Zinātniskās darbības atbalsta sistēma
Latviešu English

Publikācija: Knee-Joint Tissue Recognition in Magnetic Resonance Imaging

Publikācijas veids Publikācijas konferenču materiālos, kas ir indeksēti Web of Science un/vai SCOPUS
Pamatdarbībai piesaistītais finansējums Valsts budžeta finansējums izglītībai
Aizstāvēšana: ,
Publikācijas valoda English (en)
Nosaukums oriģinālvalodā Knee-Joint Tissue Recognition in Magnetic Resonance Imaging
Pētniecības nozare 2. Inženierzinātnes un tehnoloģijas
Pētniecības apakšnozare 2.2. Elektrotehnika, elektronika, informācijas un komunikāciju tehnoloģijas
Autori Artjoms Supoņenkovs
Zigurds Markovičs
Ardis Platkājis
Atslēgas vārdi magnetic resonance imaging; image segmentation; knee-joint; medical imaging; DICOM; osteoarthritis; image preprocessing; computer vision; co-occurrence matrix; tissue recognition
Anotācija The automatic knee-joint soft tissue recognition problem is very relevant due to increasing number of people with knee-joint diseases. It is for this reason that this paper investigates the problem of soft tissue recognition in magnetic resonance imaging (MRI). MRI is useful for knee-joint soft tissue presentation, but usually a doctor cannot see all necessary information in MRI data. Computer MRI analysis makes it possible to process all MRI data and shows additional information for the doctor. This additional information can make it easier to detect invisible injuries of knee-joint soft tissues. Knee-joint soft tissue recognition and analysis are very helpful, especially for osteoarthritis (OA) early diagnostics. Computer OA diagnostics are impossible without segmentation of knee-joint tissues. This publication describes approaches for knee-joint image pre-processing, knee-joint image segmentation, tissue recognition and tissue analysis. To solve tissue analysis task it is important to use biological information of knee-joint structure, physical and biochemical tissue features. Tissue analysis is very useful especially for early diagnostics. It allows starting treatment earlier and therefore reducing the risk of tissue destruction. It is for this reason that this paper investigates the above-mentioned challenges.
DOI: 10.1109/NC.2017.8263280
Hipersaite: http://ieeexplore.ieee.org/document/8263280/ 
Atsauce Supoņenkovs, A., Markovičs, Z., Platkājis, A. Knee-Joint Tissue Recognition in Magnetic Resonance Imaging. No: 2017 IEEE 30th Neumann Colloquium (NC 2017), Ungārija, Budapest, 24.-25. novembris, 2017. Piscataway: IEEE, 2017, 1.-6.lpp. ISBN 978-1-5386-4637-3. e-ISBN 978-1-5386-4636-6. Pieejams: doi:10.1109/NC.2017.8263280
Papildinformācija Citējamību skaits:
  • Scopus  0
ID 27322