

http://en.wikipedia.org/wiki/Agile_software_development (retrieved: 11.06.2012).

[7] Manifesto for Agile Software Development. Agile Alliance.

http://agilemanifesto.org/ (retrieved: 11.06.2012).

[8] D. Moran, Top 10 Reasons to Use Agile Development.

http://www.devx.com/enterprise/Article/44619/0/page/1 (retrieved: 15.06.2012).

http://agile2008.agilealliance.org/
http://agile2009.agilealliance.org/
http://agile2010.agilealliance.org/
http://agile2011.agilealliance.org/
http://agile2012.agilealliance.org/
http://en.wikipedia.org/wiki/Agile_software_development
http://agilemanifesto.org/
http://www.devx.com/enterprise/Article/44619/0/page/1

38

[9] R. Levine and M. McDonough. Why Do Agile Projects Fail?

http://www.brighthub.com/office/project-management/articles/55778.aspx

(retrieved: 20.06.2012).

[10] R. Coffin and D. Lane. A practical Guide to Seven Agile Methodologies, Part 1,

2006. http://www.devx.com/architect/Article/32761 (retrieved: 26.06.2012).

[11] R. Coffin and D. Lane. A practical Guide to Seven Agile Methodologies, Part 2,

2006. http://www.devx.com/architect/Article/32836 (retrieved: 20.06.2012).

[12] L. Williams. A Survey of Agile Development Methodologies, 2007.

http://agile.csc.ncsu.edu/SEMaterials/AgileMethods.pdf (retrieved: 22.06.2012).

[13] Agile Courses. University Of Oxford, 2011.

http://www.softeng.ox.ac.uk/subjects/AGM.html (retrieved: 15.07.2012).

[14] Agile Delivery Methods. Agilier. http://www.agilier.com/agile-business-change-

techniques/agile-delivery-methods.html (retrieved: 11.08.2012).

[15] Agile Software Development. Enotes.com, 2011.

http://www.enotes.com/topic/Agile_software_development#Agile_methods

(retrieved: 11.06.2013).

[16] Agile Software Development Site. Seapine Software. http://www.devagile.com/

(retrieved: 11.06.2013).

[17] Extreme Programming. Wikipedia The Free Encyclopedia.

http://en.wikipedia.org/wiki/Extreme_Programming (retrieved: 11.06.2013).

[18] G. Lenz and T. Moeller, NET-A Complete Development Cycle. Addison-Wesley

Professional, ISBN-10: 0321168828, ISBN-13: 978-0321168825, 2003.

[19] K. Beck and C. Andres, Extreme Programming Explained: Embrace Change (2nd

Edition), ISBN-10: 0321278658, ISBN-13: 978-0321278654, 2004.

[20] S. Warden, Extreme Programming Pocket Guide (1st Edition). O'Reilly Media,

ISBN-10: 0596004850, ISBN-13: 978-0596004859, 2003.

[21] M. Cohn, Succeeding with Agile: Software Development Using Scrum. Addison-

Wesley Professional, ISBN-10: 0-321-57936-4, ISBN-13: 978-0-321-57936-2,

2009.

[22] Scrum (development). Wikipedia The Free encyclopedia.

http://en.wikipedia.org/wiki/Scrum_(development) (retrieved: 15.07.2013).

[23] K. Schwaber, Agile Project Management with Scrum. Microsoft Press, ISBN-10:

073561993X, ISBN-13: 978-0735619937, 2004.

[24] Feature Driven Development. Wikipedia The Free Encyclopedia.

http://en.wikipedia.org/wiki/Feature_Driven_Development (retrieved: 14.06.2013).

[25] S. R. Palmer and J. M. Felsing, A Practical Guide to Feature-Driven Development.

Prentice Hall, ISBN: 0130676152 / 0-13-067615-2, 2002.

[26] FDD process model. Feature Driven Development.

http://www.featuredrivendevelopment.com/files/FDD%20Process%20Model%20D

iagram.pdf (retrieved: 11.06.2012).

[27] A. Carmichael and D. Haywood, Better Software Faster. Prentice Hall, ISBN-10:

0130087521, ISBN-13: 978-0130087522, 2002.

[28] Test-driven development. Wikipedia The Free Encyclopedia.

http://en.wikipedia.org/wiki/Test-driven_development (retrieved: 19.03.2016).

[29] K. Beck, Test Driven Development: By Example. Addison-Wesley Longman,

ISBN-10: 0321146530, ISBN-13: 978-0321146533, 2002.

[30] J. W. Newkirk and A. A. Vorontsov, Test-Driven Development in Microsoft NET.

Microsoft Press, ISBN-10: 0735619484, ISBN-13: 978-0735619487, 2004.

http://www.brighthub.com/office/project-management/articles/55778.aspx
http://www.devx.com/architect/Article/32761
http://www.devx.com/architect/Article/32836
http://agile.csc.ncsu.edu/SEMaterials/AgileMethods.pdf
http://www.softeng.ox.ac.uk/subjects/AGM.html
http://www.agilier.com/agile-business-change-techniques/agile-delivery-methods.html
http://www.agilier.com/agile-business-change-techniques/agile-delivery-methods.html
http://www.enotes.com/topic/Agile_software_development#Agile_methods
http://www.devagile.com/
http://en.wikipedia.org/wiki/Extreme_Programming
http://en.wikipedia.org/wiki/Scrum_(development)
http://en.wikipedia.org/wiki/Feature_Driven_Development
http://www.featuredrivendevelopment.com/files/FDD%20Process%20Model%20Diagram.pdf
http://www.featuredrivendevelopment.com/files/FDD%20Process%20Model%20Diagram.pdf
http://en.wikipedia.org/wiki/Test-driven_development

39

[31] E. Hakan and M.Torchiano, On the Effectiveness of Test-first Approach to

Programming. Proceedings of the IEEE Transactions on Software Engineering,

31(1), January 2005.

[32] N. Llopis, Stepping Through the Looking Glass: Test-Driven Game Development

(Part 1). Games from Within, 2007.

http://www.gamesfromwithin.com/articles/0502/000073.html

(retrieved: 15.06.2012).

[33] M. M. Matthias and F. Padberg, About the Return on Investment of Test-Driven

Development. Universität Karlsruhe, Germany. pp. 6, 2007.

http://www.ipd.uka.de/mitarbeiter/muellerm/publications/edser03.pdf

(retrieved: 05.06.2012).

[34] M. Fowler, K. Beck, J. Brant, et al., Refactoring: Improving the Design of Existing

Code. Addison-Wesley Professional, ISBN-10: 0201485672, ISBN-13: 978-

0201485677, 1999.

[35] Dependency inversion principle. Wikipedia The Free Encyclopedia.

http://en.wikipedia.org/wiki/Dependency_inversion_principle

(retrieved: 22.06.2012).

[36] Unified Process. Wikipedia The Free Encyclopedia.

http://en.wikipedia.org/wiki/Unified_Process (retrieved: 11.01.2016).

[37] S. Kendall, The Unified Process Explained. Addison-Wesley Professional, ISBN-

13: 978-0201742046, 2001.

[38] S. Sousa, The Advantages and Disadvantages / Best Practices of RUP Software

Development. http://www.my-project-management-expert.com/the-advantages-

and-disadvantages-of-rup-software-development.html (retrieved: 04.02.2016).

[39] M. Broomé, Rational Unified Process - an overview.

http://www.it.uu.se/edu/course/homepage/acsd/vt09/RUP-slides.pdf

(retrieved: 05.09.2013).

[40] Microsoft Solutions Framework. Wikipedia The Free Encyclopedia.

http://en.wikipedia.org/wiki/Microsoft_Solutions_Framework

(retrieved: 17.10.2013).

[41] M. Keeton, Microsoft Solutions Framework (MSF): A Pocket Guide. Van Haren

Publishing, ISBN-10: 9077212167, ISBN-13: 978-9077212165, 2004.

[42] M. S. V. Turner, Microsoft Solutions Framework Essentials: Building Successful

Technology Solutions. Microsoft Press; 1 edition, ISBN-10: 0735623538, ISBN-

13: 978-0735623538, 2006.

[43] S. Anderson, Collins English Dictionary – Complete and Unabridged.

HarperCollins Publishers, New Yourk, NY, ISBN-10: 0007191537, ISBN-13: 978-

0007191536, 2003.

[44] Kanban. Wikipedia The Free Encyclopedia. http://en.wikipedia.org/wiki/Kanban

(retrieved: 17.10.2013).

[45] Lean Software Development. Wikipedia The Free Encyclopedia.

http://en.wikipedia.org/wiki/Lean_software_development (retrieved: 17.10.2013).

[46] Specification by Example. Wikipedia The Free Encyclopedia.

http://en.wikipedia.org/wiki/Specification_by_example (retrieved: 17.10.2013).

[47] Kanban (development). Wikipedia The Free Encyclopedia.

http://en.wikipedia.org/wiki/Kanban_(development) (retrieved: 17.10.2013).

[48] Guide to Agile Practices. Agile Alliance. http://guide.agilealliance.org/

(retrieved: 19.03.2016).

http://www.gamesfromwithin.com/articles/0502/000073.html
http://www.ipd.uka.de/mitarbeiter/muellerm/publications/edser03.pdf
http://en.wikipedia.org/wiki/Dependency_inversion_principle
http://en.wikipedia.org/wiki/Unified_Process
http://www.my-project-management-expert.com/the-advantages-and-disadvantages-of-rup-software-development.html
http://www.my-project-management-expert.com/the-advantages-and-disadvantages-of-rup-software-development.html
http://www.it.uu.se/edu/course/homepage/acsd/vt09/RUP-slides.pdf
http://en.wikipedia.org/wiki/Microsoft_Solutions_Framework
http://en.wikipedia.org/wiki/Kanban
http://en.wikipedia.org/wiki/Lean_software_development
http://en.wikipedia.org/wiki/Specification_by_example
http://en.wikipedia.org/wiki/Kanban_(development)
http://guide.agilealliance.org/

40

[49] Methodology. Business Dictionary.

http://www.businessdictionary.com/definition/methodology.html

(retrieved: 14.07.2013).

[50] Method. The Free Dictionary. http://www.thefreedictionary.com/method

(retrieved: 14.07.2013).

[51] The American Heritage Dictionary of the English Language. Houghton Mifflin

Harcourt, Boston, MA, ISBN-10: 0395825172, ISBN-13: 978-0395825174, 2000

[52] Methodology. Wikipedia The Free Encyclopedia.

http://en.wikipedia.org/wiki/Methodology (retrieved: 14.07.2013).

[53] Atdd. Guide to Agile Practices. Agile Alliance.

http://guide.agilealliance.org/guide/atdd.html (retrieved: 14.07.2013).

[54] Acceptance Testing. Guide to Agile Practices. Agile Alliance.

http://guide.agilealliance.org/guide/acceptance.html (retrieved: 14.07.2013).

[55] Automated Build. Guide to Agile Practices. Agile Alliance.

http://guide.agilealliance.org/guide/autobuild.html (retrieved: 14.07.2013).

[56] A. Kolawa, Automated Defect Prevention: Best Practices in Software Management.

Wiley-IEEE Computer. Society Press, ISBN 0-470-04212-5, 2007.

[57] S. Butt and R. Badger, Benefits of Automated Testing. http://red-

badger.com/blog/2013/02/01/benefits-of-automated-testing/ (retrieved:

14.07.2013).

[58] S. Vaaraniemi, Benefits of Automated Testing. Codeproject.

http://www.codeproject.com/Articles/5404/The-benefits-of-automated-unit-testing

(retrieved: 15.07.2013).

[59] BDD. Guide to Agile Practices. Agile Alliance.

http://guide.agilealliance.org/guide/bdd.html (retrieved: 15.07.2013).

[60] Pragmatic BDD for NET. SpecFlow. http://www.specflow.org/

(retrieved: 16.07.2013).

[61] Refactoring. Guide to Agile Practices. Agile Alliance.

http://guide.agilealliance.org/guide/refactoring.html (retrieved: 16.07.2013).

[62] Code review. Wikipedia The Free Encyclopedia.

http://en.wikipedia.org/wiki/Code_review (retrieved: 20.07.2013).

[63] Continuous Deployment. Guide to Agile Practices. Agile Alliance.

http://guide.agilealliance.org/guide/cd.html (retrieved: 20.07.2013).

[64] Cross-functional team. Wikipedia The Free Encyclopedia.

http://en.wikipedia.org/wiki/Cross-functional_team (retrieved: 21.07.2013).

[65] Cross-Functional teams. Reference for Business, Encylopedia of Business, 2nd

edition. http://www.referenceforbusiness.com/small/Co-Di/Cross-Functional-

Teams.html (retrieved: 16.07.2013).

[66] Daily meeting. Guide to Agile Practices. Agile Alliance.

http://guide.agilealliance.org/guide/daily.html (retrieved: 16.07.2013).

[67] Definition of done. Guide to Agile Practices. Agile Alliance.

http://guide.agilealliance.org/guide/definition-of-done.html (retrieved: 16.07.2013).

[68] Emergent Design. Wikipedia The Free Encyclopedia.

http://en.wikipedia.org/wiki/Emergent_Design (retrieved: 16.07.2013).

[69] Estimation. Guide to Agile Practices. Agile Alliance.

http://guide.agilealliance.org/guide/estimation.html (retrieved: 17.07.2013).

[70] Facilitation. Guide to Agile Practices. Agile Alliance.

http://guide.agilealliance.org/guide/facilitation.html (retrieved: 17.07.2013).

[71] Invest. Guide to Agile Practices. Agile Alliance.

http://guide.agilealliance.org/guide/invest.html (retrieved: 17.07.2013).

http://www.businessdictionary.com/definition/methodology.html
http://www.thefreedictionary.com/method
http://en.wikipedia.org/wiki/Methodology
http://guide.agilealliance.org/guide/atdd.html
http://guide.agilealliance.org/guide/acceptance.html
http://guide.agilealliance.org/guide/autobuild.html
http://red-badger.com/blog/2013/02/01/benefits-of-automated-testing/
http://red-badger.com/blog/2013/02/01/benefits-of-automated-testing/
http://www.codeproject.com/Articles/5404/The-benefits-of-automated-unit-testing
http://guide.agilealliance.org/guide/bdd.html
http://www.specflow.org/
http://guide.agilealliance.org/guide/refactoring.html
http://en.wikipedia.org/wiki/Code_review
http://guide.agilealliance.org/guide/cd.html
http://en.wikipedia.org/wiki/Cross-functional_team
http://www.referenceforbusiness.com/small/Co-Di/Cross-Functional-Teams.html
http://www.referenceforbusiness.com/small/Co-Di/Cross-Functional-Teams.html
http://guide.agilealliance.org/guide/daily.html
http://guide.agilealliance.org/guide/definition-of-done.html
http://en.wikipedia.org/wiki/Emergent_Design
http://guide.agilealliance.org/guide/estimation.html
http://guide.agilealliance.org/guide/facilitation.html
http://guide.agilealliance.org/guide/invest.html

41

[72] Iteration Planning. Version One. http://www.versionone.com/Agile101/Agile-

Development-Iteration-Planning/ (retrieved: 22.07.2013).

[73] Kanban board. Guide to Agile Practices. Agile Alliance.

http://guide.agilealliance.org/guide/kanban.html (retrieved: 22.07.2013).

[74] T. Javdani, H. Zulzalil, A. Ghani, On the Current Measurement Practices in Agile

Software Development. University Putra, Malaysia.

http://arxiv.org/ftp/arxiv/papers/1301/1301.5964.pdf (retrieved: 23.07.2013).

[75] Pair Programming. Guide to Agile Practices. Agile Alliance.

http://guide.agilealliance.org/guide/pairing.html (retrieved: 23.07.2013).

[76] Planning Poker. Guide to Agile Practices. Agile Alliance.

http://guide.agilealliance.org/guide/poker.html (retrieved: 25.07.2013).

[77] Story Mapping. Guide to Agile Practices. Agile Alliance.

http://guide.agilealliance.org/guide/storymap.html (retrieved: 25.07.2013).

[78] Sustainable Pace. Guide to Agile Practices. Agile Alliance.

http://guide.agilealliance.org/guide/sustainable.html (retrieved: 25.07.2013).

[79] Tdd. Guide to Agile Practices. Agile Alliance.

http://guide.agilealliance.org/guide/tdd.html (retrieved: 27.07.2013).

[80] Usability Testing. Guide to Agile Practices. Agile Alliance.

http://guide.agilealliance.org/guide/usability.html (retrieved: 28.07.2013).

[81] User Stories. Guide to Agile Practices. Agile Alliance.

http://guide.agilealliance.org/guide/user-stories.html (retrieved: 29.07.2013).

[82] Dynamic Environment. Artificial Intelligence Lab.

http://ai.eecs.umich.edu/cogarch4/toc_defs/defs_env/defs_dyn_env.html

(retrieved: 30.07.2013).

[83] Dynamic Environment. Ask.com. http://www.ask.com/question/what-is-a-dynamic-

environment-in-an-organization (retrieved: 30.07.2013).

[84] D. Weyns and H. Van Dyke Parunak, F. Michel, Environments for Multi-Agent

Systems II. Springer, ISBN-10: 3-540-32614-6, ISBN-13: 978-3-540-32614-4,

2005.

[85] K. S. Rubin, Essential Scrum: A Practical Guide to Most Popular Agile Process.

Addision-Wesley Professional, 2012.

[86] J. Beaver, The Agile Team Handbook. CreateSpace Independent Publishing

Platform, 2013.

[87] J. Humble and D. Farley, Continuous Delivery: Reliable Software Releases through

Build, Test, and Deployment Automation. Addision-Wesley Professional, 2010.

[88] R. Pichler, Agile Product Management with Scrum: Creating Products that

Customers Love. Addision-Wesley Professional, 2010.

[89] T.M. Mitchell, Machine Learning (10.4 and 10.5 Chapter). pp. 283-291. 1997.

[90] A. Borisovs, Izdales materiāli mācību kursā „Intelektuālās datorsistēmas”, 2012.

[91] S. Parshutin, G. Kuleshova, A. Barisov, Application of first order rules to

reconstructing link damages in logistics net. 2005.

[92] A. Cockburn, Crystal Clear, A Human-Powered Methodology For Small Teams,

including The Seven Properties of Effective Software Projects. Addision-Wesley

Professional, ISBN-10: 0201699478, ISBN-13: 978-0201699470, 2004.

[93] Dynamic Systems Development Method. Wikidot.

http://dsdmofagilemethodology.wikidot.com/ (retrieved: 30.03.2014).

[94] M. Poppendieck and T. Poppendieck, Lean Software Development: An Agile

Toolkit. Addison-Wesley Professional, ISBN 0-321-15078-3, 2003.

[95] European Commission, The new SME definition. Official Journal of the European

Union L 124, May 2003.

http://www.versionone.com/Agile101/Agile-Development-Iteration-Planning/
http://www.versionone.com/Agile101/Agile-Development-Iteration-Planning/
http://guide.agilealliance.org/guide/kanban.html
http://arxiv.org/ftp/arxiv/papers/1301/1301.5964.pdf
http://guide.agilealliance.org/guide/pairing.html
http://guide.agilealliance.org/guide/poker.html
http://guide.agilealliance.org/guide/storymap.html
http://guide.agilealliance.org/guide/sustainable.html
http://guide.agilealliance.org/guide/tdd.html
http://guide.agilealliance.org/guide/usability.html
http://guide.agilealliance.org/guide/user-stories.html
http://ai.eecs.umich.edu/cogarch4/toc_defs/defs_env/defs_dyn_env.html
http://www.ask.com/question/what-is-a-dynamic-environment-in-an-organization
http://www.ask.com/question/what-is-a-dynamic-environment-in-an-organization
http://dsdmofagilemethodology.wikidot.com/

42

[96] H. Rubin, A Metrics View of Software Engineering Performance Across Industries.

IT Metrics Strategies V:9:3, September 1999.

[97] Communication. Oxford Dictionaries.

http://www.oxforddictionaries.com/definition/english/communication

(retrieved: 15.03.2014).

[98] Collaboration. Oxford Dictionaries.

http://www.oxforddictionaries.com/definition/english/collaboration

(retrieved: 15.03.2014).

[99] M. Саркисян, Теория прогнозирования и принятия решений. Высшая школа,

1977.

[100] Л.В. Ницецкий и Л.П. Новицкий, “Применение методов экспертного опроса

для оценки качества диалоговых обучающих систем”. Методы и средства

кибернетики в управлении учебным процессом высшей школы. Сборник

научных трудов, Рига РПИ, 1986.

[101] N. Slocum, Participatory methods toolkit, A practitioner’s manual. King Baudouin

Foundation, ISBN 90-5130-506-0, 2005.

[102] SurveyMonkey, How Much Time are Respondents Willing to Spend on Your

Survey?

https://www.surveymonkey.com/blog/2011/02/14/survey_completion_times/

(retrieved: 01.08.2015).

[103] Agile Software Development Definition. TechTarget.

http://searchsoftwarequality.techtarget.com/definition/agile-software-development

(retrieved: 01.05.2016).

[104] What is Agile Software Development. Agile Alliance.

https://www.agilealliance.org/agile101/what-is-agile/ (retrieved: 01.05.2016).

[105] Agile Software Development definition. PC Magazine, Encyclopedia.

http://www.pcmag.com/encyclopedia/term/37607/agile-software-development

(retrieved: 01.05.2016).

[106] What Is Agile? Agile Methodology. http://agilemethodology.org/

(retrieved: 01.05.2016).

[107] Qumer., & Sellers, An evaluation of the degree of agility in six agile methods and

its implacability for method engineering. Information and Software Technology,

pp. 280-295, 2008.

[108] E. Derby and D. Larsen, Agile Retrospectives, Making Good Teams Great.

Pragmatic Bookshelf, 2006.

[109] The CHAOS Manifesto. The Standish Group, 2012. http://blog.standishgroup.com/

(retrieved: 01.10.2016).

[110] S. Ambler. Agile projects success rate. AmbySoft.

http://www.ambysoft.com/surveys/ (retrieved: 01.10.2016).

[111] Agile Adoption rates. Forester Research. http://www.forrester.com

(retrieved: 01.10.2016).

[112] C. Larman and V. Basili, Iterative and Incremental Development: A Brief History,

2003. http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-

larman-and-basili-ieee-computer.pdf (retrieved: 20.03.2016).

[113] E. A. Edmonds, A Process for the Development of Software for Nontechnical

Users as an Adaptive System. General Systems, 1974.

[114] H. Takeuchi and I. Nonaka, New Product Development Game. Harvard Business

Review 86116, p. 137-146, 1986.

[115] State of Agile Survey Results. VersionOne Inc, 2011. http://www.versionone.com/

(retrieved: 01.17.2016).

http://www.oxforddictionaries.com/definition/english/communication
http://www.oxforddictionaries.com/definition/english/collaboration
https://www.surveymonkey.com/blog/2011/02/14/survey_completion_times/
http://searchsoftwarequality.techtarget.com/definition/agile-software-development
https://www.agilealliance.org/agile101/what-is-agile/
http://www.pcmag.com/encyclopedia/term/37607/agile-software-development
http://agilemethodology.org/
http://blog.standishgroup.com/
http://www.ambysoft.com/surveys/
http://www.forrester.com/
http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.craiglarman.com/wiki/downloads/misc/history-of-iterative-larman-and-basili-ieee-computer.pdf
http://www.versionone.com/

43

[116] H. C. Maurya, A. Khatoon, N. Chaudhary, Metrics for Software Project Size

Estimation. International Journal of Advanced Research in Computer Science and

Software Engineering, Volume 5, Issue 1, January, 2015.

[117] Project Sizes. Method 123 Project Management Methodology.

http://www.mpmm.com/project-sizes.php (retrieved: 01.24.2016).

[118] Information Technologies, Project Classification. The University of New Mexico.

https://it.unm.edu/projects/projectdefined.html (retrieved: 01.24.2016).

[119] Ten Tips for Agile Leaders. The Pragmatic Bookshelf.

https://pragprog.com/magazines/2012-02/ten-tips-for-agile-leaders

(retrieved: 01.31.2016).

[120] The Role of Leaders on a Self-Organizing Team. Mountain Goat Software.

https://www.mountaingoatsoftware.com/blog/the-role-of-leaders-on-a-self-

organizing-team (retrieved: 01.31.2016).

[121] Agility Path. Scrum.org. https://www.scrum.org/Portals/0/Documents/Agility-

Path/Agility-Path_Executive-Summary.pdf (retrieved: 17.05.2012).

[122] Likert scale. Wikipedia The Free Encyclopedia.

https://en.wikipedia.org/wiki/Likert_scale (retrieved: 16.07.2016).

[123] J. Bledsoe. The Magic in a 0-to-10 Rating Scale. Primary Intelligence.

https://en.wikipedia.org/wiki/Likert_scale (retrieved: 16.07.2016).

http://www.mpmm.com/project-sizes.php
https://it.unm.edu/projects/projectdefined.html
https://pragprog.com/magazines/2012-02/ten-tips-for-agile-leaders
https://www.mountaingoatsoftware.com/blog/the-role-of-leaders-on-a-self-organizing-team
https://www.mountaingoatsoftware.com/blog/the-role-of-leaders-on-a-self-organizing-team
https://www.scrum.org/Portals/0/Documents/Agility-Path/Agility-Path_Executive-Summary.pdf
https://www.scrum.org/Portals/0/Documents/Agility-Path/Agility-Path_Executive-Summary.pdf
https://en.wikipedia.org/wiki/Likert_scale
https://en.wikipedia.org/wiki/Likert_scale

