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Abstract 

Our research studies the construction and estimation of copula-based semi parametric Markov model for the processes, which 
involved in water flows in the hydro plants. As a rule analyzing the dependence structure of stationary time series regressive 
models defined by invariant marginal distributions and copula functions that capture the temporal dependence of the processes is
considered. This permits to separate out the temporal dependence (such as tail dependence) from the marginal behavior (such as 
fat tails) of a time series. Dealing with utility company data we have found the best copula describing data - Gumbel copula. As a 
result constructed algorithm was used for an imitation of low probability events (in a hydro power industry) and predictions. 
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Peer-review under responsibility of organizing committee of the scientific committee of the international conference; ICTE 2016.

Keywords: Copula; Diffusion processes; Time series; Semi parametric regressions 

1. Introduction 

     Our research studies the construction and estimation of copula-based semi parametric Markov model for the 
processes, which involved in water flows in the hydro plants. 
Copulas became popular in the finance and insurance community in the past years, where modeling and estimating 
the dependence structure between several univariate times series are of great interest; see Frees and Valdez1and 
Embrechts et al.2 for reviews.  
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     A copula function is a multivariate distribution function with standard uniform marginals. By Sklar’s3 theorem, 
one can always model any multivariate distribution by modeling its marginal distributions and its copula function 
separately, where the copula captures all the scale-free dependence in the multivariate distribution. 
     The central result of this theorem, which states that any continuous N-dimensional cumulative distribution 

function F, evaluated at point ),,( 1 nxxx can be represented as  

                                 
)),(,),(()( 11 nn xFxFCxF

               (1) 

where C is called a copula function and )( ii xF , ni ,,1  are the marginal distributions. The use of copulas 

therefore splits a complicated problem (finding a multivariate distribution) into two simpler tasks. The first task is to 
model the univariate marginal distributions and the second task is finding a copula that summarizes the dependence 
structure between them. 
     The possibility of identifying nonlinear time series using nonparametric estimates of the conditional mean and 
conditional variance were studied in many papers4. As a rule analyzing the dependence structure of stationary time 
series { } regressive models defined by invariant marginal distributions and copula functions that capture the 
temporal dependence of the processes. As it indicated4 this permits to separate out the temporal dependence (such as 
tail dependence) from the marginal behavior (such as fat tails) of a time series. One more advantage of this type 
regressive approach is a possibility to apply probabilistic limit theorems for transition from deference equations to 
continuous time stochastic differential equations5,6. In our paper, we also study a class of copula-based semi 
parametric stationary Markov models in a form of scalar difference equation  

,)()(: 11 tttt XgXfXZt             (1a) 

where },{ Ztt  is i.i.d., N(0; 1). Regressions (1a) are high-usage equations for simulation and parameter 

estimation of stochastic volatility models ([2]). But, unfortunately defined by (1a) Markov chain has incompact 
phase space that complicates an application of probabilistic limit theorem. Copula approach helps to simplify 

asymptotic analysis of (1a). Let us remember that to construct a copula C(u; v) for pair }{ ,1 tt XX  from (1a) one 

should find a marginal invariant distribution F(x) for tX  and to substitute this in joint distribution function 

),(),( 1 yXxXPyxH tt , that is, ))(),((),( 11 vFuFHvuC  and ))(),((),( yFxFCyxH .

After a substitution )( tt XFU  in equation (1) for a further diffusion approximation one can write a difference 

equation in a same form like (1a): 

.)()(: 11 tttt UUUZt               (2) 

     But now this equation defines Markov chain on the compact [0, 1]. This makes easier formulate construction for 

transition probability and further estimators of functions )(ˆ uf and )(ˆ ug . After diffusion approximation of (2) one 

can make inverse substitution and derive stochastic differential equation as diffusion approximation for (1a).  
     We found that the best copula describing data is Gumbel copula. As a result constructed equation (1a) was used 
for low probability events imitation (hydro power industry) and predictions. 

     The paper is structured as follows. Section 2 describes our approach. In Section 3 we report our results for the 
data Section 4 concludes and discusses several possible avenues of future research. 

2. Evaluation of parameters for the semi parametric regression model 

     Copula based semi parametric models are characterized by conditional heteroscedasticity and have been often 
used in modeling the variability of statistical data. The basic idea was to apply a local linear regression to the 
squared residuals for finding the unknown functions f and g5,7.
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     Our methodology builds on the finding conditional expectation of the first and second order.  

     Let }{ tY  be a stationary Markov process of order 1 with continuous state space. Then its probabilistic properties 

are completely determined by the joint distribution function of }{ 1tY  and }{ tY . For the determination of the 

copula based model we should use Markov model in the scalar difference equation in the form (1) with a  small 
parameter . And our goal reduced to the estimation of conditional moments, which will be our base regression 
model parameters: 

     ),( 1tXg  and ),( 1tXf .                              (3) 

As was mentioned above it is not easy task, especially this representation complicates an application of probabilistic 
limit theorem. That is why; if we have stationary distribution our suggestion is to find parameters through Markov 
chain using copula approach. 
And due to persistence of the small parameter , we can rewrite our expression: 

ttttt UgUfUUZt ),(),(: 111                

)|(),( 11 uUUEUf ttt                                                                                                          
(3a)    

.)|)),(((),( 1
2

111 uUUfUEUg tttt                                                                    (4)

    After conditional expectations of (3a) and (4) evaluation one can make inverse substitution and derive stochastic 
differential equation as diffusion approximation for the base semi parametric model (1a). Of course, our algorithm 
works only if inverse function exists. For example, Gamble copula, which don’t have standard inverse function. 
     Now we derived a tool for model (1a) parameters evaluation. For describing our idea briefly, let’s take a look in 
the next section how works our algorithm with the true market data.  

3. Practical approach of the proposed algorithm 

     We’ll analyze a historical observations of the equipment parameter (sample Y, please see Fig. 1). We have daily 
data from 31.12.2000 till 31.12.2015. As a result of successful operations of the equipment we are interested in a 
stable, low volatility process, but as it is in a real life, depending on weather conditions parameter values may vary 
significantly. That is why our idea to get predictions for significant deviations of the observed values in the future. 
Our main idea to set limit for allowed deviation and find an algorithm for finding distribution of the process which 
reach this level. It is clear, we are dealing with heteroskedastic process and using first lag of the observation, i.e. we 
can skip another factors which can involve this equipment stability and use just time series observations, we can use 
copula densities and build semi parametric model.   

Fig. 1. Historical parameter values (Y) of the utility company equipment. 

     An easiest way of parameters estimating of the semi regressive model for the time series would be to hold the 
algorithm:  
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Find marginal distributions for the observations of the equipment parameter  
Using marginal distribution, calculate tU  points which is R[0,1] (uniform) 
Build scatter plot for ),( 1 tt UU
Make several statistical tests to find the suited distribution of data 
Taking into account scatter plot and distribution of data try to choose copula from existing class or build your 
own copula, if you know marginal distributions 
Test copula consistency to data (for example, AIC and BIC, Kolmogorov distance etc.) 
Find regression parameters 

     Using Matlab program we have built scatter plots for Y transformed into uniform distribution (R[0,1]) and non 
transformed data.  

Fig. 2. (a) Scatter plot for non-transformed sample data; (b) Scatter plot for transformed into R[0,1] Y data. 

     As we see in the Fig. 2a time series Y has outliers. This make difficult to construct marginal distributions. Based 
on the Kolmogorov – Smirnov test we tried different assumptions about marginal distributions and the best fit was 
mixed of the exponential and the uniform distributions:  

where T is a size of sample and 1T is size of a sample without outliers.   

     Basically, taking into account margins we transformed into uniform distribution (R[0,1]) our observations. An 
important issue faced by an applied researcher interested in using the class of semi parametric copula-based time 
series models is the choice of an appropriate parametric copula. In different papers Chen et al.8 propose two simple 
tests for the correct specification of a parametric copula in the context of modeling the contemporaneous 
dependence between several univariate time series and of the innovations of univariate GARCH models used to 
filter each univariate time series (2) Chen and Fan9 establish pseudo-likelihood ratio tests for selection of parametric 
copula models for multivariate i.i.d. observations under copula misspecification4. But our suggestion is simpler – we 
can choose the best copula fit using AIC and BIC criteria or using Kolmogorov –Smirnov test for data distribution. 
We take for copula comparisons - Kolmogorov-Smirnov (KS) test (see Table 1). 
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                   Table 1. Kolmogorov – Smirnov test (distance) for Y data.

     Taking into account KS test results we should choose Normal copula for further model estimation. But Normal 
copula leads us to linear dependence between random variable. But in our research we are interested in rare jumps of 
the equipment parameter values. For this purpose we can take more tail dependence case – Gumbel copula and 
based on this copula density derive semi parametric regression parameters: 

(5) 

And insert expression (5) into conditional expectation, we get our parameters: 

                                                               (6) 

                           
                     (7)

                          
     It is impossible to solve analytically (6) and (7) expressions. But numerically it is doable for example in the 
Matab. For the Gumbel copula we can use inverse transformation with the aim to return to our base equation (1). Of 
course, if we want use this model in practice, it is crucial to compare different class models, which could be suitable 
for this data. Finally, we have depicted possible algorithm for constructing semi parametric copula based regressions 
and find solutions for modelling processes with heteroskedastic nature. Proposed algorithm allows us to make 
imitations of the process and find distribution of time when process reaches certain border. This is very critical in a 
utility industry for making special preparations before equipment may go out of order. In the next sections, there is 
example of process Y imitation based on Gumbel copula: 

Construct marginal distributions for data tY
Find copula and it parameters 
Estimate semi parametric regression model via copula 

Construct iteration procedure in points nt  with small parameter 0.01h

Find distribution of time ( , )x  to reach nX  via Monte Carlo imitation 

Make iterations of the 4-th step N times until ( ) ( )ny t F  and remember number 
( )kn  (after every iteration) 

Construct histogram of the
( ){ , 1,..., }kn k N and find distribution 

4. Conclusions and discussions of the proposed algorithm 

Having built algorithm for the constructions copula based regressions and taking into account process imitation 
procedure (steps 1-4) we have modeled process Y via Gumbel copula based semi parametric regression (see in the 
Fig. 3). Our model imitation results graphically closed to time series Y values. Basically, our imitations react on 
volatility fluctuations. This gives possibility to use this model for evaluation border distributions. 
   

Copula KS value 
Gumbel copula 0.67 
Frank copula 0.65 

Normal copula 0.18 
T 0.7 
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Fig. 3. Historical and modeled values (Y) of the utility company equipment. 

     But if we deal with copulas we should not skip some facts. For example, it is not easy to say which parametric 
copula best fits a given dataset, since some copulas may fit better near the center and other near the tails and many 
copulas do not have moments that are directly related to the Pearson correlation, it is difficult to compare financial 
models based on correlation.  
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