Zinātniskās darbības atbalsta sistēma
Latviešu English

Publikācija: A Method of Volume Calculation for 3D Models Described by Bézier Surfaces Using Example Objects of Biomedical Origin

Publikācijas veids Publikācijas konferenču materiālos, kas ir indeksēti Web of Science un/vai SCOPUS
Pamatdarbībai piesaistītais finansējums Nav zināms
Aizstāvēšana: ,
Publikācijas valoda English (en)
Nosaukums oriģinālvalodā A Method of Volume Calculation for 3D Models Described by Bézier Surfaces Using Example Objects of Biomedical Origin
Pētniecības nozare 2. Inženierzinātnes un tehnoloģijas
Pētniecības apakšnozare 2.2. Elektrotehnika, elektronika, informācijas un komunikāciju tehnoloģijas
Autori Aleksandrs Sisojevs
Katrina Boločko
Olga Krutikova
Atslēgas vārdi Beta Function, Bézier Surfaces, Integral, Volume
Anotācija This paper describes a method of computing volume for 3D objects bounded by Bézier surfaces using example models of biomedical origin. The authors present three different theorems for volume calculation, based, based on different properties of researched models, acquired by projection of surface vertices on coordinate system origin point, axis and plane. The proposed approach is based on using methods of differential geometry: surface integrals of scalar fields, Euler integral of the first kind and Beta functions. Experimental results prove the accuracy of presented theorems. The proposed method can be successfully used to calculate the volume of different 3D models, including objects of biomedical origin.
Atsauce Sisojevs, A., Boločko, K., Krutikova, O. A Method of Volume Calculation for 3D Models Described by Bézier Surfaces Using Example Objects of Biomedical Origin. No: Proceedings of the International Confereces on Computer Graphics, Visualization, Computer Vision and Image Processing 2017 and Big Data Analytics, Data Mining and Computational Intelligence 2017, Portugāle, Lisbon, 21.-23. jūlijs, 2017. Lisbon: IADIS Press, 2017, 30.-38.lpp. ISBN 978-989-8533-66-1.
Papildinformācija Citējamību skaits:
  • Scopus  0
ID 25987