
SCIENTIFIC PROCEEDINGS OF RIGA TECHNICAL UNIVERSITY

Series – Computer Science Applied Computer Systems – 4
th

 Thematic Issue

 2003

FORMAL I	TEGRATIO	 PERSPECTIVE I	 THE SOFTWARE DEVELOPME	T

E. Asnina

Representation conflicts, integration, sketch, UML

1. Introduction

This paper is further observation of research results in sketch approach [1] and its applying in

software engineering. The paper considers perspectives of sketch approach usage for formal

integration of static data models.

The paper is divided into four sections. The next section explains why formal integration

of data models is necessary and what kinds of problems can occur in an integrated data model.

The section 3 gives a short sketch approach description, necessary for understanding of this

paper content. The section 4 shows sketch approach applying for two conceptual UML

diagrams integration. General step order of sketch integration and its estimation are given in

the section 5. Possible further researches are described in the paper conclusions.

2. 	ecessity and problems of sketch integration

Now-a-days a number of software application spheres is growing fast. Information systems

become more complicated, development time increases. In practice, it is not possible to create

a whole model of a system at once.

Integration is necessary if designed information systems are large. In account of system

size, semantic models need to be created from the viewpoint of system parts or of system

users groups and then the parts need to be integrated in one model. This can lead up to

differences of data structures and process of integration can become far from trivial task.

Without that, a problem of developers groups communication exists, as it is necessary to

handle model changes. A problem of development of large multidisciplinary systems where

different discipline semantics meets exists, too [2]. Here, the independence of development

and the differing cultures of the fields cause incompatibilities between models and

programming interfaces. Large information systems require defining an optimal data

structure, which could allow deriving necessary information already in computing process.

However, the scheme integration is not a new problem, but with the advent of object oriented

databases developers have met this problem again.

Existing problems in the scheme integration are the following [3]:

• Naming conflicts originate from using equal terms for different real world concepts

(homonyms) or from representing the same real world concept using different terms

(synonyms).

• Structural conflicts occur when different data model constructions represent the same

information. This kind of conflicts can be found in (i) aggregation, i.e. when attributes

or methods are missing; (ii) abstraction, i.e. when there are differences in specialization

or decomposition; (iii) generalization, i.e. all other structural conflicts.

SCIENTIFIC PROCEEDINGS OF RIGA TECHNICAL UNIVERSITY

Series – Computer Science Applied Computer Systems – 4
th

 Thematic Issue

 2003

• Scaling conflicts occur if different scales are used for the same measure.

• Static-dynamic conflicts present at the object oriented approach occur, i.e. when the

same information is designed as static property in one view and as dynamic property in

another view. For example, age property can be stored as attribute in one view, but in

another view, age can be computed with a method on basis of the birth date and the

current year.

Usually for the integration of static structures one applies formalism of the first order logic,

but it is too bulky for graph-based constructs. The usage of graph-based logic may be more

comfortable. Therefore, the formal sketch approach can be successfully used for handling

representation conflicts.

3. A short description of the sketch approach

In the basis of the sketch approach are principles of category logic [4], [5], [6] and a

special kind of thinking — the so-called arrow thinking [1], [7]. The basic idea underlying the

approach consists in specifying any universe of discourse as a collection of objects and their

morphisms. Objects have no internal structure: everything one wishes to say about them, one

has to say in terms of arrows. It means object structure and behavior are encapsulated and

accessible only through the arrow interface. The distinction from functional data modeling is

that here we deal with categories, not with sets and sets elements, and constraints are hung on

arrow diagrams, not on nodes.

In the arrow logic, specifications are oriented graphs, which consist of nodes and arrows,

where some fragments are marked. These markers note predicates taken from some

predefined signature. These graphical constructs are called sketches [4], [5], [6], [8], [9].

Sketches are noted as Π-sketches, where Π is the name of the signature of diagram predicates.

For example, UML language [10] defines some sketch signature ΠUML so that every UML

diagram D could be represented as a special visualization of the logic specification SD of the

corresponding ΠUML-sketch. In common, any diagram with precise semantics (to be described

in mathematical terms) actually hides a sketch in a suitable signature of markers. Any given

diagram property has a predefined shape, that is, a configuration of nodes and arrows for

which the property makes sense. A diagram predicate is specified with its name and graph

called the logical arity shape of the predicate (Table 1). The arity shape should be supplied

with auxiliary graphic means like arcs or double-body arrows for visualizing predicate

declarations on schemas. In order to declare a predicate P with some arity shape GP for a

system S of sets and functions, one must assign S-sets to nodes in GP and S-functions to

arrows in GP in such a way those adjoinness conditions between nodes and arrows are

respected. It gives wide possibilities for any signatures of modeling languages creating for

diagrams formal converting into the sketch format and for the sketches handling in the

completely formal way. Table 1 shows examples of predicates used in the paper. These are

predicates of set inclusion (Is_A), disjointness, and covering, separating of a family of

functions, inversion, and composition properties. The inclusion denotes UML language's

association of generalization, the inversion denotes undirected association, and the

composition is the special case of aggregation in UML.

In order to handle sketches in a formal way, the category logic offers the so-called diagram

operations (data queries) over a sketch [6], [11]. Operations allow customizing sketches by

extending them with derived items. A diagram operation F is specified by a sketch DF,

SCIENTIFIC PROCEEDINGS OF RIGA TECHNICAL UNIVERSITY

Series – Computer Science Applied Computer Systems – 4
th

 Thematic Issue

 2003

denoting its interface in which a subsketch in
FD of input data is designated, that is, an

operation F is specified by inclusion F
in
FF DD:i → (DF is called output sketch). The body of

operation is a procedure [[F]], which calculates an extension of derived items of DF from a

given extension of in
FD . Table 2 shows operations used in the paper.

Table 1. The list of diagram predicates

Predicate name Arity shape with

visualization

Denotational semantics

Set Inclusion - the source set is a

subset of the target set and mapping is

their inclusion.

Aa all for a)a(f and BA ∈=⊂

Disjointness - an element of the target

set may be an element of the only one

subset.

 BA
n

i

i ⊂

=

U
1

Covering - each element of the target

set is a value of at least one of the

mappings.

)A(fb)ni)(Bb(i i∈<∃∈∀

Separating family of functions - is

somewhat dual to the covering predicate

(in the category theory, this duality can be

expressed in precise terms). It can be

declared for a diagram, which consists of a

source node and a family of arrows going

out of it. We precisely express the internal

tuple-structure of X-objects by declaring

the corresponding property for some arrow

diagram adjoint to the node X.

 For any x'∈X, x ≠ x' implies fi(x) ≠ fi(x') for some i
Note however that in such a case the tuple-function
f =<f1…fn> into the Cartesian product of Di

f = 〈 fi…fn 〉: X→D1×…×Dn, fx = 〈f1x,…,fnx〉 is

injective (one-one) so that elements of X can be

considered as unique names for tuples from a

certain subset of D1×…×Dn , i.e. the image of f.

Inversion

y))y(g(f)Yy(=∈∀

Composition is that the part can be the

one of the only one whole.

Y⊂X and g(y)=y for all y∈Y, and

 (∀y∈Y) f(g(y))=y

The operation of composition (the 1st row of Table 2) allows specifying a function, i.e. a

result of composition of two arrows. The operation CoImage (the 2nd row of Table 2) allows

deriving a subset of the set that satisfies some constraint. For example, the operation

CoIm(sex, M) makes it possible to get derived item MRead, which denotes the subset of male

sex reader (Figure 4).

[disj]

 f

 X [inv] Y

 g

 f

 X [inv] Y

 [comp]

 g

 A1 ... Ai

 ...

AnB

[cov]
f1

fi

fn

X

 D1 ... Dn

f1 fn

[1-1]

SCIENTIFIC PROCEEDINGS OF RIGA TECHNICAL UNIVERSITY

Series – Computer Science Applied Computer Systems – 4
th

 Thematic Issue

 2003

4. Sketches and correspondence equations usage for view integration

The sketch approach can be successfully applied for system views formal integration with

possibility to solve structural conflicts between views, because even the simple replacement

of labeling nodes by labeling arrow diagram allows avoiding certain kinds of structural

conflicts between views.
Table 2. Diagram operations

Name (marker) Arity shape Denotational

semantics

Linear notation

Input sketch Output sketch

Composition

(=)

(∀x∈X) f(x) =

g2(g1(x))

f = g1►►g2

CoImage

(CoIm)

B' = {x∈X : f x ∈B}

f' = f restriction on

B'

B' = f -1(Y) or else

B' = CoIm f (B)

Let consider an example of two UML class diagrams integration (Figure 1). Let suppose,

that a program model, described in the UML language, is analyzed from viewpoints of library

employees and of library information statistic calculations.

The first view is shown as a class diagram D1 (Figure 1(a)). Semantics is that some reader

orders printed publications in the library. Readers are organized as a class Reader with

attributes name, surname, and sex. The value of the sex attribute can be F (female) or M

(male). But the predefined type of the attributes name and surname is S t r i ng . Real world

objects of the class Reader have a property "birth date". This property is shown as a class

BirthDate with type In t eger attributes year, month and day in the view D1. Between a class

Reader and a class BirthDate exists an association of the composition. All the orders are

united in a class Order with attributes bookCode (S t r i ng), i.e. a library code of a printed

publication, and number (In t eger), i.e. a number of an order.

Class diagram D2 (Figure 1(b)) represents the second view of the problem. I remind you

that this view represents the viewpoint of statistic calculations. Library visitors are organized

into a class Person with attributes name (S t r ing) and age (In t e ger). To that, the class

Person is specialized with classes Man and Woman.

Z Y

X

g1

g2 Z Y

X

g1

g2

Yf

(=)

X Y

B

f

b

X

B' B

Y

b' b

f

f'

(CoIm)

 a) Diagram D1 b) Diagram D2

Figure 1. UML class diagrams

Order

number : Integer

bookCode : String

BirthDate

day : Integer

month : Integer

year : Integer

Reader

name : String

surname : String

sex : {F,M}

1

n

1

n

11

Woman Man

Person

name : String

age : Integer

Order

number : Integer

bookCode : String
1 n1 n

SCIENTIFIC PROCEEDINGS OF RIGA TECHNICAL UNIVERSITY

Series – Computer Science Applied Computer Systems – 4
th

 Thematic Issue

 2003

A task is to integrate these two views, D1 and D2, in a formal way, overcoming structural

conflicts between them.

In our example, conflict points are the following:

• Objects of Person and Reader classes are the same real world objects class

(synonyms).

• The set of attributes of BirthDate class is the base information for age attribute of class

Person.

• The subclasses Woman and Man of class Person represent the sex particularity of real

world objects class, i.e. of library visitors. In the Reader class, this information is

represented as the sex attribute.

A more careful analysis

of the situation shows that

that part of the information

considered as basic by the

second view, can be derived

from the first view (by

making the corresponding

queries). To specify this

observation formally one

must proceed as follows.

Firstly, let convert the

UML class diagrams into

sketches; i.e. into directed

graphs, in which some arrow

diagrams are marked in a

special way (Figure 2 and

Figure 3). Note that all

attributes of the classes are

represented as functions into

nodes, whose intended

semantics is predefined (and

supported by the computer

system). For example, the

attribute bookCode of the

class Order is represented

by the function bookCode

into a node labeled by

String. Note also, that in the sketch approach labels String, Integer or {F, M} are only

markers, which are hung on the corresponding nodes. I.e. constraints that impose on nodes

intended semantic interpretation
1
. Otherwise, those are predefined data types in the sense of

some programming language. To distinguish those type nodes from abstract [11] in the

sketches, the latter are represented by rectangles, but the first by rectangles with rounded

corners. Then it is necessary to specify correspondence between views in the sketch language

(the second step).

1
 At the same time, Reader, Order, etc. are merely names labeling corresponding nodes without imposing any

constraints.

Figure 2. UML class diagram D1 converted into sketch S1

BirthDateReader

Order

o
rd
e
r

re
a
d
e
r[inv]

[cov]

[Integer]

[String]

bDate

reader

[inv]

[comp]

[cov]

y
e
a
r

d
a
y

m
o
n
th

[Integer] [Integer] [Integer]

[{F, M}]

[String]

[String]

s
e
x

name

surname

[1-1] num
ber

bookCode

Figure 3. UML class diagram D2 converted into sketch S2

Person

o
rd
e
r

p
e
rs
o
n[inv]

[cov]
[Integer]

[String]

Man

Woman

m

f

[d
is
j]name

age

Order

[Integer]

[String]

[1-1] number
bookCode

SCIENTIFIC PROCEEDINGS OF RIGA TECHNICAL UNIVERSITY

Series – Computer Science Applied Computer Systems – 4
th

 Thematic Issue

 2003

Secondly, each original sketch must be extended (if it is possible) with nodes and arrows,

which denote derived elements so that correspondence between views becomes explicit and

could be formally described

(Figure 4). At first, let

extend the first view S1 with

predefined computing

function (currentYear-*):
Integer→ Integer. After that,

compose three arrows:

bDate, year, and

(currentYear - *)
2
 in order to

get the arrow age'. The

corresponding diagram

marker (=)' just expresses the

fact, that the arrow age' is

obtained by the operation of

composition (Table 2). Then,

the sketch can be enriched

with two inclusion constructs

(Table 1): m: {M} → {M, F}

and f: {F} → {M, F}. These

inclusions can be derived

because the set {M, F}

exists. After that, let apply

two operations CoIm (Table

2). This type of operation

takes, for the given function,

the coimage of a given

subset of the codomain in

order to obtain the following

derived items:

(MRead", mr", !")= CoIm(M, sex),
(FRead"', fr"', !''') = CoIm(F, sex).

The (CoIm) marker hung

on a square diagram just

expresses the fact that the

corresponding nodes and

arrows of the diagram are

obtained by the diagram

operation CoIm. Consequently, the original sketch S1 is extended to the sketch 1S , in which

some additional (but obligatorily derived) elements are specified (Figure 4). Sketch S2 hasn't

been extended because there are no elements to be extended, so S2 = S2.

Now, the integrating person (a designer or analyzer) can specify the correspondence

between views in the form of equations. The equations fix identification of the corresponding

nodes and arrows. Table 3 shows the set of equations ECI (where CI is an abbreviation of

2
 Such superscripts as *, ', '', ''', etc. allow to distinguish extended elements from base elements in the sketch.

Figure 4. Sketch 1S extended with derived items

BirthDateReader

Order

o
rd
e
r

re
a
d
e
r[inv]

[cov]

[Integer]

[String] bookCode

bDate

reader

[inv]

[comp]

[cov]

y
e
a
r

d
a
y

m
o
n
th

[Integer] [Integer] [Integer]

[{F, M}]

[String]

[String]

s
e
x

name

surname

[{F}][{M}]

Fread'''MRead''

!
''

!
'''

fr'
''

m
r''

m f[disj]

(CoIm)'' (CoIm)'''

[Integer]

(currentYear - *)

a
g
e
'

(=)'

[1-1] number

Figure 5. The full integrated sketch 21 SSSI CI⊕=

BirthDateReader

Order

o
rd
e
r

re
a
d
e
r[inv]

[cov]

[Integer]

[String]
bookCode

number

[1-1]

bDate

reader

[inv]

[comp]

[cov]

y
e
a
r

d
a
y

m
o
n
th

[Integer] [Integer] [Integer]

[{F, M}]

[String]

[String]

s
e
x

name

surname

[{F}][{M}]

Woman'''Man''

!''

!''
'

w
om

'''

m
a
n
''

m
f[disj]

(CoIm)'' (CoIm)'''

[Integer]

(c
u
rre

n
tY
e
a
r - *)

age'

(=)'

 [disj]

SCIENTIFIC PROCEEDINGS OF RIGA TECHNICAL UNIVERSITY

Series – Computer Science Applied Computer Systems – 4
th

 Thematic Issue

 2003

"correspondence information"). This table denotes correspondence information only between

functions (arrows), because the correspondence between functions means that corresponding

domains and codomains of functions are equal too. The elements standing at the same column

in the Table 3 give one equation, for example, .1S age' = .2S age, etc. So the correspondence

between views can be specified in such formal way, and these correspondence equations have

far reaching possibilities (e.g., in a case of disjointing an integrated sketch).

Table 3. The correspondence information between sketches S2 and S1

1S age' name mr'' fr''' reader order

2S age name m f person order

The next step of the integration process is the creation of an integrated sketch. This step

can be automated. The aim is to glue together those nodes and arrows that appear in the

correspondence equations. Figure 5 presents the result of gluing and denotes it as

21 SSSI CI⊕= . The name the full-integrated sketch includes all the necessary basic

information, and additionally some derived information. Mappings from the local sketches

into the full-integrated sketch must be described (Table 4 and Table 5).

Table 4. The mapping a1 from sketch S1 into the full integrated sketch SI

S1 sex name surname order reader bDate

SI sex name surname order reader bDate

Table 5. The mapping a2 from sketch S2 into the full integrated sketch SI

S2 name age order person m f

SI name age' order reader man'' wom'''

In order to finish the integration process an analyzer has to choose a subsketch SI of the

full-integrated sketch so that all elements of SI , which are not included in SI, could be

derived from the latter by diagram operations from a prescribed list. Such sketches are called

generating sketches (Figure 6). Table 6 and Table 7 represent mappings from sketch S1 and

sketch S2 into the generating sketch SI.

Table 6. The mapping a1 from sketch S1 into generating sketch SI
S1 sex name surname order reader bDate

SI sex name surname order reader bDate

Table 7. The mapping a2 from sketch S2 into generating sketch SI
S2 name age order person m f

SI name bDate; year; (currentYear-*) order reader CoIm(sex, M) CoIm(sex, F)

BirthDate

Order

o
rd
e
r

[inv]

[cov]

[Integer] [String]
bookCodenumber[1-1]

bDate

reader

[inv]

[comp]

[cov]

y
e
a
r

d
a
y

m
o
n
th

[Integer] [Integer] [Integer]

[{F, M}]

[String]

[String]

s
e
x

name

surname
Reader

re
a
d
e
r

Figure 6. Generating sketch SI Figure 7. Integrated diagram

BirthDate

day : Integer

month : Integer

year : Integer

Reader

name : String

surname : String

sex : {F,M}

11

Order

number : Integer

bookCode : String

n

1

n

1

SCIENTIFIC PROCEEDINGS OF RIGA TECHNICAL UNIVERSITY

Series – Computer Science Applied Computer Systems – 4
th

 Thematic Issue

 2003

To fix correspondence between views in the considered example it was sufficient to state

correspondence equations over the initial sketches (i.e. between their basic and derived items),

because the correspondence between views is the coincidence of extents of the corresponding

items. Figure 7 shows the result of the generating sketch converting back into the UML class

diagram.

5. Generalisation and estimation of the sketch integration approach

The example described in the section 4 presents a general approach for the integration of

system views using possibilities of the sketch approach. Telling about large number of

sketches to be integrated, correspondence information sketch SCI [8] must be used instead of

correspondence equations. In general, integration of n local schemes is disjoint merging of

n+1 sketches (S1,…, Sn, Sn+1 = SCI) and refining the result using correspondences equations

(i.e. gluing together certain items of the merge according to the ECI equations). The result of

the integration can be written as CICInI ESSSS /)...(1 ⊕⊕⊕= , where iS denotes results of

extending local sketches with derived elements and IS is the result of integration. Besides the

integrated sketch itself — IS , the integration procedure determines mappings Iii SSa →:

from local sketches into IS . Images of these mappings cover IS so that each of IS nodes and

arrows belongs to ai(Si) for at least one i.
So, the procedure of the diagrams (described in some modeling language) integration is the

following: 1) Converting diagrams into sketches by some predefined list of predicates, 2)

Extending sketches with derived items by means of some predefined list of diagram

operations and determining correspondence equations, 3) Merging graphs of n+1 local

schemes and refining the result according to the correspondence equations, that is applying a

closure operation for the sketches, 4) The integrated graph converting into a sketch integrating

diagram markers from the local sketches. However, here the marker integration problem can

arise. The formal base of the diagram operations and predicates lists creation is described in

details in [7], [11].

The paper [3] specifies the following criterions of integration methodologies: the used data

model; the proposed strategies to solve representation conflicts; the approaches to handle

redundancy removal; and the concepts to deal with scheme enrichments. The sketch approach

for the integration process uses sketches. Any diagram, which has formal semantics, can be

transformed into a sketch [7]. This approach reduces all kinds of representation conflicts

between semantic views to two kinds of conflicts:

• Conflicts, in the base of which is conflict between basic and derived information. I.e.

the information, considered as the basic in one view, could be considered as derived in

other views.

• Constraint conflicts, i.e. conflicts between diagram markers.

The sketch approach proposes a gluing principle for redundant detail handling. It uses

correspondence equations between sketches. This approach uses diagram operations that deal

with new data constraints for scheme extending.

So, the sketch approach helps to integrate a structure of UML diagrams and diagrams

described in some other modeling language in a convenient formal way.

SCIENTIFIC PROCEEDINGS OF RIGA TECHNICAL UNIVERSITY

Series – Computer Science Applied Computer Systems – 4
th

 Thematic Issue

 2003

6. Conclusion

The convenient graphical formal way of system views integration has been considered in

this paper. This formal way uses the particularities of the sketch approach and corresponding

information equations. The sketch approach proposes a common framework, which partially

can be automated, for integration of different diagram kinds (and even for integration of

different kind semantic diagrams). It reduces representation conflict kinds to two types: static-

dynamic conflicts and constraint conflicts. In the paper, this approach has been applied for the

integration of static structures of data models. But it can be applied for integration of dynamic

structures (methods), too. Note, that this aspect of the sketch approach still requires additional

researches, because the integration of methods has its own particularities.

The subjects of further research are sketch approach applying possibility for integration of

data models dynamic structures and further integration methodology elaboration.

References

1. Asnina E., Osis J. "Formalization Problems and Perspectives of The Program Development" // In:

Scientific Proceedings of Riga Technical University, Computer Science, Applied Computer

Systems, 3
rd

 thematic issue, Riga, 2002, p. 145-156

2. Wheeler Th. J. "Integration and Conceptual Modeling" // In: Internet —

http://people.cs.vt.edu/~edwards/RESOLVE2002/proceedings/Wheeler/

3. Eder J., Frank H. "Schema Integration For Object Oriented Database Systems" // In: Proceedings

of the ETCE, Software Systems in Engineering, ASME, New Orleans, 1994.

4. Alksnis G., Osis J. "Category Theory and Computer Science" // In: Scientific Proceedings of Riga

Technical University, Computer Science, Applied Computer Systems, 2
nd

 thematic issue, Riga,

2001, p. 59-67

5. Barr M, Wells C. "Category Theory and Computer Science" // Prentice Hall, London, 2nd ed.,

1995

6. Alksnis G., Osis J. "Formalization of Software Engineering by Means of the Theory of
Categories" // In: Scientific Proceedings of Riga Technical University, Computer Science,

Applied Computer Systems, 3
rd

 thematic issue, Riga, 2002, p. 157-163

7. Diskin Z., Kadish B., Piessens F., Johnson M. "Universal Arrow Foundations for Visual
Modeling" // In: Proc. Diagramms'2000, 1

st
 Int. Conference on the theory and application of

diagrams, Springler LNAI, No.1889, 2000 - pp. 345-360.

8. Diskin Z. "Formalization of graphical schemas: General sketch-based logic vs. heuristic pictures"
// In: FIS/LDBD, web-page — http://citeseer.nj.nec.com/diskin95formalization.htm

9. Diskin Z., Kadish B. "The Arrow Manifesto: Towards software engineering based on
comprehensible yet rigorous graphical specifications" // In: FIS/LDBD, web-page —

http://citeseer.nj.nec.com/167037.html

10. Rumbaugh J., Jacobson I., Booch G. "The Unified Modeling: Language Reference Manual" // In:

Addison-Wesley, 1999

11. Diskin Z. "Generalized Sketches as an Algebraic Graph-Based Framework for Semantic Modeling
and Database Design" // In: FIS/LDBD, web-page — http://citeseer.nj.nec.com/

diskin97generalized.htm

Erika Asnina, Riga Technical University, Meza 1/3, Riga, LV 1048, Latvia, B.sc.ing., as_erika@inbox.lv

SCIENTIFIC PROCEEDINGS OF RIGA TECHNICAL UNIVERSITY

Series – Computer Science Applied Computer Systems – 4
th

 Thematic Issue

 2003

Asņina Ē. Formālās apvienošanas perspektīva programmatūras izstrādē
Šajā rakstā ir aprakstītas problēmas, kuras var rasties datu modeļu apvienošanas gadījumā un viens no
perspektīviem ceļiem datu modeļu apvienošanas jomā. Objektorientēto datu modeļu gadījumā apvienošanas
procesu var sadalīt statisko struktūru apvienošanas un dinamisko struktūru apvienošanas daļās. Šajā rakstā tiks
apskatīta pirmā daļa, jo dinamisko struktūru apvienošana prasa papildus pētījumus. Apvienošanas procesā
parādās dažādi reprezentācijas konfliktu veidi: nosaukumu konflikti, strukturālie konflikti, mērvienību konflikti
un strukturāli dinamiski konflikti. Šo problēmu pārvarēšanai ir piedāvāts skiču pieejas formālisms. Skiču pieeja
pamatā atrodas kategoriju loģika. Rakstā apvienošanas soļu secība ir parādīta uz divu UML klašu diagrammu
apvienošanas piemēra. Piedāvātā pieejā datu modeļi tiek pārveidoti skicēs, kuras pēc tam tiek paplašinātas ar
atvasinātiem datiem un tiek apvienotas vienā integrētā skicē. Integrētā skice satur skaidri redzamu bāzes un
atvasināto informāciju. Pilnīgi integrētā skice satur visus iespējamos bāzes datus un atvasinātus datus. Tas ļauj
reducēt integrēto skici līdz optimālam stāvoklim, kad skicē ir atstāta tikai bāzes informācija. Beigās šo
ģenerējošo skici var pārveidot atpakaļ datu modelī. Vēl viens skiču pieejas pielietošanas pluss ir tās spējas
samazināt iespējamo konfliktu veidu skaitu.

Asnina E. Formal Integration Perspective in the Software Development
The paper describes problems occurring in the case of data models integration and one of perspective ways in
field of data models integration. In the case of object-oriented data models, integration process may be
separated in two parts, static structure integration and dynamic structure integration. In the paper, the first one
is considered in account of that the dynamic structures integration requires additional investigations. Different
kinds of representation conflicts appear during integration process. They are naming conflicts, structural
conflicts, scaling conflicts, and structural dynamic conflicts. In order to solve these problems the formalism of
sketch approach is proposed. In the base of sketch approach is category logic. The paper shows integration
steps order on the example of the two UML class diagram integration. In the proposed approach data models
are transformed in the sketches, which then are extended with derived elements and glued in one integrated
sketch. The integrated sketch contains clearly visible base information and derived information. Full-integrated
sketch contains all possible base data and derived data. It allows reducing integrated sketch up to optimal size,
when only base information is left in the sketch. Finally, this generating sketch can be transformed back into the
data model. One more plus of the sketch approach is its ability to decrease the number of possible conflict kinds.

Аснина Э. Разработка программного обеспечения: перспектива формальной интеграции
В статье описаны проблемы, возникающие в случае объединения моделей данных, и один из
перспективных путей в этой области. В случае объектно ориентированных моделей данных процесс
интеграции можно разделить на две части — объединение статических и объединение динамических
структур. В статье описана первая часть, т.к. обьединение динамических структур требует
дополнительного изучения. В процессе объединения возникают различные виды конфликтов
представления информации: конфликты названий и измерения величин, структурные и структурно
динамические конфликты. Для преодоления конфликтов подобного рода в статье предложен
формализм эскизного подхода. В основе эскизного подхода лежит логика категорий.
Последовательность объединения в статье показана на примере объединения двух диаграмм классов
языка UML. В предложеном подходе модели данных преобразуются в эскизы, которые затем
расширяются производными данными и объединяются в один интегрированный эскиз.
Интегрированный эскиз содержит ясно различимую базовую и производную информацию. Полностью
интегрированный эскиз содержит все возможные базовые данные и производные данные. Это
позволяет сократить интегрированный эскиз до оптимального состояния, когда в эскизе остаётся
только базовая информация. Окончательно этот генерирующий информацию эскиз можно
преобразовать обратно в модель данных. Ещё один плюс применения данного подхода — это
возможность сократить число видов возможных конфликтов.

