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Abstract 

This paper deals with stability analysis of elastic pipeline containing water flow, the velocity of which is perturbed harmonically 
under an action of pulsate fluid flow.  The stability conditions of the pipeline section are analyzed under assumption of the 
mathematical model of fluid caused by longitudinal force with Poisson characteristics and application of the stochastic 
modification of the second Lyapunov method. 
 
© 2016 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of organizing committee of the scientific committee of the international conference; ICTE 2016. 

Keywords: Pipeline dynamics; Perturbation theory; Second Lyapunov method; Random harmonic oscillator 

1. Introduction 

Pipelines are among the most critical elements of aircraft design. The requirement for weight reduction is 
associated with decreasing thickness of pipes’ walls. An important question for pipes with thin walls is how the pipe 
cross-section impact to the stability  of the pipelines’ dynamics with liquid flowing through it. In particular, the 
actual purpose of the research is pipelines’ parametric oscillations. There is plenty of  literature devoted to 
parametric resonance excited fluid flow with low ripple flow rate in pipeline1,2. The parametric oscillations of the 
pipeline were studied, perturbed simultaneously by pulsed fluid flow and a variable longitudinal force also3. The 
purpose of this study is to evaluate the effect of transverse strains cross section of the pipe under pipelines’ internal  
pressure pulsations pipeline as another destabilizing factor causing parametric oscillations. 
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There are pipelines’ sections temporarily overlain by simple or other shut-off valves in the hydraulic circuits of 
different technical systems, such as propulsion systems of aircraft, communications ground launch facilities, energy 
equipments. Moreover,  the intense pressure pulsations before these valves are often observed during working 
processes of hydraulic units.  Therefore, it is necessary to calculate the pipeline stability conditions, which are 
located upstream of the valve. 

Let us consider the straight section of the pipeline length L, filled with an incompressible in viscid liquid. Since 
the liquid is non-viscous, friction between the walls of the pipeline and the medium is absent. The tube has a 
constant circular cross-section (the average diameter D0 and wall thickness h). The overpressure at the entrance of 
the pipeline is created. The conditions of pipe fixing are hinging ends of the pipe segment. The overpressure has 
both permanent components and components, which are changing by the law                                  ,  where y(t) we 
decompose later. 

Therefore, the equation of small transverse vibrations of the pipeline taking into account the effect of the cross-
sectional view of the rotational inertia has the form3: 

                                 
4 2 2
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                                                  (1) 

 
This equation was developed4 for analysis of the transverse oscillations of a pipeline section of length L under the 

action of pulse fluid flow. Here we use the following notations: 
 

EJ -  flexural rigidity of  pipeline 
( )P t - disturbance longitudinal force, involved by fluid flow 

m  -   mass of unit of pipeline length 
D  -  dissipation factor 

 
This model has been delineated5 for pin-ended pipeline section assuming boundary condition in a form of 

equalities: 

                                   2 2
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and a longitudinal force in the form, which is already mentioned before:  
                                   0 1( ) ( ( ))P t P P y t ,                                                         (4) 

where y(t) is Poisson process with exponential distribution with parameter  between switches with values n  - on 
R(0,1). The infinitesimal operator of the Poisson process is: 

       
1

0

( ) [ ( ) ( )]Qv y v z v y dz .                                                                      (5) 

As the author of paper5, we decompose solution of equation (l-3) in Fourier series:  

       
1

( , ) ( )sinn
n

nxu t x T t
L

                                         (6) 

and discuss behaviour of the first shape amplitude Tn(t). Under assumption of sufficiently great mass for dissipation 
factor, they apply well known Bogolyubov-Mitropolsky method6 to the second order ordinary differential equation 
Mathieu for function ( )nT t , and discuss pipeline stability. 
After applying7 the stochastic stability analysis method derived in our paper, we also study the dependence on the 
intensity  and the frequency mismatch of a necessary dissipation factor D to continue our investigation of stability 
conditions that have been started8. 
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2. Stochastic oscillator 

As in the paper8, we apply decomposition (6) to the solution of equation (1)-(3) with above (4) longitudinal force 
P(t) and derive the second order stochastic differential equation having the following form: 
                                2 22 ( ( ))x x x x h y t ,                            (7) 
where the random process y(t) – is the Poisson process with infinitesimal operator  

1

0

( ) [ ( ) ( )]Qv y v z v y dz  (that means, that due to condition of normal solvability: 
1

0

( ) 0,g y dy and therefore   

( ) ( )Qg y g y ). 
Using the substitution, the equation for the radius and phase can be derived: 

                                1 2cos , sinx r x r , 2 .                                                 (8) 
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To analyze -exponential stability of the solution for equation (7) we will apply the second Lyapunov method 
and derive mean square stability conditions. First of all let’s denote the Lyapunov function 

( , , ) ( , )F r y r V y . As we know9 the Lyapunov function should be satisfied the Lyapunov inequalities:  
                   0 0, c 0, { , ,| | } :y  

                                 1 2 1 2, ( , , ) , 0F cF c r F r y c r for any c cL .                                (10) 
 

The Lyapunov derivative can be written by the form: 

                                  r              (11) 
or 
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                          (12) 

Next, let’s rewrite the equation (11) with small positive parameter  by the following way: 
( )( , , ) ( ) ( , ),F r y r V yL L where ( )L is  infinitesimal operator of the process ( , , )r y  defined on the 

space L2 ( 22S ) for sufficiently smooth functions by the equality: 

                                 

2

1 1( ) 2 ( ) sin [1 cos ] ( )
2

2 1 cos 2 sin .

Q h y h yL
                             (13) 

Therefore function ( , )V y can be found from the equation:  
                                 ( ) ( , ) 1V yL                                 (14) 
and -exponential stability conditions means: 

                                 
2 2

1 1( , )r r V y r F
c c

. 

Then we apply the method of the small parameter and find the functions ( )L   and ( , )V y  through the series 



15 Jevgenijs Carkovs et al.  /  Procedia Computer Science   104  ( 2017 )  12 – 19 

by small parameter . First, we rewrite equation (13) for ( )L  by the following form 2
0 1 2( ) .Q Q QL

Therefore, from (13) we can defined operators  Q0, Q1, Q2 : 

                                 

0

1

0

1

2
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                            (15) 

Let’s decide to have the following solution for the Lyapunov function ( , )V y : 
                                 2 1

0 1 2( , ) ( , ) ( , ) ( , )V y V y V y V y .                                                    (16) 
 

Now we apply the stochastic modification of the second Lyapunov method9 and we deal with the equation (14). 
The necessary and sufficient condition for exponential decreasing of the second moment 2 2{| ( ) | } {| ( ) }z t r tE E is 
positivity of function ( , )V y for all 2{ , }y S  and sufficiently small  > 0. The family of operators ( )L defined 
in (15)  is a holomorphic family  and  we can look10 for  function ( , )V y  in a form of the Laurent series 

2

( , ) ( , ).k
k

k
V y q y  Substituting this series in (14) and equating the terms near the same powers of   we can 

find the first function 2q from equation 0 2 0Q q as an arbitrary constant 0 ( , )V y q . The equation 
*

0 ( , ) 0Q p y also has only constant solution and we can set ( , ) 1p y . 
Next, taking into account equality 1 2 0Q q we should analyze the equation: 

2 1
0 1 0 1 2 1 1 0 2 (17)( ) ( , ) ( , ) ( , ) ( , ) ( ) ,V y Q q Q q Q V y Q q Q V y Q V y OL  

The first step is to find function 1( , )V y  from the equation (16): 

                               
1 0 1
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Let’s the solution of the equation (18) will be the following: 

                                    
1 1 2
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2
h yV y q C C , 

where 
1C and 

2C are arbitrary constants we just find: 
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Therefore, 
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2 ( 4 )

V y q h y .         (19) 

     The second step is to find the constant q  from the equation: 
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     To fulfil the condition of normal solvability of equation (20) we should consider the equation (21), where 

1( , )V y is already known: 

1 2 2
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Then, 
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And the last step is to write stability condition for solution of equation (1) : 
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2

2 2 2

( 2 )0
8 ( 4 )

q .                                                        (23) 

3. Linearized equation for the pipeline under stochastic perturbation    

In our previous notations the linearized equation for the pipeline shape Tn(t) is the following:  
 

                                 
4 2

0( ) ( ( ( )) ( ) ( ) ( ) 0n n n n
n nEJ T t P P y t T t DT t mT t

L L
.                     (24) 

 
Assuming the mass m and the flexural rigidity factor EJ are sufficiently large and   dissipation factor D  is 

sufficiently small we can introduce a small parameter  > 0 and rewrite equation (23) in a following  form: 
                                 2 2( ) 2 ( ) ( ) ( ( )) ( ) 0n n n n n nT t T t T t h y t T t ,                                                   (25) 
where 

                                 
224

2 2 2 2 2 2 0
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.               (26) 

Substituting the parameters (26) in the formula (23) we can derive the stochastic stability borders n  for shapes 
Tn(t), n  N in a following form: 
                                 

2

2 2 2 2 2

1 ( 2) ,
8 ( ) ( ( ))n n n p n n p

                                        (27) 

where   
4

4

EJ
mL

 . 

Note that for a qualitative analysis of the stochastic stability shape borders n  without loss of generality we can 
make substitution: 1, and analyze the formulae 

                                 
2

2 2 2 2 2

1 ( 2)ˆ ,
8 ( ) ( ( ))n n n p n n p

                                  (28) 

4. Conclusion 

Now we can discuss the impact of the parameters p and  on giving by the above formula stability border for 
the shapes Tn(t); the parameter p in this case can be considered as the frequency mismatch (see Fig. 1). 

 
 

Fig. 1. Dependence of stochastic stability border on mismatch p and intensity   resonance region, n = 1. 
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First of all the defined by formula (28) surface for any n  N has a very similar form to shown in Fig.1 surface 
for  n = 1. Both for negative p > -1  and  positive p and sufficiently big intensity the pipeline oscillations decay even 
for a relatively small dissipation (see Fig. 2).  

 

 
 

Fig. 2.  n = 1. Dependence of p with several values of intensity . 

 
But it should be mentioned that the stochastic stability border non-monotonic depends on the intensity and 

mismatch for all shapes as function on intensity  have maximum and decrease with increasing of intensity (see 
Fig. 3). 
 

 
 

Fig. 3.  p = 1. Dependence on . 

References 

1. Leipholz HHE. Stability of Elastic Structures. Springer Verlag. Wien; 1978. 
2. Timoshenko S. Theory of Elastic Stability. McGraw-Hill; 1936. 
3. Bolotin VV. Dynamic stability of elastic systems. San Francisco: Holden Day; 1964. 
4. Ariaratnam ST. Stability of Mechanical Systems under Stochastic Parametric Excitation. Lecture Notes in Mathematics. 294; 1972. p. 

291–302. 
5. Ishemguzhin IE, Gabbasov IA, Shammazov MR, Sitdikov MA, Kochekov MA. Damping parametrical vibrations of the pipeline. Oil 

and Gas. 3; 2011. p. 84-93. (in Russian).  
6. Bogoljubov NN, Mitropoliskii JA, Samojlenko AM. Methods of Accelerated Convergence in Nonlinear Mechanics. Springer-Verlag; 



19 Jevgenijs Carkovs et al.  /  Procedia Computer Science   104  ( 2017 )  12 – 19 

1976. 
7. Katafygiotis L, Tsarkov Y. Mean square stability of linear dynamical systems with small Markov perturbation. Bounded coefficients. 

Random Operators and Stochastic Equations. 4 (2); 1996. p. 133-154. 
8. Carkovs J, Stoyanov J. Asymptotic methods for stability analysis of Markov dynamical systems with fast variables. In: From 

Stochastic Analysis to Mathematical Finance. Festschrift for Professor Albert Shiryaev. Kabanov Y, Liptser R. (eds.) Springer-
Verlag; 2005. p. 93-110. 

9. Carkovs J, Matvejevs A. On Stochastic Resonance in Pipeline Induced by Pulsed Fluid Flow. In: Proceedings of the 14th Conference 
on Applied Mathematics APLIMAT 2015. Slovak University of Technology in Bratislava. Publishing House of STU; 2015. p. 167-
174.  

10. Kato T. Perturbations theory for linear operators. Springer-Verlag; 1966. 
 
 
 

 

Jevgenijs Carkovs is full time professor and Probability Theory and Mathematical Statistics 
Chair at the Faculty of Computer Science and Computer Engineering Riga Technical 
University. He is Dr. Habil. Math. (1992). His main research interests are related with 
Probability Theory, Mathematical Statistics, Stochastic Differential Equations, Markov 
Dynamical Systems, Stochastic Analysis and Dynamical Systems. Contact him at 
jevgenijs.carkovs@rtu.lv. 

 
 

 

Oksana Pavlenko is a graduate of Latvian University, Faculty of Physics and Applied 
Mathematics, holder of the Doctoral Degree in mathematics since 2001, a Docent at Riga 
Technical University since 2001. She has been teaching at Riga Technical University for more 
than 20 years. Her previous research was devoted to stability and diffusion approximation of 
dynamical systems with random perturbation. Her current professional research interests 
include applications of diffusion approximation of impulse systems with small random 
perturbation and autoregressive conditional heteroskedastic models for financial data.  Contact 
her at oksana.pavlenko@rtu.lv. 

 

 
 

Andrejs Matvejevs is a graduate of Riga Technical University, Faculty of Computer 
Science and Information Technology, holder of the Doctoral Degree since 1989, a Professor 
at Riga Technical University since 2005. He has made the most significant contribution to the 
field of actuarial mathematics. Andrejs Matvejevs is a Doctor of Technical Sciences in 
Information Systems. Until 2009 he was a Chief Actuary at the insurance company 
"BALVA". He has been teaching at Riga Technical University and Riga International 
College of Business Administration, Latvia for more than 30 years. His previous research 
was devoted to solving of dynamical systems with random perturbation. His current 
professional research interests include applications of Markov chains to actuarial 
technologies: mathematics of finance and security portfolio. He is the author of about 80 
scientific publications, two textbooks and numerous conference papers. Contact him at 
andrejs.matvejevs@rtu.lv. 


