SCIENTIFIC PROCEEDINGS OF RIGA TECHNICAL UNIVERSITY
Series — Computer Science Applied Computer Systems — 4" Thematic Issue
2003

FORMAL INTEGRATION PERSPECTIVE IN THE SOFTWARE DEVELOPMENT

E. Asnina

Representation conflicts, integration, sketch, UML

1. Introduction

This paper is further observation of research results in sketch approach [1] and its applying in
software engineering. The paper considers perspectives of sketch approach usage for formal
integration of static data models.

The paper is divided into four sections. The next section explains why formal integration
of data models is necessary and what kinds of problems can occur in an integrated data model.
The section 3 gives a short sketch approach description, necessary for understanding of this
paper content. The section 4 shows sketch approach applying for two conceptual UML
diagrams integration. General step order of sketch integration and its estimation are given in
the section 5. Possible further researches are described in the paper conclusions.

2. Necessity and problems of sketch integration

Now-a-days a number of software application spheres is growing fast. Information systems
become more complicated, development time increases. In practice, it is not possible to create
a whole model of a system at once.

Integration is necessary if designed information systems are large. In account of system
size, semantic models need to be created from the viewpoint of system parts or of system
users groups and then the parts need to be integrated in one model. This can lead up to
differences of data structures and process of integration can become far from trivial task.
Without that, a problem of developers groups communication exists, as it is necessary to
handle model changes. A problem of development of large multidisciplinary systems where
different discipline semantics meets exists, too [2]. Here, the independence of development
and the differing cultures of the fields cause incompatibilities between models and
programming interfaces. Large information systems require defining an optimal data
structure, which could allow deriving necessary information already in computing process.
However, the scheme integration is not a new problem, but with the advent of object oriented
databases developers have met this problem again.

Existing problems in the scheme integration are the following [3]:

e Naming conflicts originate from using equal terms for different real world concepts
(homonyms) or from representing the same real world concept using different terms
(synonyms).

e Structural conflicts occur when different data model constructions represent the same
information. This kind of conflicts can be found in (i) aggregation, i.e. when attributes
or methods are missing; (ii) abstraction, i.e. when there are differences in specialization
or decomposition; (iii) generalization, i.e. all other structural conflicts.

SCIENTIFIC PROCEEDINGS OF RIGA TECHNICAL UNIVERSITY
Series — Computer Science Applied Computer Systems — 4" Thematic Issue
2003

e Scaling conflicts occur if different scales are used for the same measure.

e Static-dynamic conflicts present at the object oriented approach occur, i.e. when the
same information is designed as static property in one view and as dynamic property in
another view. For example, age property can be stored as attribute in one view, but in
another view, age can be computed with a method on basis of the birth date and the
current year.

Usually for the integration of static structures one applies formalism of the first order logic,
but it is too bulky for graph-based constructs. The usage of graph-based logic may be more
comfortable. Therefore, the formal sketch approach can be successfully used for handling
representation conflicts.

3. A short description of the sketch approach

In the basis of the sketch approach are principles of category logic [4], [5], [6] and a
special kind of thinking — the so-called arrow thinking [1], [7]. The basic idea underlying the
approach consists in specifying any universe of discourse as a collection of objects and their
morphisms. Objects have no internal structure: everything one wishes to say about them, one
has to say in terms of arrows. It means object structure and behavior are encapsulated and
accessible only through the arrow interface. The distinction from functional data modeling is
that here we deal with categories, not with sets and sets elements, and constraints are hung on
arrow diagrams, not on nodes.

In the arrow logic, specifications are oriented graphs, which consist of nodes and arrows,
where some fragments are marked. These markers note predicates taken from some
predefined signature. These graphical constructs are called sketches [4], [5], [6], [8], [9]-
Sketches are noted as /F-sketches, where /71s the name of the signature of diagram predicates.
For example, UML language [10] defines some sketch signature /7y so that every UML
diagram D could be represented as a special visualization of the logic specification Sp of the
corresponding /7 -sketch. In common, any diagram with precise semantics (to be described
in mathematical terms) actually hides a sketch in a suitable signature of markers. Any given
diagram property has a predefined shape, that is, a configuration of nodes and arrows for
which the property makes sense. A diagram predicate is specified with its name and graph
called the logical arity shape of the predicate (Table 1). The arity shape should be supplied
with auxiliary graphic means like arcs or double-body arrows for visualizing predicate
declarations on schemas. In order to declare a predicate P with some arity shape Gp for a
system S of sets and functions, one must assign S-sets to nodes in Gp and S-functions to
arrows in Gp in such a way those adjoinness conditions between nodes and arrows are
respected. It gives wide possibilities for any signatures of modeling languages creating for
diagrams formal converting into the sketch format and for the sketches handling in the
completely formal way. Table 1 shows examples of predicates used in the paper. These are
predicates of set inclusion (Is_A), disjointness, and covering, separating of a family of
functions, inversion, and composition properties. The inclusion denotes UML language's
association of generalization, the inversion denotes undirected association, and the
composition is the special case of aggregation in UML.

In order to handle sketches in a formal way, the category logic offers the so-called diagram
operations (data queries) over a sketch [6], [11]. Operations allow customizing sketches by
extending them with derived items. A diagram operation F' is specified by a sketch Dp,

SCIENTIFIC PROCEEDINGS OF RIGA TECHNICAL UNIVERSITY
Series — Computer Science Applied Computer Systems — 4" Thematic Issue
2003

denoting its interface in which a subsketch D}’ of input data is designated, that is, an
operation F is specified by inclusion i, : D} — D, (Dr is called output sketch). The body of
operation is a procedure [[F]], which calculates an extension of derived items of Dy from a
given extension of D}’ . Table 2 shows operations used in the paper.

Table 1. The list of diagram predicates

Predicate name Arity shape with Denotational semantics
visualization
Set Inclusion - the source set is a
subset of the target set and mapping is A B Ac Band f(a)=a forallae A4
their inclusion. ———0
Disjointness - an element of the target
Al A
set may be an element of the only one o n
subset. [disj] U Aic B
i=1
= AN
Covering - each element of the target
set is a value of at least one of the Al Ai

mappings.

(VbeB)(Ji<n)be fi(Ai)

Separating family of functions - is
somewhat dual to the covering predicate

For any x'eX, x #x'" implies fi(x) #f;(x') for some i

X Note however that in such a case the tuple-function

(in the category theory, this duality can be f=<f;...f/,> into the Cartesian product of D;
expressed in precise terms). It can be f=(fi-ifn) X=>Dx...xD,, fx = (fix,....f;,x)1s
declared for a diagram, which consists of a fl fn injective (one-one) so that elements of X can be
source node and a family of arrows going [1-1] considered as unique names for tuples from a
out of it. We precisely express the internal certain subset of D x...xD,, i.e. the image of /.
tuple-structure of X-objects by declaring D1 Dn
the corresponding property for some arrow
diagram adjoint to the node X.
Inversion f

— (VyeY)f(g(y)=y

g
Composition is that the part can be the y
one of the only one whole. > YcX and g(y)=y for all y €Y, and

X [inv] Y

[comp]
g

(Vyey) fig)=y

The operation of composition (the 1st row of Table 2) allows specifying a function, i.e. a

result of composition of two arrows. The operation Colmage (the 2nd row of Table 2) allows
deriving a subset of the set that satisfies some constraint. For example, the operation
Colm(sex, M) makes it possible to get derived item MRead, which denotes the subset of male
sex reader (Figure 4).

SCIENTIFIC PROCEEDINGS OF RIGA TECHNICAL UNIVERSITY

Series — Computer Science Applied Computer Systems — 4" Thematic Issue
2003

4. Sketches and correspondence equations usage for view integration

The sketch approach can be successfully applied for system views formal integration with
possibility to solve structural conflicts between views, because even the simple replacement
of labeling nodes by labeling arrow diagram allows avoiding certain kinds of structural

conflicts between views.
Table 2. Diagram operations

Name (marker) Arity shape Denotational Linear notation

Input sketch Output sketch semantics

Z —g2—» Yy Z —g2—» vy
Composition * * (VxeX) flx) = f=g/»P»g,
=) 9‘1 9‘1 =) 82(81(x))

X X f—» Y

B oot
Colmage B B B'={xeX:fxeB} | B' = £7(Y) or else
(Colm) bﬂ bﬂ (Colm) ﬂb /" = f restriction on | B’ = Colm ;(B)
B/
X ——»Y X PR Y

Let consider an example of two UML class diagrams integration (Figure 1). Let suppose,
that a program model, described in the UML language, is analyzed from viewpoints of library
employees and of library information statistic calculations.

BirthDate

Reader Bicay : Integer Person Order
%name: St'rig?_ Py l%monih - Integer Bname : String &inumber : Integer
%z:;né?;eh)l} ring @] Syear : Integer EZage : Integer ' nl%bookCode: String

|
| 7R
n Woman Man

Order

BZnumber : Integer
EZbookCode : String

a) Diagram D1 b) Diagram D2
Figure 1. UML class diagrams

The first view is shown as a class diagram D1 (Figure 1(a)). Semantics is that some reader
orders printed publications in the library. Readers are organized as a class Reader with
attributes name, surname, and sex. The value of the sex attribute can be F (female) or M
(male). But the predefined type of the attributes name and surname is String. Real world
objects of the class Reader have a property "birth date". This property is shown as a class
BirthDate with type Integer attributes year, month and day in the view D1. Between a class
Reader and a class BirthDate exists an association of the composition. All the orders are
united in a class Order with attributes bookCode (String), i.e. a library code of a printed
publication, and number (Integer), i.e. a number of an order.

Class diagram D2 (Figure 1(b)) represents the second view of the problem. I remind you
that this view represents the viewpoint of statistic calculations. Library visitors are organized
into a class Person with attributes name (String) and age (Integer). To that, the class
Person is specialized with classes Man and Woman.

SCIENTIFIC PROCEEDINGS OF RIGA TECHNICAL UNIVERSITY
Series — Computer Science Applied Computer Systems — 4" Thematic Issue
2003

A task is to integrate these two views, D1 and D2, in a formal way, overcoming structural

conflicts between them.

In our example, conflict points are the following:

o Objects of Person and Reader classes are the same real world objects class
(synonyms).

o The set of attributes of BirthDate class is the base information for age attribute of class
Person.

e The subclasses Woman and Man of class Person represent the sex particularity of real
world objects class, i.e. of library visitors. In the Reader class, this information is
represented as the sex attribute.

A more careful analysis
() of the situation shows that
4 that part of the information
3 considered as basic by the
o second view, can be derived
[comp] reader from the first view (by
(string] Reader finv] - BirthDate making the corresponding
umame bbate. [0V queries). To specify this
observation formally one
v must proceed as follows.
tmeger]) ((tmeger] Firstly, let convert the
v UML class diagrams into
bookCode . . .
Order [String] sketches; i.e. into directed
graphs, in which some arrow
diagrams are marked in a
special way (Figure 2 and
Man Figure 3). Note that all
attributes of the classes are
Sting] S e Ferson represented as functions into
M [cov] nodes, whose intended
semantics is predefined (and
supported by the computer

s

[cov]

5
[Integer] <

Jopeal

Figure 2. UML class diagram D1 converted into sketch S1

2

[fs1p]

>

Woman

order

uosiad

[inv]

eoele 7 Mg % system). For example, the

order K% etina attribute bookCode of the

class Order is represented

Figure 3. UML class diagram D2 converted into sketch S2 by the function bookCode

into a node labeled by
String. Note also, that in the sketch approach labels String, Integer or {F, M} are only
markers, which are hung on the corresponding nodes. L.e. constraints that impose on nodes
intended semantic interpretation'. Otherwise, those are predefined data types in the sense of
some programming language. To distinguish those type nodes from abstract [11] in the
sketches, the latter are represented by rectangles, but the first by rectangles with rounded
corners. Then it is necessary to specify correspondence between views in the sketch language
(the second step).

' At the same time, Reader, Order, etc. are merely names labeling corresponding nodes without imposing any
constraints.

SCIENTIFIC PROCEEDINGS OF RIGA TECHNICAL UNIVERSITY

Series — Computer Science Applied Computer Systems — 4" Thematic Issue

2003

Secondly, each original sketch must be extended (if it is possible) with nodes and arrows,
which denote derived elements so that correspondence between views becomes explicit and

e

[comp] reader

&2
[String]

ﬁa,he
[String] Reader [inv] . BirthDate
surname bDate [cov]
a 3
A\
[Integer] /7\7 [Integer]

[String]

ﬁa,ne

[comp] reader

[String] Reader [inv]

BirthDate

surname bDate [cov]'

Kep

A

[Integer]

[Integer]

Strin
L al bookCode

Figure 5. The full integrated sketch S/ = S1®, 52

could be formally described
(Figure 4). At first, let
extend the first view S1 with
predefined computing
function (currentYear-*):
Integer— Integer. After that,
compose three arrows:
bDate, year, and
(currentYear - *)* in order to
get the arrow age'. The
corresponding diagram
marker (=)' just expresses the
fact, that the arrow age’ is
obtained by the operation of
composition (Table 2). Then,
the sketch can be enriched
with two inclusion constructs
(Table 1): m: {M} — {M, F}
and f: {F} — {M, F}. These
inclusions can be derived
because the set (M, F}
exists. After that, let apply
two operations Colm (Table
2). This type of operation
takes, for the given function,
the coimage of a given
subset of the codomain in
order to obtain the following
derived items:

(MRead", mr", I")= Colm(M, sex),
(FRead", fr"', I"") = Colm(F, sex).

The (Colm) marker hung
on a square diagram just
expresses the fact that the
corresponding nodes and
arrows of the diagram are
obtained by the diagram

operation Colm. Consequently, the original sketch S1 is extended to the sketch S1, in which
some additional (but obligatorily derived) elements are specified (Figure 4). Sketch S2 hasn't
been extended because there are no elements to be extended, so $2=S2.

Now, the integrating person (a designer or analyzer) can specify the correspondence
between views in the form of equations. The equations fix identification of the corresponding
nodes and arrows. Table 3 shows the set of equations E¢; (where CI is an abbreviation of

2 Such superscripts as *, ', ", "', etc. allow to distinguish extended elements from base elements in the sketch.

SCIENTIFIC PROCEEDINGS OF RIGA TECHNICAL UNIVERSITY
Series — Computer Science Applied Computer Systems — 4" Thematic Issue
2003

"correspondence information"). This table denotes correspondence information only between
functions (arrows), because the correspondence between functions means that corresponding
domains and codomains of functions are equal too. The elements standing at the same column
in the Table 3 give one equation, for example, Sl.age’' = S2.age, etc. So the correspondence
between views can be specified in such formal way, and these correspondence equations have
far reaching possibilities (e.g., in a case of disjointing an integrated sketch).

Table 3. The correspondence information between sketches SlandS2

s1 age' " fr" reader order

name mr
m f

age name person order

52

The next step of the integration process is the creation of an integrated sketch. This step
can be automated. The aim is to glue together those nodes and arrows that appear in the
correspondence equations. Figure 5 presents the result of gluing and denotes it as

SI=S1®., S2. The name the full-integrated sketch includes all the necessary basic

information, and additionally some derived information. Mappings from the local sketches
into the full-integrated sketch must be described (Table 4 and Table 5).

Table 4. The mapping al from sketch S1 into the full integrated sketch SI

S1 sex name surname order reader bDate
§ sex name surname order reader bDate
Table 5. The mapping a2 from sketch S2 into the full integrated sketch S7
52 name age order person m f
S/ name age' order reader man" wom"
([{F. M)
A
3
[String] n 2 BirthDate ord
“Me E5day : Integer ri.er
[comp] reader Emonth : Integer E&number : Integer
= BirthDate Biyear : Integer I%bookCode : String
[String] Reader [inv] > :
surname bDate [cov] \ n
[cov] o \
<
é g \ Reader |
S[inv] @ [Integer]) B%name : String
Esurname : String
;; BEsex : {F,M}
[1-11 number bookCode

[String]

[Integer] Order

:

Figure 6. Generating sketch SI Figure 7. Integrated diagram

In order to finish the integration process an analyzer has to choose a subsketch S/ of the
full-integrated sketch so that all elements of S/, which are not included in SI, could be
derived from the latter by diagram operations from a prescribed list. Such sketches are called
generating sketches (Figure 6). Table 6 and Table 7 represent mappings from sketch S1 and
sketch S2 into the generating sketch SI.

Table 6. The mapping al from sketch S1 into generating sketch SI

51 sex name surname order reader bDate
S sex name surname order reader bDate
Table 7. The mapping a2 from sketch S2 into generating sketch SI
52 name age order person m f
S name bDate; year; (currentY ear-*) order reader Colm(sex, M) | Colm(sex, F)

SCIENTIFIC PROCEEDINGS OF RIGA TECHNICAL UNIVERSITY
Series — Computer Science Applied Computer Systems — 4" Thematic Issue
2003

To fix correspondence between views in the considered example it was sufficient to state
correspondence equations over the initial sketches (i.e. between their basic and derived items),
because the correspondence between views is the coincidence of extents of the corresponding
items. Figure 7 shows the result of the generating sketch converting back into the UML class
diagram.

5. Generalisation and estimation of the sketch integration approach

The example described in the section 4 presents a general approach for the integration of
system views using possibilities of the sketch approach. Telling about large number of
sketches to be integrated, correspondence information sketch S¢; [8] must be used instead of
correspondence equations. In general, integration of n local schemes is disjoint merging of
n+1 sketches (S, ..., S, Su+1 = S¢y) and refining the result using correspondences equations
(i.e. gluing together certain items of the merge according to the E¢; equations). The result of
the integration can be written as S, =(S,®..®S, ®S,)/ E, where S, denotes results of

extending local sketches with derived elements and S, is the result of integration. Besides the
integrated sketch itself —S, , the integration procedure determines mappings g, :S, — S,
from local sketches into S, . Images of these mappings cover S, so that each of S, nodes and

arrows belongs to a;(S;) for at least one i.

So, the procedure of the diagrams (described in some modeling language) integration is the
following: 1) Converting diagrams into sketches by some predefined list of predicates, 2)
Extending sketches with derived items by means of some predefined list of diagram
operations and determining correspondence equations, 3) Merging graphs of n+1 local
schemes and refining the result according to the correspondence equations, that is applying a
closure operation for the sketches, 4) The integrated graph converting into a sketch integrating
diagram markers from the local sketches. However, here the marker integration problem can
arise. The formal base of the diagram operations and predicates lists creation is described in
details in [7], [11].

The paper [3] specifies the following criterions of integration methodologies: the used data
model; the proposed strategies to solve representation conflicts; the approaches to handle
redundancy removal; and the concepts to deal with scheme enrichments. The sketch approach
for the integration process uses sketches. Any diagram, which has formal semantics, can be
transformed into a sketch [7]. This approach reduces all kinds of representation conflicts
between semantic views to two kinds of conflicts:

e Conflicts, in the base of which is conflict between basic and derived information. lL.e.
the information, considered as the basic in one view, could be considered as derived in
other views.

e Constraint conflicts, i.e. conflicts between diagram markers.

The sketch approach proposes a gluing principle for redundant detail handling. It uses
correspondence equations between sketches. This approach uses diagram operations that deal
with new data constraints for scheme extending.

So, the sketch approach helps to integrate a structure of UML diagrams and diagrams
described in some other modeling language in a convenient formal way.

SCIENTIFIC PROCEEDINGS OF RIGA TECHNICAL UNIVERSITY
Series — Computer Science Applied Computer Systems — 4" Thematic Issue
2003

6. Conclusion

The convenient graphical formal way of system views integration has been considered in
this paper. This formal way uses the particularities of the sketch approach and corresponding
information equations. The sketch approach proposes a common framework, which partially
can be automated, for integration of different diagram kinds (and even for integration of
different kind semantic diagrams). It reduces representation conflict kinds to two types: static-
dynamic conflicts and constraint conflicts. In the paper, this approach has been applied for the
integration of static structures of data models. But it can be applied for integration of dynamic
structures (methods), too. Note, that this aspect of the sketch approach still requires additional
researches, because the integration of methods has its own particularities.

The subjects of further research are sketch approach applying possibility for integration of
data models dynamic structures and further integration methodology elaboration.

References

1. Asnina E., Osis J. "Formalization Problems and Perspectives of The Program Development" // In:
Scientific Proceedings of Riga Technical University, Computer Science, Applied Computer
Systems, 3" thematic issue, Riga, 2002, p. 145-156

2. Wheeler Th. J. ‘'Integration and Conceptual Modeling” // In: Internet —
http://people.cs.vt.edu/~edwards/RESOLVE2002/proceedings/Wheeler/

3. Eder J., Frank H. "Schema Integration For Object Oriented Database Systems" // In: Proceedings
of the ETCE, Software Systems in Engineering, ASME, New Orleans, 1994.

4. Alksnis G., Osis J. "Category Theory and Computer Science"” // In: Scientific Proceedings of Riga
Technical University, Computer Science, Applied Computer Systems, 2™ thematic issue, Riga,
2001, p. 59-67

5. Barr M, Wells C. "Category Theory and Computer Science” // Prentice Hall, London, 2nd ed.,
1995

6. Alksnis G., Osis J. "Formalization of Software Engineering by Means of the Theory of
Categories” // In: Scientific Proceedings of Riga Technical University, Computer Science,
Applied Computer Systems, 3" thematic issue, Riga, 2002, p. 157-163

7. Diskin Z., Kadish B., Piessens F., Johnson M. "Universal Arrow Foundations for Visual
Modeling" // In: Proc. Diagramms'2000, 1* Int. Conference on the theory and application of
diagrams, Springler LNAI, No.1889, 2000 - pp. 345-360.

8. Diskin Z. "Formalization of graphical schemas: General sketch-based logic vs. heuristic pictures”
/I In: FIS/LDBD, web-page — http://citeseer.nj.nec.com/diskin95formalization.htm

9. Diskin Z., Kadish B. "The Arrow Manifesto: Towards software engineering based on
comprehensible yet rigorous graphical specifications” // In: FIS/LDBD, web-page —
http://citeseer.nj.nec.com/167037.html

10. Rumbaugh J., Jacobson L., Booch G. "The Unified Modeling: Language Reference Manual” // In:
Addison-Wesley, 1999

11. Diskin Z. "Generalized Sketches as an Algebraic Graph-Based Framework for Semantic Modeling
and Database Design" // In: FIS/LDBD, web-page — http://citeseer.nj.nec.com/
diskin97generalized.htm

Erika Asnina, Riga Technical University, Meza 1/3, Riga, LV 1048, Latvia, B.sc.ing., as_erika@inbox.lv

SCIENTIFIC PROCEEDINGS OF RIGA TECHNICAL UNIVERSITY
Series — Computer Science Applied Computer Systems — 4" Thematic Issue
2003

Asnina E. Formalas apvienoSanas perspektiva programmatiiras izstradé

Saja raksta ir aprakstitas problemas, kuras var rasties datu modelu apvienoSanas gadijuma un viens no
perspektiviem celiem datu modelu apvienosanas joma. Objektorienteto datu modelu gadijuma apvienosanas
procesu var sadalit statisko struktiiru apvienosanas un dinamisko struktiiru apvienoSanas dajas. Saja raksta tiks
apskatita pirma daja, jo dinamisko struktiru apvienosana prasa papildus pétijumus. ApvienoSanas procesd
pardadas dazadi reprezentdcijas konfliktu veidi: nosaukumu konflikti, strukturalie konflikti, mervienibu konflikti
un strukturali dinamiski konflikti. So problému parvarésanai ir piedavats skicu pieejas formalisms. Skicu pieeja
pamatd atrodas kategoriju logika. Raksta apvienoSanas sofu seciba ir paradita uz divu UML klasu diagrammu
apvienoSanas piemera. Piedavata pieeja datu modeli tiek parveidoti skices, kuras péc tam tiek paplasinatas ar
atvasindtiem datiem un tiek apvienotas viend integréta skicé. Integréta skice satur skaidri redzamu bazes un
atvasinato informdaciju. Pilnigi integréta skice satur visus iespéjamos bazes datus un atvasinatus datus. Tas Jauj
reducet integréto skici lidz optimalam stavoklim, kad skicé ir atstata tikai bazes informacija. Beigds So
generéjoso skici var parveidot atpakal datu modeli. Vél viens skicu pieejas pielietoSanas pluss ir tas spejas
samazindt iespejamo konfliktu veidu skaitu.

Asnina E. Formal Integration Perspective in the Software Development

The paper describes problems occurring in the case of data models integration and one of perspective ways in
field of data models integration. In the case of object-oriented data models, integration process may be
separated in two parts, static structure integration and dynamic structure integration. In the paper, the first one
is considered in account of that the dynamic structures integration requires additional investigations. Different
kinds of representation conflicts appear during integration process. They are naming conflicts, structural
conflicts, scaling conflicts, and structural dynamic conflicts. In order to solve these problems the formalism of
sketch approach is proposed. In the base of sketch approach is category logic. The paper shows integration
steps order on the example of the two UML class diagram integration. In the proposed approach data models
are transformed in the sketches, which then are extended with derived elements and glued in one integrated
sketch. The integrated sketch contains clearly visible base information and derived information. Full-integrated
sketch contains all possible base data and derived data. It allows reducing integrated sketch up to optimal size,
when only base information is left in the sketch. Finally, this generating sketch can be transformed back into the
data model. One more plus of the sketch approach is its ability to decrease the number of possible conflict kinds.

Acnuna 3. Pazpabomka npozpammuozo odecneueHusn: nepcneKmuea hopmaibHoil unmezpayuu

B cmamve onucanvi npobnemvl, 6o3muKaiowue 6 ciyuae 00veOUHeHus Mooenell OAHMbIX, U OOUH U3
nepcnekmueHbIX nymeti 8 dmoi obracmu. B ciyuae o0vbekmHo opueHmuposanHuix Mooenell OaHHbIX Npoyecc
UHmMe2payuu MON*CHO pa3oenums HA 08e Yacmu — 00beOUHeHUe CIamu4yeckux U o0veOuHeHue OUHAMUYECKUX
cmpykmyp. B cmamve onucama nepeas uacme, m.K. 00beOuHeHue OUHAMUYECKUX CMpPYKmyp mpebyem
O0ONOHUMENbHO20 U3yueHus. B npoyecce o6vedunenuss 603HUKAIOM PA3IUYHBIE 6UObL KOHQIUKMOS
npeocmagnenuss uHopmayuy: KOHGIUKMbL HA36AHUL U UMEPEHUs GelUdUH, CMPYKMYPHble U CHpPYKMYPHO
OuHamuveckue KOH@auKkmol. [[na npeodoneHuss KOHQIUKMO8 No00OHO20 poda 6 cmambe NpeosoNHCceH
Gopmanuzm 3CKU3HO20 n00X00a. B ocHose 3cKuzHo20 nooxoda nedxcum J02uKa Kamezopuil.
Hocnedosamenvrocms 00veOUHeHUsT 6 CMamve NOKA3AHA HA npumepe 00beOUuHeHUsi 08yX OUASPAMM KIACCO8
sazvika UML. B npeonoswcenom nooxode mooenu OAHHBIX HpeoOpasyiomcst 8 ICKU3sbl, KOMopbvle 3amem
PACUUPSIIOMCSL NPOU3BOOHBLIMU — OAHHLIMU U OOBLEOUHSIOMCS 6 OOUH — UHMESPUPOBAHHBIL ICKU3.
Hnmezpuposannviii 9CKU3 COOEPAHCUM SCHO PA3TULUMYIO 6A308VI0 U NPOU3600HYI0 undopmayuro. I[loanocmoio
UHMESPUPOBAHHBILL ICKU3 COOEPAHCUM 6CE BO3MOJICHBIE 0aA308ble OAHHLIE U NPOU3BOOHBIE Oanmble. Mo
NO360J51eM COKPAMUMb UHMESPUPOBAHHBIL ICKU3 00 ONMUMAILHOZ0 COCMOSIHUL, K020d 8 ICKU3e 0CMmaémcs
moavko 6azoeas ungopmayus. OKOHYAMENLHO DMOM 2EHEPUPVIOWUL UHDOPMAYUIO ICKU3 MOICHO
npeobpasoeamv obpamuHo 8 moodenv OauHblX. Ewé 00un nawoc npumeHneHuss OAHHO20 NOOX00d — 35MO
B03MOICHOCTL COKPATUMNG YUCTIO 8UO08 BO3MOICHBIX KOHDIUKIMOS.

