Zinātniskās darbības atbalsta sistēma
Latviešu English

Publikācija: Constructing Interpretable Classifiers to Diagnose Gastric Cancer Based on Breath Tests

Publikācijas veids Zinātniskais raksts, kas indeksēts Web of science un/vai Scopus datu bāzē
Pamatdarbībai piesaistītais finansējums Nav zināms
Aizstāvēšana: ,
Publikācijas valoda English (en)
Nosaukums oriģinālvalodā Constructing Interpretable Classifiers to Diagnose Gastric Cancer Based on Breath Tests
Pētniecības nozare 1. Dabaszinātnes
Pētniecības apakšnozare 1.2. Datorzinātne un informātika
Pētniecības platforma Neviena
Autori Inese Poļaka
Evita Gašenko
Orna Barash
Hossam Haick
Mārcis Leja
Atslēgas vārdi Classification; Decision tree classifier; Classification rules; Cancer diagnostics; Breath analysis
Anotācija Quick, inexpensive and accurate diagnosis of gastric cancer is a necessity, but at this moment the available methods do not hold up. One of the most promising possibilities is breath test analysis, which is quick, relatively inexpensive and comfortable to the person tested. However, this method has not yet been well explored. Therefore in this article the authors propose using transparent classification models to explain diagnostic patterns and knowledge, which is acquired in the process. The models are induced using decision tree classification algorithms and RIPPER algorithm for decision rule induction. The accuracy of these models is compared to neural network accuracy.
DOI: 10.1016/j.procs.2017.01.136
Hipersaite: http://www.sciencedirect.com/science/article/pii/S1877050917301370?via%3Dihub 
Atsauce Poļaka, I., Gašenko, E., Barash, O., Haick, H., Leja, M. Constructing Interpretable Classifiers to Diagnose Gastric Cancer Based on Breath Tests. Procedia Computer Science, 2017, Vol. 104, 279.-285.lpp. ISSN 1877-0509. Pieejams: doi:10.1016/j.procs.2017.01.136
Papildinformācija Citējamību skaits:
ID 26332