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Abstract

The main research objective is power grid and phaeasurement units.

It is posited that the act of measuring the varipasameters of signal is the
same to solving the equation for the chosen matheahanodel. Essentially is a fitting
problem in mathematics. The equation is a modelvbat metrologists term the
measurand, the name given to the quantity to besumned, and the measurement
equipment must be designed around it. The equbgong fit is a model based on the
“physics” of the signal and natural phenomenon melii. Regardless of exactly how
the measurement is made, a metric defined anddctlée Goodness of Fit allows the
measuring system to comment on the match betweesighal it is observing and the
model. The metric is based on the residuals, tfferdhces between the signal itself
and the value calculated from the result of measarg. Results from real-word phasor
measurement units and real-world signals illustitzée the equation of the PMU is well
solved during steady conditions. The effects o&wltfin the transmission system is
analyzed on the Goodness of Fit metric for a PMU.

This work addresses how to deal with non-statiopanyer signals. Firstly, to
measure a time varying signal, in a world of digiteeasurements, the relationship
between the sampling window of the measuremenesysind the rate at which the
signal is varying must be addressed. In this werlegal changing-frequency cases are
examined. It is shown that the parameters of thesfgBal can be found by curve-
fitting. A working proof-of-concept signal estimates shown and realized in the
MATLAB environment. Lessons can be drawn aboutrtiie of different noises in
measurement and about the very meaning of thetr&atistical tools, such as Allan
variance are used to examine the stability of perémce for estimator, as well as noise
influence on estimation process.

A new statistical analysis tool is experimentalyown to be applicable to
digital measurements, called “sampling variancey. \Earying sampling rate, it is
shown that an optimum exists for smallest parameteance depending on noise type.

The Doctoral Thesis has been written in Engliskoltsists of an Introduction;
5 Chapters; Conclusion; 58 figures; 2 tables; 3ea&as; the total number of pages is
91. The Bibliography contains 60 titles



Anotacija

Promocijas darba galvenai€tjuma objekts ir elektroapges sistma un
vektoru nerijumu ielartas.

Sap darts tiek pagdits, ka dadu sigrila parametru grianas process ir tas
pats, kas atrisit izveleta matenatiska modda vieradojumu. Bitiba to var apskat ka
Iiknes parametru noteikSanas peotli materatika. Vienadojums S& gadjuma ir tas,
ko metrologi apune ka méramo \ertibu, un ngriSanas iekrta ir jaizstrada ap to.
Vienadojums, kura grtibas tiek pierérotas tknei, ir nekas cits&kmodelis, kas balgs
uz sigrala "fiziku". Neatkargi no &, ka tieSi neriSana tiek veikta, tiek piadata
metrika, kas defigta un nosauktaak Goodness of Fit lauj neriSanas sistnai sniegt
komentrus par atbilsbu starp nosroto sigralu un konceptalo modeli. Metrikas
pamai ir starpbas, atBiribas starp narota sigrala vertibam un \ertibam, kas
aprkinatas no mérjuma rezulita. Rezuliti no uzsiditam realam rojosa vektora
(phaso) merfjjumu ielartam (PMU) un raliem sigraliem paéda, ka §s ielartas, lai ar
to neapzinoties, atrisina &0Sa vektora vieadojumu. PMU metrikas iesfas tiek
demonstEtas izmantojot r@as parraides sishmas datus, tai skaitlinijas bogjuma
laika.

Sap dara apskaits, ki rikoties ar nestaci@niem energosistnas sigaliem.
Pirmkart, lai izmeéritu laika mairigu sigralu, izmantojot digiilos nerfjumus, ir
jaatrisina saikne starpansanas sistnas n@rjjumu logu ilgumu un sigila parametru
mairidanasatrumu. Saj darla tiek izskatti vairaki mairigas frekvences ggdmi. Ir
paadits, ki AC sigrila parametrus var atrast akrles moritzu. lzstadats liknes
mon@zas matertisks koncepts, kas reaiizs MATLAB vidé. No ieditajiem
rezulétiem tiek izdafti secirgjumi par daZdu trokfiu noZmi MErjumos un par
rezulata patieso nami. Tiek pielietoti daZdi statistikas 1ki, tai skaif, Allana
dispersiju, kas izmantota, ladfpaudtu koncepta veiktsgas stabiliti, ka af trok&u
ietekmi uz n@rijumu procesu.

Eksperimertli tiek pieradits, ka jauns statistigk anaizes 1ks, kas nosaukts
par "diskretizcijas dispersiju” ir pierots digitlajiem nerjjumiem,. Mainot sigala
paraugwmemsanas frekvenci, tiek padrts, ka pagiv viszenakais parametru novirzes
punkts, kas atkags no traugiumu veida.

Doktora promocijas darbs ir almgvalodi. Tam ir §das sadas: levads, 5
noddas, Seciajumi, 58 attli, 2 tabulas, 3 pielikumi un ks lappusu skaits ir 91.
Literataras sarakatmingti 60 literatiras avoti.
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Introduction

While enjoying wine and contemplating why phasoraswement units for
transmission systems struggle to meet requirensattsut by IEEE [1] Dr. Kirkham
had a novel idea. In 2015 | was introduced with ilea that the act of making a
measurement is actually the same as solving a matiel equation. Consequently,
an incomplete equation would give inaccurate messant. The concept can be
proved, and in 2015 we set out to do just that.

It became clear that one of the most importantteusted measurement devices
for high and extra-high voltage alternating currgabhsmission systems may have an
incomplete mathematical model. IEEE even gave aime to skip reporting
measurements during signal transitions [2]. Thissti& seem right.

The idea for measurement as solving an equaticgsgneedom to define the
model and therefore define the equations and maadsraccording to our best
understanding of reality. Models in this case ageyvmportant and it appears that
Phasor Measurement Units (PMU) during the momeets&ed the measurements the
most — system faults - struggle to make senseeofdaality with chosen model. Just as
a reminder PMUs currently play a very importanttpar a modern transmission
(recently also distribution [3]) system and help&éep lights on.

| was very lucky to work with Dr. Kirkham during 22015 and 2016 at Pacific
Northwest National Laboratory, Richland, USA whe&ve designed a mathematical
proof of concept for an intelligent measurementfifdt the priority was to find the
model for instantaneous frequency of the poweresysthat is essentially the main
purpose for the PMU - to indicate sudden changegstem frequency. This work led
to other findings and during the productive worgdther a working proof-of-concept
solution, called SEMPR (Signal Estimation by Minang Parameter Residuals) was
designed and put to the test with synthetic as aglleal data. Since SEMPR is time
domain calculation with complete independence betweeasurements, it is important
to show, that calculation (or parts of calculatiovolving Goodness of Fit) can be done
by any PMU. Joint work resulted in numerous confeeepublications, transactions
paper and a report [4] [5] [6] [3] [7] [8] [9] [1L1]. Interested reader is sincerely
encouraged to go through the published work firefpre reading this thesis as it is a
continuation and unpublished extension of the cunerk.

First chapter deals with philosophical questions laasis for the non-stationary
power system waveform measurements. Nature mustmated from the conceptual
models in ones mind, while keeping the model titaetand related to nature. Models
can be re-adjusted, but nature can't.

Second chapter focuses on phasor measurement onateematical model
underneath, and their use in power system syncednimeasurements. Model
limitations have been indicated and possible smhstioffered.
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Third chapter shows the mathematical and develppattical proof-of-concept
for Kirkham equation-based model for phasor-likeasweements in power system
(Signal Estimation by Minimizing Parameter Resid)al

In fourth chapter the limitations for SEMPR are lexed with various synthetic
signals, containing variations of noises and haio®rstatistical analysis methods are
implemented and sampling variance is introduce@p@dr provides first experimental
results on sampling variance for possible usesahworld applications.

Fifth chapter contains results from real-world silgrand PMU measurements,
including a fault in Extra-High Voltage network.i#t shown that SEMPR in general
performs better with measurements over the fautipdad data than PMU. Results of

statistical analysis is provided for real-world M&d Voltage distribution network
signal.

This work is on 91 pages, has 58 figures, 2 talBl@sinexes and 60 references.
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1 Analysis of different mathematical models for realrld
representation

Curiosity has been one of the most beneficial atarsstics of our society. Our
constant urge to ask questions has led to scientiiscoveries and great
accomplishments. At the very basis of each quessiayur perception of things we
observe. Note that the perceptions may be diffdrent person to person and not easily
comparable. This is where mathematics comes t@radcan describe our perceived
model in our heads in a very definitive way.

Mathematical models are our constructions of tladitgeand for most cases can
be branded as “our best guess” while the chaserfieersal model for explanation of
the universe is still on. One of our best guessdsStandard model [12] is incomplete
and could be part of bigger picture. Nonetheless,have come a long way since
Pythagoras around 500 BCE was one of the firsegprito describe Earth as spherical
and a student of Plato — Eudoxus put the Eartthatcenter of the Universe and
described first known mathematical model for thiesteal motions [13]. This model
was then advanced by Greek philosopher Aristotig, dventually dismantled by
Nicolaus Copernicus in 1543. For understanding hbimgs work, models are
important.

Like with Aristotle and Copernicus models, both based on observations and
meant to explain celestial motions, but the outcawvery different. Here the scientific
method is essential. An empirical method must b&iged to root the model in reality.

1.1 Carnap equation and model

Rudolf Carnap was a German-born American philosophd considered one
of the giants among twentieth century philosophetis. work and contribution to
inductive logic is considered one of the greatebsievements of modern philosophy
[14].

Large part of his early work is related to philosgpf physics and experimental
method. The experimental method (scientific metladlws us to take action, instead
of being just onlookers. Instead of waiting for imu&ion where observation could
happen we can purposely make such situation, easkgmake an experiment.

The most relevant notion to begin with is the Cpargaantitative language of a
measurement, or in other words - labeling for défé models. A good example is
given in [15] with spatial length. Consider two eglwith length, for example pieces
of wooda andb. If they are combined so that they are end tolgnd in a straight line
the new physical entity is now a combination of wiapects and have length that is the
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sum of the lengths & andb. This sounds like additive rule for length. Untorately,
quite often this rule is not satisfactory. As Carmdpserves, this is a very poor way to
formulate a rule, main issue being that the wowtl"ds being used twice in the same
equations, but with very different meanings. Asftiint's used for joining together two
physical objects and then it's used to describea@hmetical operation. It is not
possible to arithmetically add two lines and expi@s

L(a+b) =L(a)+L(b) , (1)

wherelL is the length of the two pieces, is erroneous. éwnd symbol+”
expresses the arithmetical operation of addingthmifirst one does not. You can add
two numbers, but you cannot add two bits of woothay are physical objects in space.
In this sense the first symbot* denotes the physical operation of combining and
Carnap really stresses out the difference betwhentwo worlds — physical and
mathematical. The symbol for physical joining opiera“c” is then introduced. Correct
way of expressing the joining of two lines then is

L(aeb) =L(a)+ L(b) . (2)

It is obvious that the left part of the equatiomakes the real, physical world
and the right part is the conceptual or mathemladice. The “=" is the bridge between
them and realized as the act of measurement. Bgdhef measuring we can transfer
from operations with physical objects to mathen@tmperations in the conceptual
world. The “=" of course is true only if we can kmthe actual true value by measuring
the thing and whetherr” would be more appropriate, is a conversationdapi its
own.

By this point we can talk about the characteristits wave function and its
representation in our conceptual minds. Every péidunction has a frequency
parameter, but frequency by definition “number otwrences per unit of time” is
something existing in real world as swinging pendulor celestial cycles. Once we
cross the “=" in Carnap equation (2) it becomesaaable in an equation of a wave
function. There is a large difference and we shawoid confusing them at all times.
For the purpose of this work the term “frequencghdtes second variable in wave
function (symboly) and the physical property of this number shoggbt aside, since
there are questions like:

- What is the frequency when frequency is changing?
- What is the frequency for a quarter of a cycle aign

In this sense in this work “frequency” (if not saitherwise) is only true for the
measurement window and is a parameter in an equédioa mathematical model.
During work it was proposed to switch from termetjuency” to “apparent local
frequency (ALF)” (apparent, because conceptualallobecause true only for
measurement window), but it was never widely used.

13



1.2 Rutman models

Jacques Rutman is a French scientist who has bated greatly to precision
oscillators in clocks and frequency stability measwents. Keeping in mind the
distinction between the nature and our conceptealdn. Rutman put it this way:

“... models are used to represent the physical wathich
iIs so complex that many details are ignored in thedel:
otherwise, the latter would become intractable.taother hand,
properties that have no direct meaningful countetp@ the real
world have to be included in the model to makeractable
(stationarity of random processes is a well-knowamnaple). “[16]

So, we are quite free to add or remove parametaisagsumptions to our
conceptual models of reality, but have to alwayspkim mind that it does not change
the reality itself, just our understanding. If sdhieg changes in nature, we have to
accommodate in our models, otherwise our knowleoigéhe phenomenon being
observed will be completely wrong, yet measurencantstill be very accurate.

In [17] J. Rutman points out that:

“At first, it is important to emphasize on the fdwt the
two following facets are often confused:

- The real world, with its physical devices, measweinapparatus,
experimental results derived from reading meteosinters, dial
settings and so on.

- The mathematical model, with the means and rulesgerating
with the symbols introduced in it.”

The mathematical model of an oscillator is givelify:

V(t) = [Vo + E(®)] sin[2mvet + @ ()] , 3)

where Vo is nominal amplitudepo is nominal frequency(t) is random
amplitude noise ang(t) is random phase noise.

So, what is the frequency when the frequency isgimg? Instantaneous
frequency?

Instantaneous angular frequency for (3) is

do(t) 4)
dt ’

d
w(t) = a(wot + (p(t)) = wy +

14



do(p)

dt
wo. But for model tractability in physical world (Gap equation left part) the
mathematics get very tricky, pointed out by Rutrmafi7].

where¢(t) = is a random frequency fluctuations around thelidake

There is stationarity problem fap(t) where theoretically white noise in
oscillators leads to phase diffusion process smida@rownian motion. In this case it
becomes impossible to introduce exact correlatimetion or a spectral density of the
phase. Since a lot of random processes has naatleeifunction, the existeneg(t)
is at question. Even if the physical interpretatie@ems obvious, is not always
mathematically defined. As Rutman concludes, onstibe very careful when dealing
with phase and frequency noises, since it may teaduse of non-existent quantities.
In this work SEMPR is made to operate with freqyemphase, and amplitude noises,
but it is done controllably keeping in mind the piwal implications.

For physical sense for this work Rutman states 1] [that essentially
instantaneous frequency for Carnap left side otthgation can never be instantaneous
since it always involves a finite averaging intérxzal he notion of frequency for a dot
on a wave function is simply not possible and tame distinction must be drawn
between mathematical frequency (e.g. ALF) and maydrequency of a periodical
wave.

1.3 Kirkham model

The question about what the frequency is when thgquency is changing
resulted in new ideas and research in phasor-likasorements [11]. It did not stop
there, and many philosophical questions have béstusked. Interested reader is
referred to Annex No. 3 for frequency measurandugdision.

Consider equation (2) and separation of naturecandeptual model of nature.
In [18] Claude Shannon admits that frequently theessages sent over
telecommunication channel has meaning that is, itbiey to or are correlated. He then
went on to discard this notion as this, in his veors not part of the engineering problem
for the communication channel he was considering. Dr. Kirkham’s idea to show
that the "message"” coming from a measuring devase'meaning” and it must not be
ignored. The correlation to the nature in left sideCarnap equation should be kept.
The equal sign in the equation (2) is the link ket conceptual and real worlds, but it
must be approached carefully as it does not mesatiéi same as”, instead it should be
interpreted as "is the same value as". Thereftwe physical frequency of repeating
oscillations is not the same as the value for tbguency in a mathematical model, it's
just a representation.
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The same stands true not only for measuremenglbaitfor signal generation.
Dr. Kirkham shows that those are practically theegust in different directions in
Carnap equation,

sisgal generation 5)
X(a © b) = X(a) + X(b)

S p—————
measurement

where measurement is an act of solving an equétiomathematical model
values, but the process of signal generation mmfeanation from the mathematical
model into physical world. As Kirkham indicateslilbeation, of course involves both.
The calibration block diagram is given in [11]

generation instantiation _heed measurand

algorithm (\‘;" :-‘e of “ge+fan equation)

signal
generator

sample values

prensssanianann v

sampler measurement declared " model
and A/D algorithm value  te=u"i(an equation):

ey O | b/ e

S
d voltage measuring
reference instrument

e

Figure 1.1 Calibration block diagram

In Figure 1.1 the calibration corresponds to Carnap equatiop wedl. On the
left side there are real-world non-perfect and yisignals, and on the right side is the
conceptual mathematical world, that in both casesaSurement and generation)
contains some mathematical models, made by ourrstageling of physics and
mathematics.

Coming from this work is the notion that mathemationodels for
measurements (and signal generation) are extramphytant if one wants to keep the
correlation to actual real-world signals. The migyoof work then has been in the
direction of AC sinusoidal signals in power transsmn systems and phasor
measurement units as the main measuring deviced-wReld signals usually are not
stationary and power system AC waveform is notdifigrent. So, if the signal in real-
world is changing, so should our conceptual moalelHis signal. This is where a slight
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change to a phasor equation was made and Kirkh&énodutes rate of change of
amplitude and rate of change of frequency in theleh¢l5) for phasor measurement
units.
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2 Synchronized phasor measurements in transmissiaorie

Synchronized phasor measurements are becoming brieeomost vital
measurements of a modern power system. This infomabased on stream of
measurements, can tell a lot about system dynasnidsystem stability ensuring that
lights stay on.

There are many control and supervision systems@réen place for power
systems (like SCADA), but there are still very sgancentives to introduce solutions
that are faster and more insightful. With SCADA theasurements are captured every
4 seconds or so and from different areas they atreaptured at the exact same time.
If monitored for only voltage, power and reactivayer, the solution can be satisfactory
because these things usually don’'t change veryesugildunless large disturbance).
However, system monitoring is essential during dadjsturbances and transient
processes. In order to capture system dynamics #ond fast real-time
control/supervision faster capture periods and Issorazed data is essential [19].

Synchronized phasor measurements mean that alunesasnts are using the
same time reference and are synchronized with UJ@bidinated Universal Time)
using GPS (Global Positioning System) clocks [2B)s way all measurements can be
drawn on one single axis and shown frame by frawigh fast measuring rate (25
measurements per second in 50 Hz system and 3Qreesmnts per second in 60 Hz
system) system dynamics begin to app&gute 2.} and it is possible to monitor
system transient processes. Now, by using synchednneasurements it is possible to
discover blackouts, line tripping, generation winapping from network, FIDVR (Fault
Induced Delayed Voltage Recovery) and other tramgeocesses in real time. With
resilient and fast telecommunications networks ialiso possible to control the power
system elements in real time to apply counter nreasand keep the system in balance.

W vy Pz v P et B et os mend ik F A Y5 1n0s.2000 |

P
LR

Figure 2.1 Voltage angle difference oscillationsribmund-Bucharest [21]
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The though behind using synchro-phasors for systaite estimation is rooted
in notion that sine-wave between two adjacent bwg#ischange the phase angle
depending on the load as seefRigure 2.1 By measuring synchronized phasors at both
instances the P flow can be then computed.

As shown inFigure 2.2it makes sense to measure phasor angle acrqsarll
of large interconnections to monitor system andividdal line connection
performance. In this case drop of generation uniine tripping will be immediately
observed in corresponding phasor measurementsrmaftmn gathered from all
measurements simultaneously and synchronized to tArChelp to monitor system
dynamics (oscillations), improve system models jarodection gear settings as well as
react to system transient processes and prevesibpoblackouts.

vl
Sa Eu

[PmU] | >

L ) a1

Figure 2.2 Phasor angle measurements across poveeersy

Because the main characteristics of interest irowep system usually are
voltage, frequency and their stability, phasorsused for much more than just line
load estimation. One implementation lies in contrad protection domain, where
phasors can be very useful [22] [23]. The systenstnine at equilibrium between
generated and consumed power at all times in dodemsure stable voltage levels and
system frequency. Stability depends on three factator-angle stability, frequency
stability and voltage stability. With the evolviggid it is challenging to monitor and
maintain all the parameters. Increasing complexitgl interconnectivity of a modern
power system [24] as well as larger penetratiotistfibuted renewable energy sources
[25] can create instability of the power systengirency and cause oscillations between
different areas. These usually are low frequencillasons, like for example European
interconnected network including 28 countries dat@b at around 0.15Hz (Athens-
Stuttgart-Seville-Algiers) [24]. System oscillat®at some circumstances can cause
severe system instability, falling out of synchsimiand blackouts [26].
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2.1 Model of a phasor

In order to make power systems tractable it is s&mgy to use mathematical
models and the model of a sinusoid is a good reptason at a first glance of a stable
power system. It is then possible to express p@ystem signal mathematically as a
sinusoid equation [27]:

x(t) = X, cos(wt + @) (6)

whereXm is amplitudeg is frequency ang is phase. This model includes all
information to reconstruct a sinewave. It is cusiomto imagine a diagram
representing this equation. The time is set to,zand a line drawn at ang¢eto the
horizontal, with (scaled) lengtin. This line was originally termed a vector, anckiat
became called a phasor.

Arun Phadke, J. Thorp and M. Adamiak proposed aide&in their 1983 paper
on how to measure frequency really fast and witlgmuinting signal zero-crossings
[28] by using model of a phasor. In their scherhe,tivo parameters are known as a
synchrophasor. A mathematician might call thermsthéonary phasor, since by setting
the time to zero, the effect of frequency is remb\equency is regarded as a separate
guantity for measurement. Consider the exponemditgtion representing the sinusoid:

XmRe[e/WHH O] = X, Re[X e/ ™D + /@] . (7)

In power applications, it is customary to omit Renotation and to omit the
frequency term, so that a sinusoidal input sigsahg6) is written

x(t) = X,,e/?. (8)

Note that the simplified equation of the sinusaesinot include the frequency.
It includes only the stationary phasor. Also showedrigure 2.3 in time domain (a)
and complex domain (b).

¢

— Im,

t' d)l »

(a) (b)

Figure 2.3 Sine-wave representation (a) Sine-way®[iasor representation
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All the information about the stationary signathere: amplitude, frequency,
and phase angle. Measuring amplitude is not sdectgahg but measuring phase angle
and frequency is a hard thing to do (for real tapglications). As shown by A. Phadke
et. al.in [28] it is possible to measure the differenceha phase angles between the
recursive phase measurements and, by doing thdtiife change in the frequency:

ﬂ _ Yr — Y (9)
dt  (1/50N)

wherey is derived from a “phase factoe?¥r, the differentiated phase angte,
is recursive measurement aNds sampling rate in samples per cycle.

Difficult measurements like frequency in real time the power system has
been a long-time interest for power engineers. Aievacalled “rate of change of
frequency” (ROCOF) was expected to be a very udehllto indicate changes in the
power system. In case of generation unit lossnar tiipping, the frequency would be
affected and ROCOF would indicate how fast the gearare. Then actions can be
taken based on ROCOF information. From change éenftequency between two
recursive measurements ROCOF can be derived,

df 1 d*y (10)
dt 2w dt?

wheref is the frequency.

It is important to note that the model of a phagescribes a sine-wave with

static frequency and amplitude that is true frofenence time to infinity of time. This
is the mathematical model used in phasor measutaimés (PMUS).

2.2 Synchro-phasor measurement units

From the idea proposed in 1983 [28] it took 5 ydarsdeveloping a PMU
prototype [21] in 1988 at Virginia Tech, USA and1if92 first commercial PMU was
produced at Macrodyne Inc., USA (Model 1690). I3 %he first standard was
developed, and most recent update was releasedlu [2] to change performance
requirements.
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Figure 2.4 Macrodyne Inc. Developed PMU “Model 1698ww.macrodyneusa.com)

PMU (inFigure 2.4 is a time synchronized measuring device repodsignates
of positive sequence voltage amplitude and phagkealocal frequency, and rate of
change of frequency. It is previously shown thatasugements are done only for
amplitude and phase angle. The other values are ttaculated based on
differentiation.

The input for any PMU is a sine wave signal thas ddtered usually with a
low-pass filter to get rid of possible harmonicsl aise on the signal that can cause
aliasing. Thenitis turned into a digital signgldampling in A/D converter and creating
point-on-wave data stream. The data stream is sgnided with UTC signal that is
received from GPS receiver. Using the data andeete time (t=0) processing unit
can calculate the phase angle and positive sequelteges and currentigure 2.5).
Based on these measurements local frequency aedofathange of frequency is
determined.

GPS
receiver
| -
—» o A/D
—>—> = converter Processor
—> L

Figure 2.5 Main functional blocks of a PMU

Based on performance requirements posed by [27]Hndll PMUs can be
sorted in two categories: P and M type. P type PM&islly are used for protection
applications and their requirements include verst fieeporting times (at least 25
measurements per second). M type requirements are mtended to deal with
adversely aliased signals and do not require bdfzifast reporting speeds e.g.
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response time for ROCOF step change estimatefisdvdr P type 64 where § is the
nominal frequency. Testing of PMUs is a very inséireg topic to which an interested
reader is forwarded to [6] and [4] for more det@ilesight.

Actual measurement unit algorithms are commeratarets for each PMU
manufacturer, but in general at least some partbgital signal processing are taking
place in each and every one of them. Discrete &ufiniansform (DFT) is calculated to
transfer from time domain to frequency domain. Saeghy logic thing to do because
frequency and rate of change of it is what we @adly after. The DFT is done according
to [20]

(11)

whereN is total number of samples in one period of tlyaal, x is the phasor
andx is the point-on-wave sample.

The main feature of frequency-domain based calicmstas described by Arun
Phadke in [20] is that it produces the positiveusege phasor

X1 = |x1|gj§0 ) (12)

with an angular velocity exactly correspondingte difference between system
reference frequency and observed frequency. Themysequency is then
do, (13)
w = Wy + W
While details of the phasor calculation technigmeBMUs are unknown to the
public, for sure they include common key points:

- Input signal is filtered;

- Sampling rates can vary greatly (from 24 sampldsl®bsamples per cycle
[29]);

- DFT is calculated;

- Sampling may be synchronized with the UTC clockhersignal itself;

- Phase angle differentiation is performed to catleusgystem parameters;

- Parameters are time-stamped and forwarded to adatentrator.

The outcome information from the PMU is 3 phaseatp@ssequence voltage
magnitude and angle, 3 phase positive sequencenturragnitude and angle, local
frequency (as deviation from nominal), Rate of deaf frequency, additional defined
analog or digital signals (like transducer valuefay statuses or other flags). Since all
this information comes from phasors, the accurdeyRMU measurement is expressed
in parts per unit as TVE (Total Vector Error) dparfect theoretical phasor” [30]. TVE
is described in the standard [27]:

23



2 z (14)
(£ -x%m) +(2m) - xw)

TVE =
® (X,m)" + (X))

whereX, (n) andX;(n) are the sequences given by phasor estimétés) and
X;(n) are theoretical values of the input signal at gitrme(n).

A
Im Region for TVE

Measured
phasor

Theoretical
phasor

Re

Figure 2.6 Total Vector Error visual representation

According to [1] allowed TVE for a steady statet tiss1%, which means that
there can be 1% difference between observed phasitheoretical phasor.

2.3 PMU limitations

Synchrophasor measurement units have to deal véttymproblems and just to

mention couple of them are timing and synchronaratisignal filtering, noise, and
sudden large disturbances in the signal.

Timing is very important in synchronized measurets€ehhe precision requires
ks precision on the clock (allowed 1% TVE errorresponds to £31us time error in
50Hz system [1]) therefore GPS clocks (or equivdlare essential. PMU therefore
have to account for connection latency and deldyd® signal to make synchronized
A/D conversion. This becomes very important whemgaring two different vendor
PMUs because synchronization processes can benmapted differently (some A/D
converters are phase locked to the system freqlilency

Filtering the signal is necessary to solve aliagimgplems and also to remove
any harmonic disturbances with any out of bandagrFiltering brings a delay that
has to be taken into account. Using filtering asnmmny windows the reported value
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is not entirely independent of previous, so thera delay for reporting times because
of the signal filtering [31] [32].

Basic principles of phasor measurements intendrifftiation and that is a very
noise sensitive operation. This puts more straifiltaring and filters distort the view
of the real signal. Even with all the filtering ds®MUs still struggle to measure
ROCOF [4]. This was a serious issue that resultedstandard amendment in 2014 [1]
giving PMUs more achievable requirements.

Interesting PMU performance indication comes outhef G.Stenbakken and
M.Zhou 2007 paper and also PMU standard amendmén2]. The standard under
dynamic compliance (performance during ramp ofesystrequency) states:

Measurements made during an exclusion intervall stwlbe
used when determining measurement compliance. Xbkiseon
interval is the time interval after the ramp leawsbefore the ramp
reaches the frequency range limit or a point wHe@COF changes.

This is curious situation. On one hand it is welbwn that the system frequency
(therefore ROCOF) is changing all the time andaapaint, it is static as the system is
indeed dynamic in nature. On other hand, duringytgshe PMU can ignore windows
when ROCOF is changing. In [2] it is experimentalhowed how it looks in practice.
When applying linear frequency ramp to the devicelan test and ignoring the
transitions it is shown that TVE does not excediDD%. But the graph looks silly
(Figure 2.8).
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Figure 2.7 Linear frequency ramp test signal [2]
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Figure 2.8 TVE calculated for the linear frequency ramp test [2]
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Transitions is something that is closer invesgdain [4]. It is shown that
allowing for a ROCOF to change in the mathematicatlel (Kirkham equation) the
transition process can be monitored. Of course gnmorestigation is needed to fully
understand the implications, but at least we caik lat transitions and discuss.
Interested reader is referred to [4] for more diedadiscussion.

This is something that needs to be looked at irerdetail. When attempting to
replicate the conditions PMU would face during freqcy ramp testing a strange
phenomenon was discovered. More details of thieseribed in [4] and [6].

We have to begin with right side of Carnap equatiot the way the input signal
is generated. This process involves modulation riieetes. This is not broadly
considered a problem and frequency modulation bas Bround a long time.

In 1946 Balthazar van der Pol presented a papérifid®&hich he argued for
referring to the whole cosine argument in (6) a&s*“fthase” (nowadays term “phase”
is mostly reserved to jug). Referring to the whole cosine argument as tleselallows
comparison of phases for two signals with differér@quencies and express it
mathematically.

A term “total phase” can be used withassigned to it. Then the (6) can be re-
written as

x(t) =X, cos¥ . (15)

Expression (15) compared to (6) is more general dgoesn’t require the
argument to be linear function to time. This isoalsetter representation of non-
stationary signals in power systems. This is disedsnore in chapter 3.1.

To define different modulation methods, van der d&sa@s expression similar to

(6)
y(t) = Acos(wt + ¢) , (16)

whereA is amplitudew is angular frequency angis phase constant, but most
importantly the argument of cosine functigwt + ¢) is the phase. For example,
amplitude modulation can be expressed

A(t) = ao[1 +mg ()] , (17)

whereg(t) is the modulation signal amd is the modulation depth coefficient.
For phase modulation we can quite convenientlykstic the same technique and
express modulation as

() = pol1 + mg(®)] . (18)

For frequency modulation it would be very intuititceuse the same expression
and substitute in
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w(t) = we[l +mg(D)] , (19)

but van der Pol stresses it right away that sughession is erroneous and, in
his words, fead to physical absurdityFor frequency modulation van der Pol reasoned
rewriting the expression (16) as

y(t) = Acos (ftwdt + (p> , (20)

where the argument of cosine function is the phgge

A hint of physical absurdities is given by Boashas}84] where he argues that
when substituting (19) in (16) the phase will notply with (18). Indeed, when the
oscillating signal is calculated with multiple mdations and changes of modulation,
then phase jumps in the signal start to appeas piablem, however, appears only
with the transition from the conceptual world tee theal world, because, just like
Rutman pointed out, we disregarded a part of paygplhenomena to make the model
more tractable. Others have also run into this lerab but have not realized it or
haven’t investigated further, like case discussei®].

The essence of the problem is within creation & $iynthetic signal, for
example, with spreadsheet. Consider creating ragnfyequency signal using (19)
beginning with stationary signal (rate of changérefiuency is zero) & and then at
some given time poirtk introduce a rate of change of frequency. Fre® to t=tx
spreadsheet is calculating the signal and desgrioitosine waveform. At the rate of
change of frequency starts to change the phasgoSeghat the rate at which the
frequency is changing is changing again (likesigure 2.7) att=tm. The spreadsheet
continues to produce cosine describing sample ntsnbet atn the phase has changed
from t=to so a phase jump is created — a physical absurdity.

This problem got named “van der Pol problem” durihg research. The
solution is simple and for each sample calculat@ncalculation must be done for new
frequency and phase values in each step. This coatesl for real signal generators,
because then (20) would apply.
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3 Theoretical background for phasor-like measurements

The classical phasor equation (6) describes & Satiusoidal signal that is true
from the beginning of time till infinity. Unfortuniely, this static situation is never true
for real world signals, even in laboratory enviremh Consider the signal Figure
3.1.

R

Figure 3.1 Signal with increasing frequency [11]

Let's say we need to determine the frequency oémisignal. It is clear that
ROCOF is nonzero and positive as the frequency(aisg that the word can somehow
be interpreted in a way that applies to the sighalwn) is increasing. It is clear that
traditional time measurement between zero-crossuilgsot be useful. However, what
is the frequency we should report? What is theueagy when frequency is changing?
What does the “frequency” even mean in this seifs#@ report one number, should
it be the average frequency for a given periochstantaneous frequency at the middle
of measurement window? At the end of the window?

It would be very obvious to look for “instantanedusquency” and watch it
advance, but it is worth noting that for physicaasurements instantaneous frequency
for just one sample of the signal cannot be defidey measurement requires a finite
time that cannot approach zero — instantaneousidrery by definition cannot be
measured [35]. We have to define a measuremeniowindth more than one sample.
This brings back the question about changing frequdalso when generating the
signal [33]).

Say we obtain the average value for frequency withe measurement window.
By using the value and a mathematical model of asph (6) it would be false
representation of the real signal (model does hmvdrequency to change within the
window). A more suitable mathematical model is reekfbr representation of changing
signals. As put by Boualem Boashash [34]:

Nonstationary signals in particular do not lend tneelves
well to decomposition into sinusoidal components. $uch signals,
the notion of frequency loses its effectiveness,cene needs to use a
parameter which accounts for the time-varying nataf the process.
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Note, that B. Boashash also tells us that a newnmgédor the “frequency”
parameter should be defined, because for nonsgagiosignals there is little sense
talking about frequency.

3.1 Kirkham equation

Observing the changing nature of the real worltddtomes clear that this
change needs to be represented also in our matisahrabdels. In 2014 report [36]
Harold Kirkham presented what seemed to be a naveélfundamental idea for the
digital age of metrology — making a measuremericisially the same as solving an
equation (mathematical model).

Consider the increasing frequency signaFigure 3.1. There is no parameter
in phasor model to accommodate that sort of frequehange over the measurement
window. In the 2014 report at Pacific Northwest iNiaal Laboratory Kirkham
suggested suggests modifying the equation of aopl{é$ with additional parameters
that would allow the signal to change. In later kviirkham called it a “phasor-like”
equation (hereinafter in this document referreédgd’Kirkham equation” as it is the
foundational principle of all further work in thiocument):

x(t) = (X + %t) cos {(a) + %t) t+ ((p n %t)}, (21)

where each of phasors parameters are modifiedoaéfficientsC, to allow for
them to change in linear manner (the simplest wlaghange). Since change in the
signal phase cannot be distinguished from chariliaguency”, these two coefficients
can be merged, and the Kirkham equation modified:

C’ C’ CI 29

The mark to each parameter is added for indicadfonon-stationarity (as a
difference to a phasor). Very important remark hattthe linear change and the
parameters of Kirkham equation applies only to atilon of measurement window (in
contrast to phasor that holds true e to infinity).

Reconsider the signal iRigure 3.1 with the Kirkham equation. It becomes
apparent that the frequency is changing while aomhdi is remaining constant so the
mathematical model for the measurement should be:

X(t) = X'cos {(a)' + %t) t+ (,0,}. (23)
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For this purposeX’ is the amplitudep’ is “frequency”,C,, is ROCOF and’
is phase. Mathematically, to obtain the actual eslwe would need to solve the
equation for all the parameters. As shown by Kirkhais exactly what we can do to
make a measurement [36] [11] [37].

3.2 Principles of a digital measurement

These following principles can be applied to almalbdigital measurements,
but for explanation purposes and close relatiopréwious work, more emphasis will
be put on phasor-like models and measurements.

In Kirkham equation (23) for the signal iRigure 3.1 on the left side of the
eguation we have the real-world signal (realizeagity) observed and then quantified
by the A/D converter. On the other side we have lmest guess of mathematical
representation of the real-world process. It isiobs that we cannot truly measure a
guantity that is not expressed in mathematical motierefore defined in our
understanding of the real world.

Digital measurement system for this is very wethwh and described in [11].
In Figure 3.2 is shown the basic structure of a digital measergnsystem. Analog
signal is fed into A/D converter and the signasasnpled according to time reference
(time stamped samples) and voltage reference (gavaples). The “front-end” of this
system is susceptible to noise, which can affeconty the analog signal, but also time
reference and voltage reference. Point-on-waveidalt@@n processed by measurement
algorithm (e.g. FFT in conventional PMUs) and desflavalue is presented at the end
of this process. This value then must not be takdrof the context, for example, if it
is “apparent frequency” in the Kirkham equation rthi is true only for the
measurement window and represents the second paraméhe equation (model).

Noise Time Sample values

reference (digital signal)

r -
Realized quantity Sampler [\|Measurement|—\| Declared 1I Model |
(analog signal) and A/D /| algorithm |—/| value /1(equation)!

Voltage

reference Measurement

device

Figure 3.2 Measurement system for digital measurements
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While the “front end” (grey part ifigure 3.2) is susceptible to different kind
of noises (white, Gaussian, Brownian etc.) the kbaed” of the measurement system
is more affected by “semantic coloration” [37] am bther words incomplete
mathematical model for the measurement. In a bssitse this happens on two
occasions:

- The mathematical model for the measurement is eaws and therefore
the declared values do not represent the process\aal;

- The signal is affected by some unforeseen distudaaim this case there
will be no representation for it in the model andasurement algorithms,
therefore this value is not only ignored by measwmet, but other declared
values get affected by it.

This coloration could be a DC component on the Agha measured in
accordance to (21) in which case, probably theadedlvalue for amplitude would be
altered slightly. Put it in other way, semanticeiganing, and semantic coloration is a
meaningful mismatch between the observed reality and the mode

It becomes clear that the declared value is nogtiamtity of the real world we
observe, but instead it is an answer to our quegtised by our understanding and our
instrument. The great physicist Werner Heisenbetgthis way:

“... since the measuring device has been construayeitie
observer, we have to remember that what we obsenvet nature
itself, but nature exposed to our method of questy [38]

By allowing the “frequency” to change in the modet have accounted for
frequency change and presumably improved our reptason of the signal observed.

Using this notion, it would be possible and benafi® implement an automatic
self-calibration e.g., after transducer changeT8]s would also improve measurement
accuracy and device user experience.

3.3 Proof of concept

For the proof of concept, it was authors opiniaat tihwould beneficial to show
several different non-stationary signals and dgvedoworkable solution to make
measurements.

After realization that the act of measurementéssaime as equation solving the
guestion becomes clear: what are the values thdupe the real-world signal? To find
out, one method is to use curve fitting. By fittittge equation to the samples of the
observed signal, could the values in the mathealagguation be found that give the
best fit and therefore can account for the sighakoved?
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The software used, was “Mathworks Inc. MATLAB” aitdvas used to make
a fitting method for the proof of the measurememtcaept. MATLAB was chosen
because of ease of use and previous experiencengavikkh this software.

A number of estimator versions were built and inwabin this effort. The best
results until now have been produced by a leasdireguestimator. This minimizes the
mean square residual between the signal measudedhres predicted by the equation.

3.3.1 Input data

The test signal is synthetically generated by udinggosoft Excel spreadsheet.
On 60Hz system the PMUs usually sample at 24 samaenominal cycle. To retain
approximate same time distribution between sanfples0 Hz system, 30 samples per

nominal cycle were used.
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Figure 3.3 Generated point-on-wave synthetic data input

The mathematical model for the measurement is goateon (22) with added
degrees of freedom for amplitude, frequency, andsphto change (compared to
classical phasor) within the measurement windowe hhmeasurement window is
selected to be 2 cycles, since that is the mostlpovindow size (not accounting for
signal filtering) for real P application PMUs. Seuation (22) is the mathematical
representation of the signal the measurement syistsapposed to analyze, and report
declared values of this model. For modulated sigyeaderation, of course, (20) is

implemented.

In terms of input of information for the measuremerethod there is not only
the mathematical model, but also a “trust regiar’the variables in the equation. It is
beneficial to provide the measurement algorithng tlevice and also the person
interpreting a measurement, with all available infation about the real world we are
about to explore. In this case it is known thataheplitude will not likely exceed twice
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its nominal value, frequency cannot drop below 8 exceed, say, 100 Hz. The same
goes with phase as it is constrained hy&dians. Looking at grid events suggests for
ROCOF value ranging between tens to couple of hedslof mHz/s, but for research
purposes the trust region is selected wider (coopleindreds +mHz/s).

For proof of the model and measurement method maakigith non-zero
ROCOA (rate of change of amplitude) and ROCOF weerl. ROCOA value is set to
0.1 pu/s and ROCOF is set to 3 Hz/s)

Variables for the signal generating equation (22)selected:

- Amplitude X= 1 [pu]
- Rate of change of amplitude C'x= 0.1 [pu/s]
- Frequency w= 50 [Hz]
- Rate of change of frequency C', = 3 [Hz/s]
- Phase p= 0 [rad]
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Figure 3.4 Generated point-on-wave synthetic input data for the model with non-zero ROCOF and
ROCOA
As seen in théigure 3.4 even though the changes are large (10% change in
amplitude and increase by 3Hz of nominal frequentiiin a second), they are not
obviously noticeable with the naked eye within emeasurement window (2 nominal
cycles). It is fair to assume that the values ndigriaund on the power system, being
smaller than the values here, would be even haodavserve visually.

3.3.2 Measurement method

To deal with the non-stationary signal generatedjoalinear robust least
squares fitting algorithm was selected, and MATL#dtware used to implement the
measurement (solving) concept.
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The main thought behind the method used was thatnimizes the summed
square residuals that are the difference betweerestimated data poit and the
observed signal value. Therefore, residuals are defined as

n=yi— Y. (24)

Then, the summed square of residuals is defined by

(25)

S= Eriz = zn:(}’i - Y2

n
=1 =1

Based on the fact that the input signal is nonlingee method must approach
the solution iteratively [39] to lower the residwalues.

Considering that real-world signals are noisy ahdré¢ can occur sample
“outliers” that would greatly impact the residuainmization process (when squared
the outlier residual influence on the quality of fiit is amplified greatly) it is possible
to reduce their effects or even remove them bygusisquareweights. Each residual
is weighted according to its distance from thesflttine. Really extreme samples get
zero weight [39].

The algorithm follows this procedure:

1.

Start with a set of reasonable starting valuesohmal operation, the values
are the values at the end of a previous measuremiedbw.

Calculate the; values for the current set of input values.

Calculate a matrix of partial derivatives with respto the values, ie. the
Jacobian.

Weigh the residuals with the weighting algorithm.

Compute the weighted residuals. The residuals iges dpy

__ N (26)

wherery are the least-squares residuals bnare “leverages” that adjust
the residuals.

Standardize the residuals:

= (27)
u KS.

whereK is a tuning constant arglis the “robust variance” given in the
MATLAB documentation [39].

Calculate the weights as functionwfThe bisquare weights are given by

(@ =) Jul <1 (28)
Wi = {0 | =1
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The final weight is the product of the two numbersduced by MATLAB,
one called the “robust” weight and the “regressiaeight.

8. Adjust the coefficients and determine whether therproves.
9. lterate the process by returning td &tep until the fit reaches the specified
convergence criteria [39].

This is one of the MATLABs default algorithms andi$ used because
coefficient constraints can be specified. It soltke nonlinear signal reasonably
efficiently. Use of MATLAB also allows for code tee exported and re-used in C++
applications.

3.3.3 Output

The result of the algorithm is the set of all value the defined mathematical
model. Those are the values necessary to creaimplete picture of the equation in
the particular window of time. Once these values abtained MATLAB offers
additional metrics for the algorithm, like iteratioount, that can be used for evaluation
of the performance of the particular algorithm.

The output for the input signal generated in Exspkadsheet is spot-on. It is
clear that the estimation with clean signals workgh precision of the computer.
Declared values for the input signal (equation Y 22¢:

- Amplitude X= 1 [pu]
- Rate of change of amplitude C'x= 0.1 [pu/s]
- Frequency w= 50 [Hz]
- Rate of change of frequency C', = 3 [Hz/s]
- Phase p= 0 [rad]

3.3.4 Goodness of Fit

Of particular interest is a parameter called Gosdn&f Fit (GoF). This is a
number based on the residuals of the result ohteasurement. In essence, a metric
showing the quality of the fit is expected to badiy available for a fitting algorithm.
For the purposes of the PMU measurement, such acnuafers something that
measurements have not had available before: amadstiof the quality of each
individual measurement made. This is entirely défe than the typical statement of
uncertainty that accompanies a statement of thetrelsa measurement, the statement
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of uncertainty that is described in the Guide te #xpression of Uncertainty in
Measurement [40].

Note that the use of GoF does not depend on tHeechbmeasurement method.
Once it is accepted that a representational measuntas an equivalent step to solving
an equation, it follows that the results of anytsmeasurement can be used to find the
value of the residuals, and hence find a GoF me#iGoF number can be used as a
metric and calculated by any PMU. In fact, the aggpion does not stop there and GoF
can be used in other representationalist measutsr{raore information discussed in
Annex 3) with different measurement methods (agyltime observed quantity is
available to compare to reconstructed mathematiwadlel). This concept will be
explored next in more detail [5].

For the test case described above, when the imgn#lgs reconstructed with
the values obtained by the estimation and is scigtlafrom input signal the residuals
show clearly, igure 3.5) that the model and input signal are an almodepematch.
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Figure 3.5 Residuals from reconstructed point-on-wave data subtraction from the input data

It comes as no surprise that the fit for a knowrth@aaatical model (a “clean”
signal) should be this good, but this also shows thodels can be adjusted, and the
result can be improvedFigure 3.6) shows how residuals look (larger by at leasf)10
if the mathematical model for fitting algorithmjisst the phasor.
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Figure 3.6 Residuals by subtracting reconstructed phasor point-on-wave data from the input data

In addition to variables in the equation the aldon also can provide useful
information about the fit, like for example alreadiscussed residuals, R-square
calculation, residual RMS calculation etc.

It was pointed out to the author that the fit refey the signal and not to the
parameters (e.qg. it is possible to get a goodiftt way too many parameters) and while
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that is true, one has to go back to Rutman ideaaxel tractability and Carnap idea
for real world transition into conceptual modelsisT is something that requires
understanding of the physical properties being nrealsand the mathematical model
of the measurement to draw the line where modebtdractable anymore and what
level of real-world representation in the modeddseptable.

When the signal is not the “clean” signal seen abthe Goodness of Fit (GoF)
shows itself to be a very useful tool coming outhaf notion that the act of measurement
is in fact solving of the equation. Once the measuant is done (made byu fitting or
not) the residuals enrich the system metadata re ikethe original input signal, the
method’s metadata, the mathematical model (equatioe declared values, and now a
new parameter indicating the quality of the meas@rg process.

For an ideal synthetically generated perfect sgrfget non-stationary) it is
clear that a perfect match can be achieved andtibatsiduals approach zero. In this
situation all metadata and other parameters represeon-existent perfect world that
tells nothing about the real world.

The obvious answer for putting the method to tist i to try to estimate a
signal that cannot be expressed in a single madplation) for whole measurement
window, like a step-change in phase of a sinusadgatal. Visual representation of
180 step-change is given in thieiqure 3.7) and it is clear that the input signal cannot
be described with phasor-like quantities. But fmesone can try and estimate the values
(just like PMU has to for non-stationary signakirst, let us look at some synthetic
signals that test the GoF method.

1.5
1 .. L] .....
(] [ L4 °
— b L . .
> 0.5 . . . .
& L] [ ° °
s bt 1 o 1 .I hd
% 0 . . . 0
S 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 5.4 57 €0
=
= 05 L] [ ] [ ]
g— . . . ..
L] L] . L ]
< 1 oo’ oo’ .,
-1.5
Sample No.

Figure 3.7 A 180 degree phase jump in the input signal

Consider the signal in th&igure 3.7) with sudden change in phase by 480
The estimation still can be made, and values caoblbened. In Eigure 3.8) there is
the reconstructed signal from the declared valeas to the input.
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Figure 3.8 Input signal with step change in phase and its estimated signal

As stated in [7] there are two questions: what dses want to know, and what
will the instrument tell him? The answer to thetlase is clear for used estimation
algorithm developed in MATLAB. The method repofts values for the reconstructed
signal. But is this something that anybody wantkrtow? If the actual input signal is
compared to the measurement values, it is arguagiess — the match is clearly not
good. On the other hand, the result is “best” ngbnse of being a least-squared-error
estimate of the input using the model that is add. How “good” is that “best
estimate™?

This returns the attention to GoF. With such indarait would be possible to
declare the level of trust for the measurementh&athan use the GoF as understood
by MATLAB, a variation was created [5] in which t®F is introduced as reciprocal
value of the fit standard error normalized and egped in decibels. The reciprocal has
the advantage that the value increases as theamptoves, and the logarithmic
compression of decibels keeps the numbers moresibte The formula used was:

X' (29)
GoF = 20log ,

\/ﬁz’,ﬁﬂ(uk — Vg)?

where N is the number of samples) is the number of parameters being
estimated in the equatioK; is the signal amplitudey is the signal sample value and
Wk is the estimated sample value. The paran{dten)is called the residual degrees of
freedom [41].

GoF calculated for the perfect signal is very gdondact, it's down to precision
of the computer at couple of hundreds of dB (faaregle forFigure 3.4 it is 304 dB).
Where it really matters is describing measuremidatisdon’t fit and tell user how good
or bad the measurement is at representing theverad.

Consider the signal irFigure 3.7. The calculated GoF value for this
measurement is 7 dB which compared to 304 dBgare 3.4 is considerably less. This
means that user confidence that the declared vedadly represents the reality should
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greatly diminish. Further questions should be ask&d, what is going on in this
particular measurement window? One information@®ig residuals. If plottedFigure
3.9) they show interesting information.
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Figure 3.9 Residuals from estimated signal and input signal with 180 degree phase jump

It is evident that the algorithm must make a chgicealign to the first part of
sinusoid or the second part. In both occasionsadedlvalues are not the ones for first
half of signal or the second half, but the algant(PMU also) has to somehow find a
reason for such signal behavior using the inforomatihat user gave to it (equation). In
this case the best fit is if the signal is decmgsfrequency very rapidly, to
accommodate for the jump in phase.

Of course, the test signal in this example is sohawextreme. Phase jumps do
occur on the real power system (for example, wheyhase-to-phase short circuit
occurs) but at the location of a PMU it would beerto see such a large step. In the
following section, we will see some examples of hbergoodness of fit responds with

more realistic signals.

Parts of estimation algorithm are given in AnnexEktimation algorithm
hereinafter in the text will be called SEMPR ord&al Estimation by Minimizing

Parameter Residuals”.
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4 Analysis of the phasor-like model limitations

As the concept of phasor measurement is equivideah equation solving, it
is necessary to understand the model limitatiomsitations in real world scenarios
are posed from different sources, but probablyntiest prominent is the noise on the
input signal. In order to get rid of it, PMUs usasry heavy signal processing, including
filtering. Filtering the signal has its drawbackike latency of the output (each
measurement gets affected from previous measurejnant that is predominantly
why during the testing for standard PMUs declareldies over changing parameters
are left out of evaluation [2].

In order to understand the limitations for the rastior algorithm it would be
beneficial to use no filtering at all. In theoryisminfluence should be less than classical
PMU because phase differentiation, which is veriseensitive operation, is not
implemented.

Another major benefit in this fitting method alsoowid be completely
independent measurements (no overlapping measuremmiows, with no filtering
adding “memory of an earlier signal”).

Noise in the power grid is very well known as atfget it is a very little
understood process. There are many kinds of “ngibks, harmonics, random noise,
large disturbances etc. and some of them contrimatst of the time. When signal is
influenced by noise, this changes sample valuegstadneasurement/estimation can
contain error. This process may contribute to sé¢imanloration discussed earlier, but
both of noise and distortion contribute to the erhois important to note, that once the
“noise” process is better understood and can bempthhie model it no longer has
influence on the estimation, because it is pathefequation.

4.1 Noise types and their effects

An empirical investigation was made of the effeft“noise” by adding
controlled amounts to the basic quantity of intertee sine-wave. For signal generation
purposes there are different kinds of noise moaledslable (usually called in names or
colors), but for PMU model it only makes sense $e anes actually found in power
system. Those are:

- harmonics;

- Gaussian white noise;

- Brownian noise (also known asd noiseor random wally;
- DC offset.
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Harmonics are defined as steady state distortioitis frequencies that are
multiples of the fundamental frequency. Based ounrieo series the power system
signal with just harmonics can be expressed asafunfinite number of oscillating
functions [42] (phasors):

f(x)==ay+ a,cos(n wt) + b,sin(n wt) ,

Where% a, is the average amplitude valug aad I are amplitudes and n is the

integer multiplier of the fundamental frequency.ritdanics occur as an effect from
non-linear loads. In this case, non-linear loaltg, inverters, consume non-sinusoidal
current and this current (signal) contains harnm®rtitat also influences voltage
linearity and adds harmonics. Based on signal dsgpe in Fourier series (30) and
notion that the most expressed harmonics on theepgrd are the odd number
harmonics —'8, 5" and 7" harmonic (in 50 Hz system that is 150, 250, 350 [42]
the signal distorted by harmonics can be easilginbtl. Harmonics rarely exceed 5%
of fundamental component amplitude, but for illaibn purposes irFigure 4.1
showed 8 harmonic is 12% of fundamental.
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Figure 4.1 Fundamental frequency and 5th harmonic

Since the signals are additive all three mentidregdhonics can be added to the
fundamental frequency 35" and 7 harmonic with 20%; 12% and 8% pu). The signal
is shown inFigure 4.2.
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Figure 4.2 Harmonic distorted signal

As seen in picture the harmonics distort the siageno a point where it is far
from textbook sinusoidal. This can be a problermfi@asurement algorithms in PMUs,
because they expect sine wave at all times. Thigysheavy filtering is applied to the
input signal to get rid of harmonics. In SEMPR chewever, it can be specified that
the model contains harmonics and we can estimai® ths non-stationary signals
(harmonics will change because the fundamentalieqy is never constant either).
This will be investigated further.

The other noise type present in power grids is €Ganswhite noise or normal
distribution noise. The signature feature of tigmal is its random nature and standard
deviation. For this purpose, the noise signal wassen with standard deviation of 0.5
and 3% amplitude and mean value of 0. For 50 O6{pkss the deviation is shown in
Figure 4.3.
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Figure 4.3 Normally distributed Gaussian white noise

When the noise is added to the harmonic distoftgthbkin Figure 4.2 the final
signal is given irFigure 4.4.
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Figure 4.4 Distorted (noise plus harmonics) input signal

White Gaussian noise is used to simulate all kofd@ndom processes going
on in the system and all systems nearby ranging fradio to cosmic background
radiation. According to central limit theorem prdgenormalized random noise values
tends to Gaussian distribution, as can be obsenvEjure 4.3.

Brownian noise or Brownian motion (also knowrred noiseor random wallk
is a very special kind of noise that is mostly assed with thermal and other stability
issues of devices and measurement systems. Browro@ése can be expressed

mathematically as integral of white noise. Giveatth is a Gaussian random sample
value with expected value pu=0,

Xe=8 - (31)

Then the Brownian motion value is given by,

td 32
Xt=f @, (32)
o drt
essentially
Xe=Xe-1+ & - (33)

Brownian motion is usually caused by equipmentoparts beginning to decay
and the parameters begin to drift away. This happerclocks, reference values etc.
This process usually is very tiny and very slow dmak is why it influences every
measurement window only slightly, but increasingiyh time. Since for short time
frames the Brownian motion is similar to white mofinal input signal is similar to
signal given irFigure 4.4.

Direct Current (DC) is also a very undesirable comgnt of a modern AC
distribution system. DC can be induced in AC netwlay failure of rectifiers and this
adds unwanted current to other devices. DC cunamtoverheat devices and saturate
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transformers. DC can also be the result of a prolatethe A/D converters in the PMU.
The final test signal is given IFigure 4.5 with 10% pu DC offset.
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Figure 4.5 Distorted input signal

The final generated input signal consists of;

- Fundamental frequency of 50Hz and amplitude 1 pu;

- Harmonics: 3 5" and 7" with amplitude 0.2 0.12 and 0.08 pu;
- White Gaussian noise with 0.03 pu amplitude andmwvedue O;
- DC offset with amplitude 0.1 pu.

4.2 Noise effect on the model

Considering the large disturbances givenFigure 4.5 it is clear that this
wouldn’t be typical situation in power system. Bynsulting AS “Sadaleskis” and
doing research on noise in distribution systemere realistic values would be:

- 0-3 % harmonics;
- 0-1 % noise;
- 0-1 % DC offset.

SEMPR implements no filtering so all the disturbesmbave effect on the final
declared value and estimation process itself. Rerfitst understanding of the model
and its properties handling distorted signal antadddisturbance is implemented. This
means that every sampled noise value at the givenant in time is added to the input
signal sample value. The true nature and matheatatiodels of the noise processes
are still quite unknown. As in [17|dditive noiséto this model is a property we use
to make the model tractable.

1 Experimentally examined in Artis Riepnieks MSc.dise'Vadimibas traugjumu noteikSana un
izpete zemsprieguma elektrkia viedagm merisanas sistmam”.

44



At first a small Gaussian white noise (0.1 %) isledito the 50Hz signal with
amplitude 1 pu and ROCOF of 0.3 Hz/s. The sumeskignal and the noise is then fed
into the SEMPR estimation algorithm.

Table 1

Estimated values of the input signal with 0.1% nois

Measurand Input Output
Amplitude, pu 1 1.00
Frequency, Hz 50 49.99
ROCOF, Hz/s 0.3 0.33
Phase offset, rad 0 5.00e-05
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Figure 4.6 Reconstructed oscillography along with the signal estimate

As seen th&igure 4.6 the match is almost perfect. Even though the ediim
is very close, the value difference is noticeal¥en analyzing the residuakidure
4.7) it is clear that mostly residuals consist of taedom noise signal.
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Figure 4.7 Residuals from estimation compared to the noise signal

The calculated error for this measurement is 1LmHizaquency and 30mHz/s
for ROCOF estimation. This gives GoF value of 63163

GoF is a good indication of the quality of the measment e.g. 70dB would
indicate that the model used can account at lea86£999% of the real world observed.
The GoF value decreases once the model cannotragdoolarger parts of the observed
signal, like when phase jumps £80r large part of the signal is noise/other
disturbances. With GoF it is possible to evaluaehedisturbance effects on SEMPR
and chosen modetéble 2). As expected, by including the harmonics andtfeoffset
in the model, these “noises” do not prevent a gawshsurement. Gaussian and
Brownian noise are not accounted for, however,thadit is not so good.

Table 2
Estimated values of the input signal with differentnoises
Measura GoF, dB GoF, dB GoF, dB
model (Harmonics) (Gaussian) (Brownian) GoF, dB (DC offset)
% 01| 1|15 3|01y 1 15 4 op 1 1453 Q1 1 15 |3

Phasor 61| 41| 37| 31| 68 49 46 4 3¢ 17 14 |8 H9 40 (36 |30

Kirkham | 6) | 41| 37| 31| 69 49 46 4p 3r 18 1a |8 0 Bo 6 |30
equation

Kirkham
equation
with 304 | 318| 310 307 69 49 4p J9
harmonics,
DC

2

264 P33 |2346

14,1
=
N
©
N
o
(ee]
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By simulating different noise types at different@itudes and using different
models for measurement a couple of interesting losians can be observed by
examining the GoF value summary giverTable 2.

The Brownian noise impacts the measurement the .mtistis
understandable, as random walk increases with time;

With lesser disturbance to a measurement is theseaunoise (the average
value should be approaching zero), but since tieengo mathematical
model to predict noise values (random values)fdéca$ all measurements
equally.

With small ROCOF (comparable to noise signal [4jalues the
measurement quality is comparable with phasor moggisurements, but
one must keep in mind, that the small ROCOF vawesvhat we are really
after.

Harmonics and dc offset can be described in theemadd therefore
improves the measurement for those types of diatuds. For Brownian
noise the model assigns at least some of the ramgadknamplitude to dc
offset so fit for “Kirkham equation with harmonid3C” slightly improves.

Interestingly, a call for PMU noise performancedisvis explained in [31].

4.3 Allan variance

SEMPR works exclusively in time domain so Allaniaace, ortwo sample
varianceis appropriate way to measure the stability ofgstmator in the time domain.
Allan variance is widely used in precision clocklascillator industry to measure clock
stability due to noise, so the same principlestmamapplied to SEMPR stability while
handling noisy signals. If the clock precision epdndent on oscillator stability and
constant frequency of the oscillator in SEMPR métisadepending on good and stable
estimation of the system frequency. The Allan vasés;; as defined by David Allan

is best shown iFigure 4.8.

Figure 4.8 Measurements for Allan variance calculation [43]
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Expressed mathematically in [44] and later in [45]

1 1
oH(0) = 3 (W) = () &Y

where ther is the measurement interval and brackets denote ensemble
average for infinite time. The essence of the vexgais that the signal parameters are
constant and taking three adjacent measuremgnis+1 andxn+2 spaced evenly by an
intervalz. Averaged over measurement interxzal

Ax, (35)

W=
whereax, is the difference between the adjacent measuremgnpis— x,, as
shown inFigure 4.8. Similarly, the average difference for the nexb tueasurements
can be written as

Axpyq (36)

+1 =
Vn T

Now the change of the measurements between figsunement intervalover
to the second can be expressed by

AYn = Yn41 — Yn - (37)

This in [45] is called second difference (the difiece of a difference) and
indicated asA? (34). Allan variance is then computed over largengs of
measurements and more measurements the bettederocdi on the estimate. Usually
calculated Allan variance plotted as a functionm&fasurement window length looks
similar toFigure 4.9 [7]. Increasing measurement window gives smaltetances. If
the noise process is Gaussian and the quantityg Ime@asured is a linear function, the
slope of the line is -1 (i.e., 45 degrees). Douptime time will halve the variance, but
given long enough window lengths a minimum candbeeved after which the variance
starts to increase. This is usually caused byiagifparameters or low frequency noise
(like Brownian noise).
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Figure 4.9 Deviation as a function of measurement length [7]

In PMU case, of course, the system is not consiEav@n though the notion that
the signal is constant during single measurementlov/, the next window the input
parameters will have changed, and the fluctuatainsarameters occurs naturally in
power system.

The notion of constant parameters over the measmemvindow z gives
opportunity to use Allan variance for SEMPR frequeestimates (assumed constant
through whole measurement window). Constant parnmfedre very doable with
synthetic generated signals. This also allows ézipely control the noise parameters
and estimate the limitations of the estimator isemse of resilience to noise and
different measurement window lengths

Consider 1% white Gaussian additive amplitude nors¢he input signal (22)
with constant parameters for amplitude and appdreguency. As shown in 3.3.3 with
perfect signals SEMPR works flawlessly, but noiseadding imperfections on the
input, therefore affecting the estimation and tagpat. Since the white noise has mean
value of zero, given long enough, the average émibe on the measurement should
average to zero. By introducing 1% noise on theaignd using SEMPR the Allan
variance can be calculated. Running the SEMPR aogelo string of data (100
measurements), the 2-cycle measurement window @wésin range of 42-45dB. By
making the frequency and amplitude estimation fer $tring of input data (1-50
seconds worth of data at 30 samples per cycle)diffbrent measurement windows:

- Single cycle (0.02s)
- Double cycle (0.04s)

- 4cycle (0.08s)
- 10 cycles (0.2s)
- 50 cycles (1s)

the Allan variance can be calculated for all measient windows. The results
are given inFigure 4.10 andFigure 4.11 where each dot represedf30 measurement
variance at 1% additive white Gaussian noise.
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Figure 4.10 Allan variance for amplitude variable as a function of measurement window length

Figure 4.10 shows the measured variance of the amplitude peesmThe 45
degree Allan variance signature slope is addedo#ted line to visualize the link
between SEMPR measurement variance and simplest #diriance. These slopes are

the same.
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Figure 4.11 Allan variance for frequency variable as a function of measurement window length

Figure 4.11 shows the variance measured on the frequency pé&eanit can be
observed that given larger the measurement wind@nldss the variance and more
confidence in the measurement. This comes cleady fthe definition of White
Gaussian noise characteristics that over largeerghgon period the mean value
approaches to 0 and does not affect the varianceusb. It is also evident, that even
though the variance is decreasing, it is not deongaat the same rate as did the
amplitude. Frequency is more sensitive to measunemadow length and will benefit
more from longer observation times (similarly likgth zero-crossing counting

method).
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By adding larger amplitude noise, the variance woalso change. Large
information capacity of Allan variance plots givegportunity to also show different
inputs on a single graph. Different White Gaussiaise amplitudes are considered:

- 0.5%
- 1.5%
- %

- 15%

and added to the input signal. Then the Allan vexgas calculated. The results
for frequency and amplitude are giverFigure 4.12 andFigure 4.13.
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Figure 4.12 The Allan variance of the amplitude values as a function of measurement window length for
different noise amplitudes
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Figure 4.13 The Allan variance of the frequency values as a function of measurement window length for
different noise amplitudes
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Interestingly, independently from noise amplituckgfiency estimate keeps the
trend and confirms that the frequency estimatiomldagreatly benefit from longer
measurement windows.

Next, let’'s consider phase and ROCOF variancesphhse variance evidently
follows the same pattern as the amplitude and $réuk 45-degree line.
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Figure 4.14 The Allan variance of the phase values as a function of measurement window length for
different noise amplitudes

In power system case a parameter of particularastes ROCOF. In the
generated synthetic data, the ROCOF is set 0 Hatsif the estimator is allowed to
search for it, it is possible that there is a valssigned to ROCOF to better fit the model
(this should be more pronounced in short-windovesadROCOF value usually is very
small and it gets drowned by noise very fast, gb assigned noise values for Gaussian
white noise the estimates for short measurementddie unstable. ROCOF variance
as function of measurement window length and witlitipie level of noises is given
in Figure 4.15.
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Figure 4.15 The Allan variance of the rate of change of frequency values as a function of measurement
window length for different noise amplitudes

By the look of theFigure 4.15 it is clear that ROCOF benefits from longer
observation windows even more than frequency measemt (no surprise here, as
ROCOF can be thought of as frequency derivativBpriSmeasurement windows
produce widely variable ROCOF values, even if tiE8IF is constant. This poses the
challenge to measure frequency and ROCOF at ewdrehispeeds and shorter
windows. It is possible that ROCOF (whose contiitruto the whole signal is about 5
magnitudes smaller than frequency variable [5]Vviny short observation windows is
not possible to measure in presence of even sigk fcomparable to ROCOF itself).
This concept may account for the fact that the IESE&ndard [27] was amended after
a few years to become [1], with very “relaxed” regments for ROCOF accuracy.

Overall, it is obvious that longer measurement wimsl produce measurements
that are more reliable with low variance and higbenfidence. The problem is that
PMUs are asked to report the values within veryrtshimme (couple of cycles).
Considering the measurement window length effeaneasurement variance it could
be possible to use different length measuremerdaviss for different parameters since
for a proof of concept the ROCOF measurement woeldefit greatly from longer
measurement windows.

So, the Allan variance clearly shows the benefitlsaving longer observation
times, but how bad are the actual estimatesRidare 4.16 all estimated values of
frequency are shown for signal with 300mHz/s ROGQ#& 5% added white Gaussian
noise.
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Figure 4.16 Estimated frequency with 5% added white Gaussian noise

It is shown that 1 cycle measurement variance tig kage (from 49.2 Hz to
50.2 Hz) and larger measurement windows converge tocb0Hz. To better illustrate
the variance of ROCOF irigure 4.17 shows 50-cycle measurements.
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Figure 4.17 Estimated ROCOF with 5% added white Gaussian noise and measurement window of 50

cycles

In Figure 4.17 the variance for single cycle measurement is Boj large also
considering the difficulty distinguishing ROCOF 1o noise, but single cycle
measurement variance showed up to 40Hz/s deviao8)0OmHz/s does not go on the
same graph. It is very clear, that larger measunémendows reduces this variance
quite drastically and for 50 cycle measurement wwgl the effect of white noise is
reduced and the error is down to 15mHz/s max. Wdneths value is realistic is not
known, because the level of such noise in the pewstem is not generally known. It
may be that this error level is actually pessimjsind the measurement could be more

accurate.
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The other type of noise is low frequency Browniaotiom or red noise. This
noise will affect the Allan variance final parttbe graph, since longer the measurement
window, the larger the influence of this type ofsg Presumably a minimum can be
found for variance to indicate the optimum windandth for particular level and
composition of noise. For Brownian noise, the atagk levels are selected as:

- 0.009%;
- 0.03%;
- 0.5%;

- 1%,

for combined additive sample values with Gaussiditevnoise. Combined
noise is then added to the input signal and femlestimation algorithm. The same 100
measurements are made, and Allan variance is e#dcll The results for phase
estimation are given iRigure 4.18.
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Figure 4.18 Allan variance of phase measurement affected by different levels of White Gaussian and
Brownian noises as a function of window length
From Figure 4.18 it is evident that a minimum can be observed. Vdgitren

resolution it appears that the optimum measuremamdow length for 0.5% White
Gaussian and very small 0.009% Brownian motion @s cycles. Increasing or
decreasing the window length from the optimum valilkincrease variance. For large
noise value minimum variance is for 2 cycle-windotust the variance is still 3 orders
of magnitude larger just because of noise. Thimashematical calculation that could
be performed in a PMU device as after measuremm&lysis and, since the point-on-
wave sample data is available all model values lmame-estimated with different
measurement windows, also different models.

On other hand, the noise might as well not be addih its nature. The true
processes of the noise characteristics are unkramgntherefore very hard to put in
mathematical models. In this case it was assumadath noises are additive noise
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values that were added to signal samples. It cbalthat the noise is affecting some
parameters more than others, like for example, ghmasse [30]. Rutman in [35]
distinguishes between phase naig® and amplitude noisgt). It is not a coincidence
that both noises have different symbols they ase different functions of time. This
gives a lot of variation for signal generation astimation. By adding different kind
of noise to each parameter in Kirkham equation {2@3n be observed that the effects
are different. With separately added 5% of whiteussg&an noise to amplitude,
frequency, ROCOF and phase it is shown that ictgfthe Allan variance on different
parameters differently.

Figure 4.19 shows the change of estimated amplitude variatien increasing
measurement window lengths and for different typiesoises. The noise is added to
each parameter in the Kirkham model separatelyhsoeffect on the parameter
estimation is very different, as shown in graphswe
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Figure 4.19 The change of amplitude estimation variance by different types of noises for differently sized
measurement windows
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Figure 4.21 The change of phase estimation variance by different types of noises for differently sized
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Figure 4.22 The change of ROCOF estimation variance by different types of noises for differently sized

measurement windows

By observingrigure 4.19, Figure 4.20, Figure 4.21 andFigure 4.22 a couple of
conclusions can be discussed:

First of all, the ROCOF noise results in the snsall@ariance. This is due
to the tiny ROCOF role in the model [4] and addihg noise it is still a
tiny influence on the final result. However, esttraa of ROCOF is very
similar as estimation of noise signal and all vaces for ROCOF are large
for narrow window sizes;

The most influential noises are the amplitude naiseé phase noise. This
is also the reason those are usually separateaeandined as different
functions. For phase estimation phase noise isnb& influential, but for
amplitude estimation the amplitude noise. Thisasanhuge surprise.
Frequency noise theoretically cannot be distingegdshom phase noise, but
since it is a derivation of phase noise its infieeens reduced below
amplitude and phase noises;

Interestingly some noises cause an increase inanai in larger
observation windows. This is evident with frequemoyse for amplitude
and phase estimations. Also, ROCOF noise for longeasurement
windows causes all parameter estimation variarecgs up;

Lastly, even though ROCOF noise influence on theawae is very small,
it increases with observation time and by 1s it hesched the same
influence on the estimated parameter variance lar @ioises. IrFigure
4.19 it can be observed how all parameter variancen fidgferent noises
become very close and the difference is withinander of magnitude. This
makes 1 second observation a boundary where RO@@Hraquency
noises could overwhelm amplitude and phase noSesfor the lowest
variance 1 s could become optimal because whiléh vinicreasing
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measurement windows amplitude and phase noiseemd would
decrease, frequency and ROCOF would increase, ntaubie same
estimation variance.

4.4 Sampling variance

Advancements in device computing capabilities agdad technology over the
last decades have made it easier than ever to nmeplefaster and more capable
microprocessors that can perform very fast samplihgs is the part of the work where
we have to dig into sampling itself.

There are several “sampling theorems” for exampée Fractional sampling
theorem [46], the Walsh sampling theorem [47],Zha sampling theorem [48] and so
on, just to mention few. The fact that there armsny related theories and topics points
out the significance of signal processing to thelemo technology for communication,
control, and processing applications. Howeverthaories trace back to Harry Nyquist
[49] and Claude Shannon [18].

Shannon’s theorem states:

If a function f(t) contains no frequencies higheairt W cps, it is
completely determined by giving its ordinates seaes of points spaced
1/2W seconds aparft0]

This means that if the signft) is band limited then it can be fully described
by countably infinite set of values equally spabgdl/2W seconds:

£ = io &) Sizs;ﬁt[i_(%)] ’ "

wheren is the sample value obtained by sampling. Spectiusuch signal(t)
outside bandVis zero.

The main problem with real-world applications iattho real signal is perfectly
band limited nor filtered to be perfectly band lied. In fact, in order for a signal not
to have any energy outside finite frequency banehust be infinite in time [51].

For real applications [52] suggests:

... Nyquist rate isn't a line in the sand ... it is mdike an
electric fence or a hot poker; something what wonit you if you keep
your distance, but never something you want to tesiwp to and lean
against.
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This something that designers of PMU systems hapéik mind knowingly or
unknowingly, because each and every manufactui@rsgs it own approach. In real
devices the sampling rate can be from 24 sampl&$2samples per cycle. This raises
the question — are we doing oversampling in PMUaf@ing rate nowadays is
something that can be changed by a software (fim@wehange, so it is very doable.
What then would be the optimum sampling rate? &oth it can be deducible with
measurements and their variance.

In 1968 Karl Johan Astrém in [53] discussed différeampling rates or time
analysis ofN samples at equal spacihgHe shows how there is an optimum choice of
h, an optimum value to keep the variance down. Bsittring a stochastic differential
equation:

dx = —axdt + dw (39)

wherea is a parameter to be estimatgal(t)} is random walk (Wiener process)
and valuesx are observed at sampling intervals with equal isgah. It is then
mathematically shown that the smallest varianggvien by

Var @ = %2 f(ah), (40)
where
e?* —1 (41)
o =5,

The graph of the function given Figure 4.23 shows that there is a minimum
for the variance o# estimate given by

@ =6.177 « (42)
a = 0. W
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Figure 4.23 Graph of the function f(x) = (e2x - 1)x-2 . The variance of the estimate a using N values with
the spacing h is a2f(ah)/N.] [53]

The conclusion given in [53] for optimum samplirigoe ish— 0.7974 which
gives the smallest variance®f The variance o increases significantly for sampling
rates lower thah (larger sampling intervals).

Considering the practical implementation of SEMPBhiould be also possible
to determine the optimum sampling frequency basethe components (harmonics
and noise, not only Wiener process) in the sigimkuch case the optimum for the
sampling rate would also be very well describedabyariance value, but instead of
changing observation time, one would change sampéte. It should be possible to
determine the optimum experimentally by implement8EMPR. Sampling variance
then can be expressed similarly to Allan varianbaf instead averaging the
measurements over increasing time period, we carage measurement over
increasing sample number, but keep measuremenbwitite same.

Input signal similar to one described in Sectio® was used to determine the
optimum sampling frequency for noisy input sigr&ihce with clean synthetic signals
SEMPR works flawlessly even with few samples, theimum is set at this value, but
maximum at fastest known commercial applicatiomioro-PMU at 512 samples per

nominal cycle [29]. Every dot irFigure 4.24 represents the variance for 50
measurements.
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Figure 4.24 Sampling rate variance for Amplitude estimation

The simulation results iRigure 4.24 shows an interesting trend, that includes
a minimum condition for variance. Of course, theaest variance is for smallest of
noises, but three other interesting observationdeamade:

- The optimal sampling frequency decreases with tamgese influence.

- With fairly plausible noise levels (0-3%) the optim sampling frequency
Is in fact somewhere between 192 and 512 samptesypke (in this
simulation closes point is 384 samples per cydlRjs is in a same
category as for micro-PMU, therefore their sampfirggjuency could be
around optimum.

- The curves are all relatively flat, implying thatlange in sampling rate
of a factor of five or perhaps even ten would kkebt make a significant
change to the measured results.

This also shows that gross under-sampling and sampling should be
avoided and by purely mathematic calculations jtassible to find an optimum
sampling frequency based on the typical signaltt@tievice should be observing.
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5 Experimental data analysis

During the research in United States of Americarda-world point on wave
data was shared from AEP (American Electric Poweryer network. Unfortunately,
all attempts to get similar data from Latvian tramssion system operator AST (AS
“Augstspriegumaikls”) was unsuccessful as they were met by silefberefore, with
permission from AEP anonymized real data analysis done with available EHV

(345kV 60Hz) system data.

The data obtained were samples, taken at 3.840skHwling frequency (64
samples per cycle) and lasting about a second. iDelizdes 3 phase voltages before
and during a fault in a 345kV line with line-to-gwed fault along with multiple cycles
of system recovery. This sequence allows us to ebenpeal PMU measurements to
SEMPR during nominal operation, fault, and systeoovery.

Happenings during fault is of a particular interestd the reconstructed
waveform can be observed in picture. It is cleat tault happens on $&ample of the
two-cycle measurement window. It looks that fasliriost pronounced in phase C and
perhaps phase A, but the data do not suggestdasduiit circuit. Perhaps it represents
contact with a tree, or a distant fault. Probably most important observation is that
the signal after fault does not resemble sine wg@elPMU has nothing else to report
— just sine wave parameters. Notice that the auogditfor the second cycle of
measurement window in phase C is significantly bovd SEMPR should be able to
accommodate for that with ROCOA (Rate of changangplitude). During the Fault in
phase C the fault current exceeds 500A.

1.5

Amplitude, [pu]

-1.5
Sample number

Figure 5.1 Fault in 345kV EHV three phase system

The data is accompanied with reported phasor valtidee industrial PMUs so
the GoF can be calculated and PMU performance eastebermined. Couple cycles
prior to fault PMU reported values for phase C phase 0.990 pu amplitude, 44.989
phase, 60.000 Hz for frequency. Using these vallusspossible to reconstruct the
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signal that PMU has reported and compare it tor¢la oscillography. The result is
given in theFigure 5.2.
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Figure 5.2 PMU reconstructed signal comparison with observed oscillography data

The match between two lines is very good, indicptivat PMU values correctly
represent situation in the system. This goodness, @fs we discussed earlier, can be

put in numbers from the calculated residuals, ginguictureFigure 5.3.
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Figure 5.3 Residuals for PMU reconstructed signal and observed oscillography

The GoF level for this measurement is 34.88 dBfamm Figure 5.3 it can be
observed that the real signal contains large furahah component as well as some
periodic higher frequency components that PMU doesitount for. Residual peak

values are around 0.03 pu or 3% of the fundamental.

When similar task is performed to 1 second wortHaih the picture of GoF is
given inFigure 5.4. Plotted along GoF values are the current valoesadicate fault

duration.
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Figure 5.4 Goodness of Fit for 60 measurements with corresponding current measurements for phase C

It is clear that during fault the GoF values deseesignificantly (approximately
20dB) and current increase corresponds well wittainobd measurements. The GoF
indicates that the wave is no longer sinusoidahape (PMU can no longer describe
well the signaFigure 5.1) and can be provided along the reported valuesahtime.

Note that the GoF values during normal operationase or less consistent and
residual values are also. This indicates a constagfitt mismatch in phase. The effect
seems to be caused by the harmonics that arenpiagie signal.

When we zoom in on what is Figure 5.4 measurement No.4 PMU signal
reconstruction show exactly what is asked of a RMidsine wave, even if it is not the
best representation of realitifigure 5.5). Also note that the effects of the fault are
present at least for 4 cycles (two measurementawniéngths). Fault effects over 4
cycles given irFigure 5.6 with significant drop in voltage and recovery ahayot at

the peak of % cycle.
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Figure 5.5 PMU reconstructed signal comparison with observed oscillography data during fault in phase
C
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Figure 5.6 Fault in EHV system phase C, over 4 nominal cycles

The values reported by PMU are 0.803 for amplitaie 59.961 for frequency.
It is clear that this representation by a phasahis case doesn't work well, and the
GoF is only 17 dB. Irigure 5.5 andFigure 5.6 no peak value is the same, though PMU

has to report a single value and that is cleartyangood match to the observed signal
as no peak value matches 0.803 pu.

5.1 Real data estimation vs the models

The phasor measurement unit was created to mgaswer system parameters,
on the assumption that the system could be wetesgmted by a phasor. That means
almost steady-state. The system is far from thiglitmn during a fault. A commercial
PMU includes much filtering in its design, andrésponse to a fault would be largely
determines by the characteristics of the filteEEMPR, on the other hand, includes no
filters, but is (like the commercial PMU) trying tib a phasor to a non-phasor signal.

SEMPR therefore gives as its declared values thst-Equares best fit of a
phasor to the distorted signal. A commercial PMU give some other estimate based
on its filters. Neither is “right,” because bothsasie a phasor model. Whether the
output of either method is useful would dependhengurpose intended for the result.

Next, | explored the possibility of modifying th&aBIPR model for this real-
world signal estimation. The main advantage of SEBM$that the model is selectable
freely, so different models can be applied (alsdhweapabilities to run them
simultaneously as parallel processes). At leasb8ats are worth looking at:

- Phasor model (6);
- Kirkham model (23);
- Kirkham model with ROCOA (22).
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All measurements are performed with the same 2eaydasurement windows
and the same 1 second real-world input data (pGasehe result compilation is given
in Figure 5.7.
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Figure 5.7 GoF calculation for SEMPR measurements compared to GoF calculations from commercial
PMU declared values

It is clear that in this SEMPR can achieve beitgra representation, especially
during fault conditions. Over nominal operation SERIproduces results on average 8
dB better than PMU values, but over fault therglidB difference. Interestingly there
is not a lot of difference between SEMPR with ROTRPBCOA and simple phasor
model during normal operation. This indicates thatr nominal conditions PMU also
has very good representation of the real worlds #iso worth noting that during fault
conditions SEMPR with phasor model is no bettentB&U in making sense of non-
sinusoidal wave, therefore the key is not in thé¢hoe, but in the model.

Interestingly measurement No.Hidure 5.7) indicates slight drop in GoF from
SEMPR measurements and very slight worsening ofi@&MU declared values. This
shows that SEMPR (independent 2-cycle measuremsmtgjre sensitive to change of
conditions and PMU could roll-through some very amimnd fast changes in input
signal due to signal filtering and latency. Thislso indicated by the recovery speed
of GoF after fault, where SEMPR shows very rapmbvery (measurement No.5) but
PMU is slower to react.

Broadly speaking, one might say that none of thasueements gives a good
match to the faulted signal, and all give a battatch before and after. If the purpose
of the measurement is to know the cosine paraméteinsg the fault, none give much
hope. On the other hand, if the purpose is to kitatvsomething has caused the signal
to go non-sinusoidal, all methods are roughly eg8aime differences are explored
next.

Estimated values during fault (measurement No.2)032 pu for amplitude, -
28.848 pu/s for ROCOA, 60.639 Hz for frequency,.#23 Hz/s for ROCOF, and
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46.072 for phase. This means that for amplitude SEMPRnes¢s that the voltage is

dropping by astonishing 28 pu per second, or O2Bgy cycle. This means that in one
cycle voltage level is estimated to decrease bieadt 81kV. ROCOF value also

indicates slowing down of the sine-wave by 33 Hzgaeond.

When plotted together the results of SEMPR showarly better fit Figure
5.8)
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Figure 5.8 SEMPR algorithm reconstruction along with PMU reconstruction and real oscillography data

It is evident that SEMPR makes better estimatiothefsignal and for large
parts of input data the estimation and oscillogyalpes are indistinguishable while
PMU data reconstruction underestimates the peakesalin first half of the
measurements and overshoots at the second. Itde mare visible if we look at the
residuals irFigure 5.9.
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Figure 5.9 SEMPR and PMU measurement residuals during fault measurement
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It is shown inFigure 5.9 that the residuals during the actual fault arecsfm
equally large showing that both models don't regmmeghe fault conditions fully, but
right before and after the fault SEMPR shows muettel results than PMU calculated
residuals. It shows that it is beneficial to alldve model for more degrees of freedom
and give the observer ore tools to describe theatig.g. allow the amplitude and
frequency to change within the measurement window.

5.2 Real data variance analysis

Consider the same AEP data used for fault measuteamalysis. The fault
occurs at the beginning of almost one second wafrfample set. A PMU looks at the
fault in two cycle measurement windows, but SEMRR look at it even at half-cycle
windows and 4 cycle windows (using model of a phasthe frequency figures are
given below.
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Figure 5.10 4-cycle measurement window measurements for data including EHV line fault
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Figure 5.11 2-cycle measurement window measurements for data including EHV line fault
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Figure 5.12 Single-cycle measurement window measurements for data including EHV line fault

70



70

65

Frequency, [Hz]

w1
(@]

45 T T T T T T T T T T T T T T T
1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76
Measurement number

Figure 5.13 Half-cycle measurement window measurements for data including EHV line fault

From Figure 5.13, Figure 5.12, Figure 5.11, andFigure 5.10 the variability is
very clear. With the measurement window decreagiagseemingly get more detail,
but with half-cycle reported values we also geyJagh variance over the data where
the fault occurred and the frequency at first jurtgp68 Hz and then plummets to 52
Hz giving 16 Hz difference between two adjacent-bgtles, which just does not make
sense (not physically possible). Considering theefam of the fault (given ifigure
5.6) it is more understandable — the signal only viguesembles sine-wave, so
measurements only vaguely resemble sensible intam#&wvhen using model of a
phasor). With 4-cycle measurements the frequenseésningly undisturbed by the
fault.

It is important at this stage to look at the SEM&®RI the meaning of the
measurement. First, 52 Hz is what apparently dgiveseast amount of residuals at that
given moment. Second, we are looking for coeffitiara phasor model (6) and by the
looks of it, the signal is not a phasor. Our mddelrepresenting the nature makes no
sense. We get that indication also from GoF thatife measurement producing 52 Hz
is 26 dB, instead of steady 44 dB for rest of datia

It basically doesn’'t matter whether we use halfleyr 4-cycle measurements,
with wrong underlying mathematical model it willllsinake little sense. For less
variance use longer windows, for more sense (igwice) use better conceptual
models.

Unfortunately, AEP data is not suitable to sensii@gresent Allan variance
calculations, there simply isn’t enough data. Allamiance is, after all, based on the
variations from a supposedly stable signal. Ladg¢a chunks were made available by
a LPMU device [29] sampling at 512 samples perecgmb providing 30 seconds worth
of data from a medium voltage distribution grid.e§b data are courtesy of Alex
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McEachern of Power Standards Laboratory. For s&rthere is a lot of noise and
harmonics on the signal, that can be observé&igure 5.14.
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Figure 5.14 uPMU sampled data in MV distribution system

The harmonic content can also be observed in thetigpn of the time series in
Figure 5.15
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Figure 5.15 Spectrum of the uPMU sampled data

Signal clearly contains'3 5" and 11" harmonic as well as high frequency
noise. Since the data set is from normal systermatipa period, the values should be
reasonably stationary and Allan variance can beutatied.
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Figure 5.16 Allan variance for distribution network frequency measurements

In Figure 5.16 each dot represents an Allan variance calculated tlifferent
number of measurements since the data set is.flfigere 5.16 shows a distinctive
minimum at 32 cycle measurement window, which wagilte approximately half a
second frequency reporting time. Of course, twiee gecond reporting rate is well
below what’s expected from PMU, but also singledeyseasurements have very small
variance — ppm. It is also worth repeating at gt that SEMPR doesn’t implement
any signal filtering.

6 Conclusions

The notion that the process of measurement isantfee same as solving an
equation lends itself well for examination with &marying signals that can be
reasonably modeled, as is expected to be the casthé various power system
guantities. The “experiment” of making a measurenigncurve-fitting gives results
that are similar to the results of other methodsyipg that the act of measuring is one
that can be done in various ways, but the endtreboluld not depend on the method
selected. Most importantly, it teaches that measarg is the act of using signals from
the real world to find parameters of a model. Thatdel is almost always a
simplification.

Firstly, the notion to separate the conceptual dvindm nature and reality is
very important.

The concept is not new: Maxwell was aware of thedn® keep these things
separate when he said this in a presentation i i@¥he British Association:

“l shall only make one more remark on the
relation between mathematics and physics. In
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themselves, one is an operation of the mind, therot
is a dance of molecules.”

Rudolf Carnap [15] stressed the importance of sepay the conceptual world
and nature in his equation for adding quantitieB. tlis gives the philosophical
foundation for the Kirkham model and brings changeghasor model, calling it
“phasor-like” for Phasor Measurement Units (PMUS).

The idea of measurement being the same as solvirggaation gives more
room for improving and adjusting our conceptual eledor reality observed. In this
case a Kirkham equation is used instead of jusiaaqr to show its advantages in real-
world applications. This gives PMUs added degreefemdom for amplitude and
frequency to account for time-varying signal tisain power system.

PMUs now are one of the most influential modern sneament devices
especially for stability-challenged power systeffagr the same system control and
supervision targets it could be possible to als® RK&IUs in distribution network. Of
course, strong communication backbone is essdatialynchronized measurements.

Research shows that commercial PMUs struggle wgghats under transition
process. This caused the amending the PMU staraddEEE. This shouldn’t be so,
and PMUs must report something. The fundamentdlleno seems to be that the model
used in the solution algorithms is a poor matchtifier actual signal. How believable
are the measurements? What happens when parametarisanging constantly? The
commercial PMU does not give any indication.

A metric Goodness of Fit is introduced here anddess integrated in SEMPR.
The Goodness of Fit parameter, developed fromeaiml[5], has showed potential to
be very useful with real PMUs and real signalsndicates in real time the degree of
match between the signal (changing with the powstesn), and the measurand (fixed
by the design of the PMU).

About the Goodness of Fit Metric:

1) GoF level can be calculated by any PMU. Theutaton is straightforward,
and does not depend on the measurement method;

2) The Goodness of Fit indicates that near-idesallte can be obtained with an
ideal signal;

There is confidence that GoF method will show gasilts on more real-world
data and real-world PMUs than what have already lexamined. As mentioned the
method offered here is not limited to PMUs. It @bbke implemented as part of any
digital measurement whose measurand equation cagluselated (an example of
double exponent is given in Annex 2). AltogethegFGds proved to be a promising
technique for a large class of digital measurements
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The effect on PMU measurement of different noiseslieen tested. The results
show that Brownian noise has the greatest impaoteasurement. There is less impact
for white (Gaussian) noise. For harmonics, we ajusa the model and the impact is
minimized.

From performed calculations it has been showedRREEOF is actually a tiny
variable in the mathematical model and its contrdsuto the final signal is down
almost to noise levels. More research in noiseitndffects on the model could be
performed to further improve the ROCOF measuremeseems quite meaningless
before we improve our understanding [54].

As part of the noise assessment, an Allan variametic was used. This is a
statistical analysis tool usually used for pregisigcillators. It was found, interestingly,
that frequency and ROCOF measurements are sengitivwindow lengths
(significantly more so than amplitude or phase)astgement of these quantities would
greatly benefit from longer measurement windows.

It has also been found by introducing synthetic & coloration (Brownian
noise), and based on Allan variance calculatidre,dn optimum emerges for window
lengths. The optimum changes according to the atstef the signal (noise content
and amplitude), e.g. for phase measurement withlenmmise amplitudes (up to 1.5%
white Gaussian (WG) and 0.3% Brownian (B)) themoptn is around 10 cycles, but
for larger amplitudes (up to 15%WG and 1%B) aro@ndycles. For more typical
1.5%WG and 0.03%B noise levels an optimum was fdon&d12 samples per cycle
which is what pPMU uses in [29].

An additional statistical analysis tool has beenppsed called “sampling
variance”. It is showed that an optimum value &sists for sampling rate, depending
on the signal and noise content. For smaller namplitudes (0.5%WG and 0.09%B)
the optimum sampling frequency is 384 samples petec but for large noises
(15%WG and 1%B) optimum is quite flat around 10 gkes per cycle.

The results of this work, looking at real-world @atupport the notion that PMU
devices are actually solving a phasor equation.riiéi@ issue with that is that a lot of
time, the power system signals don’t perfectly mesie a phasor. The GoF metric
shows that Kirkham equation would be better optginge more degrees of freedom
are provided for signal to change. Using Kirkhandeleshowed a 6dB increase in GoF
(14% increase since steady state GoF is around)48a the fault data.

When variance techniques are applied to obtairngdverld data, it shows that
shorter observation windows are not necessarilyemoformative than a sensible
compromise. Considering small ROCOF signal and Higturbance content on signal
during fault, it is actually useless to look at #went through glasses of a phasor. Short
(for example half-cycle) measurement windows reisuthe largest variance.
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Statistical analysis is something that PMU alsodm@just like GoF calculation.
In this case it is possible to adjust the concdptwalel (including observer notification,
of course), window length (possible multiple measuent windows at the same time),
sampling frequency to achieve best possible reptasen of the real signal (maximum
GoF value). Such device would perform informed antklligent measurements
providing more information about the nature.

One of the findings is that the noise in the pogyatem is not very researched
topic and true nature of the disturbances areggtite unknown. As the matter of fact,
also the power system signals under fault condsteme yet to be studied and not only
curve fitting but pattern recognition approach rhaysuggested. This way it would be
possible to get better and better GoF values arréase our understanding about the
true nature of the physical phenomena in real {im&®MU sense).

Real PMU with GoF integration is under way [55]ertefore more data and
possible findings are possible. With reported Galfues along declared parameter
values will bring knowledge to the observer whetbedrust or discard the measurement
and in power system operations this is huge impreard.

Underlying principles of intelligent measuremeniscdssed in this work are
truly fundamental and affect almost all current dagtrology, since it relies on digital
measurements. Dr. Kirkham calls it “The third rextadn in measurements”, first being
directly readable measurement devices, secondidgitaldneasurements. An example
of double exponent use case is given in Annex 2rd are more, however. Much more.
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7 Annexes

Annex No.1 Example of MATLAB code used in SEMPR

clear
clc

%Read real world sampling data from a file;

yy = xlsread( 'Data_file.xIsx'
T = xlsread( 'Data_file.xIsx'
for i=1:68
low =i * 64;
for n=1:64;

p(n) = yy(low+n);

%% Fitting algorythm: ‘fit1".

[xData, yData] = prepareCurveData( T, y);

% Set up fittype and options

ft = fittype(
'independent’ , X', 'dependent'
opts = fitoptions( 'Method'

opts.DiffMaxChange = 0.0001;
opts.Display = 'off*

opts.Lower =[0.5 -100 30 -500 -6.28 -0.5];
boundaries

opts.MaxFunEvals = 10000;
opts.Maxlter = 10000;

opts.Robust = '‘Bisquare' ;
opts.StartPoint =[1 0 60 0 0 O];
opts.TolFun = 1e-14;

functiuon

opts.TolX = 1e-14;

opts.Upper =[1.2 100 110 500 6.28 0.5];
boundaries

% Fit model to the data

[fitresult, gof, fitinfo] = fit( xData, yData, ft,
values from the curvefitting

RMS(i) = 20*log10(1/gof.rmse);
f(i) = fitresult.c;

A(i) = fitresult.a;

ph(i) = fitresult.e;

C_A(i) = fitresult.b;

values

C_W(i) = fitresult.d;

values

'NonlinearLeastSquares' );

1, 'AF292:AF4707" ),
1, 'T100:T163" );

'(a + b*x)*cos(2*pi*c*x+ 2*pi*(d)*x*x +e)+f' ,

); %Fitting the equation

%Set Method
%Maximum step change
%Disable display option
%Lower trust region

%Maximum evaluations allowed
%Maximum iterations
%Selecting bisquare robust fitting
%Starting values for estimation
%Termination tolerance for

%Termination tolerance for x
%Upper trust region

opts ); %Export

%Calculated GoF values
%Frequency values
%Amplitude values

%Phase values

%Rate of Change of Amplitude

%Rate of Change of Frequeuncy
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DC_offset(i) = fitresult.f; %DC offset values

if RMS(i) < 30; %Capture measurement if GOF
indicates a bad fit
for j=1.64;
y1() =
(A®M)+C_A(®)*T(j))*cos(2*pi*f(i)*T(j)+ph(i))+DC_off set(i);

%Reconstruct the estimated signal

end
L =1:64;
Resid =y - y1 %Calculate residuals

figure (1) %Plot the residuals
bar(L,Resid)

grid on

tt=1i;

figure (2)
plOt(Lvy!Llyll)
grid on

filename = 'Measurements_results1.xlsx' ;. %Write the results to
file

xlswrite(filename,y, 1, ‘Al )

xlswrite(filename,y1',1, '‘B1' )

xlswrite(filename,Resid, 1, 'Cl' )

end

i
end

%% Plots for data representation

K =[1:64];

figure(3)

plot( K, A)

grid on;

title( '‘Amplitude’ , 'fontsize' ,12)

xlabel( "Time (s)' , 'fontsize' ,12)

ylabel(  'Amplitude (pu)' , 'fontsize' ,12)
figure(4)

plot( K, f)

grid on;

title( 'Frequency' , ‘fontsize’ ,12)

xlabel( ‘Time (s)' , 'fontsize' ,12)

ylabel(  'Frequency (Hz)' , 'fontsize' ,12)
figure(5)

plot( K, ph)

grid on;

title( 'Phase’ , ‘fontsize' ,12)

xlabel( ‘Time (s)' , 'fontsize' ,12)

ylabel( '‘phase (rad)' , 'fontsize' ,12)
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figure(6)

plot( K, RMS)

grid on;

title( '‘Goodness of the fit' , 'fontsize' ,12)
xlabel( "Time (s)' , 'fontsize' ,12)

ylabel( 'dB' , ‘fontsize' ,12)

%

%% Data writing to a file

filename = 'Measurements_results.xIsx'
xlswrite(filename,RMS',1, '‘E1" )
xlswrite(filename,K',1, 'F1' )
filename = 'Measurements_results.xIsx'
xlswrite(filename,RMS', 1, ‘Al )
xlswrite(filename,fn',1, '‘B1' )
xlswrite(filename,An',1, 'C1' )
xlswrite(filename,phn’, 1, ‘D1 )
xlswrite(filename,K', 1, '‘E1" )
xlswrite(filename,C_An',1, ‘1)
xlswrite(filename,C_wn',1, 'G1' )
xlswrite(filename,yy,1, ‘H1' )
xIswrite(filename, T, 1, 1" )

%% Allan Variance calculation -example-

clear
clc

%% INPUT
%Measurement input

SF = 30;
I'=[12 410 20 50];
MM = 50;

%White noise input

white_noise_volume_all = [0.01];
red_noise_volumes = [0];

%Harmonics input

Hn = [0];
Ha = [0];
Hp = [0];

%MATLAB generated signal

Amplitude = 1;
ROCOA = 0;
ROCOF = 0;
Frequency = 50;
phase = 0;

%Sampling frequency
%select window sizes in cycles
%number of measurements

%Noise amplitude modifier
%Red noise amplitude modifier

%Harmonics number
%Harmonic amplitudes, pu
%harmonics phases, rad

%pu
%puls
%Hz/s
%Hz
%rad
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DC_offset = 0; %pu
%% Measuring algorythm

for r = 1:length(white_noise_volume_all) %Performs measurements
according to the designated noise volumes

clearvars yc HH H noise y RMSfn An phn C_wn delta_f delta_phn
delta A delta C_wn %Clearing all previous
cycle values
white_noise_volume = white_noise_volume_all(r); %Selects noise
volume
red_noise_volume = red_noise_volumes(r); %Selects noise
volume
for j=1:length(l) %Main cycle. Changes window sizes.
T=0:(1/(SF*60)):(((3G *SF))(SF *60))-(1/(SF
*60));
%Constructs appropriate time series for given windo w length
for i=1:MM %Measurement counter
white_noise = ((1) + ((-1)-1).*rand(1,length(T))) *
white_noise_volume; %Generates broadband unfiltered noise
red_noise = (cumsum(randn(1,length(T))))*red_nois e_volume;

%Generates red noise
noise = white_noise + red_noise; %Final noise signal
parfor a = 1l:length(T) %generate fundamental
yc(a) = ( Amplitude + ROCOA * T(a)+ noi se(a)) * cos( 2 *
pi * Frequency * T(a) + 2 * pi * ROCOF * T(a) * T( a) + phase ) +

DC_offset; %Generates the fundamental with Kirkham
equation +noise

end
HH = zeros(1,length(T)); %generates harmonics signal
for u = l:length(Hn) %loop for harmonics generation

parfor a = 1l:length(T)

H(a) = (Ha(u)) * cos( 2 * pi * 60 * Hn(u) * T( a) + Hp(u) );
%generates harmonics with phasor equation

end
HH =HH + H; %all harmonics added together
end
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y =yc + HH; %Final input signal
%% Fit: "fitl".

[xData, yData] = prepareCurveData( T,y );
fitting

%preparing data for curve

% Set up fittype and options

ft = fittype( '(a + b*x)*cos(2*pi*c*x+ 2*pi*(d)*x*x +e)+f' ,
'independent’ , ‘X', 'dependent , 'y ), %Fitting the equatio

opts = fitoptions( 'Method' , 'NonlinearLeastSquares' ); %Set Method

opts.DiffMaxChange = 0.0001;
opts.Display = 'off*

opts.Lower =[0.5 -100 30 -500 -6.28 -0.5];
boundaries

opts.MaxFunEvals = 10000;

allowed

opts.Maxlter = 10000;

opts.Robust = '‘Bisquare' ;
robust fitting

opts.StartPoint =[1 0 60 0 0 O];
estimation

opts.TolFun = 1e-14;

for functiuon

opts.TolX = 1e-14;

for x

opts.Upper =[1.2 100 110 500 6.28 0.5];
boundaries

% Fit model to the data
[fitresult, gof, fitinfo] = fit( xData, yData, ft,
values from the curvefitting

RMS(i) = 20*log10(1/gof.rmse);
f(i) = fitresult.c;

A(i) = fitresult.a;

ph(i) = fitresult.e;

C_A(i) = fitresult.b;

Amplitude values

C_W(i) = fitresult.d;
Frequeuncy values
DC_offset(i) = fitresult.f;

if i>1;

delta_f(i) = (f(i) - f(i-1))"2;

delta_ph(i) = (ph(i) - ph(i-1))"2;

delta_A(i) = (A(®i) - A@-1))"2;

delta_C_A(i) = (C_A() - C_A(i-1));

delta_C_W(i) = (C_W(i) - C_W(i-1));
end

end

%Maximum step change
%Disable display option
%Lower trust region

%Maximum evaluations

%Maximum iterations
%Selecting bisquare

%Starting values for
%Termination tolerance
%Termination tolerance

%Upper trust region

opts ); %Export

%Calculated GoF values
%Frequency values
%Amplitude values
%Phase values

%Rate of Change of

%Rate of Change of

%DC offset values

%Calculate the differences in
measurements for Allan variance calculation

%frequency differences
%phase differences
%amplitude differences
%ROCOA differences
%ROCOF differences

%Allan variance calculation and vector assembly

Allan_variance_f(r,j) = (sum(delta_f))/(2*(i-1));
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Allan_variance_ph(r,j) = (sum(delta_ph))/(2*(i-1))
Allan_variance_A(r,j) = (sum(delta_A))/(2*(i-1));
Allan_C_A(r,j) = (((sum(delta_C_A))/(i-2))"2)/2;
Allan_C_W(r,j) = (((sum(delta_C_w))/(i-2))"2)/2;
Avg_GoF(r,j) = mean(RMS); %Average GoF values

%% Write to the Excel file

filename = '‘Alan_variance.xlsx'
xlswrite(filename,f',(1+j), '‘A2' )
xlswrite(filename,A',(1+j), '‘B2' )
xlswrite(filename,ph’,(1+j), 'C2' )
xlswrite(filename,C_W',(1+)), 'D2" )
xlswrite(filename,RMS',(1+)), 'E2" )
end

end

%% Allan deviance

Allan_deviance_f = sqgrt(Allan_variance_f);
Allan_deviance_ph = sgrt(Allan_variance_ph);
Allan_deviance_A = sqgrt(Allan_variance_A);
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Annex No. 2 An Example of a Double Exponent Sigestimation

Mathematical model for double exponent:

V(t) = Ve_?t — e%t , @)

Where time constant establishes the rise of the impulse fratcordingly the
fall of the impulse. Witlu=0.02 and3=5 the signal; is given in Figurel.
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Figurel. A synthetic double exponent signal.

For clean signals SEMPR can estimate the valudsqgblgt which is shown in
residuals below in Figure2.
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Figure2. Residuals from generated and reconstrustgdals.
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With introduced 3% white Gaussian noise the sigmal residuals are given if
Figfure3 and Figure4.
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Figure3. Double exponent signal with introduced &#ite Gaussian noise.
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Figure4. Residuals from generated signal and retronted signal.

The residuals are practically the same as the rsagg®l, showing that SEMPR can
indeed estimate different mathematical models gs@nce of noise (approximately
0.4% of the noise signal actually contributed ® plarameters estimation).
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Annex No. 3 representational measurements
There are many ways to measure frequency:

- Count zero crossings

- Fourier analysis

- Measure zero crossing intervals
- Finite difference phase values.

But these are ways to measure, not descriptiomghat we measure. They do
not define the quantity being measured, the thailgad “frequency.”

In fact, the IEEE Standard [1] does not definetthieg being measured except
via a textbook kind of definition, one that assuro@sstant frequency. There seems not
to be a good definition of the word frequency thaplies when the frequency is
changing. The definition can be different for diffiet measurement methods, like
Apparent Local Frequency for SEMPR, which can indee defined.

What this means is that the PMU is actually meagusomething that is not
defined. As a result, the value that is obtainethasesult of the measurement depends
on the details of how the measurement is performed.

As it happens, this kind of measurement is morensomthan is generally
realized. Many measurements give results that depmeitically on the way the
measuring is done” air temperature (quoted on vesatports) is a common example.
It can be measured as the level of mercury in gialss with no reference to what
“temperature” means in physics.

Measurements of this kind are known as operatisn@decause the operation
of measurement must be followed exactly for thelltes be useful) and the kind of
measurement that we imagine we are usually malarighown as representational,
because (following Carnap) the way the physicalntjtias are thought to interact is
represented by the way the mathematical quanirttesact. [56]

In power systems, there are many quantities tleatn@asured operationally. An
example that is simple to see as operational isahpartial discharge. The way the
measurement is to be carried out is very closefinee in the standard [57]. The
bandwidth of the input filter is specified, the &iof detector, and some filtering of the
output.

The measurement of frequency in the PMU is a measemt of this kind,
though it is not generally recognized. The IEEEn8&ad contains a good deal of
descriptions of filtering before and after the megament is made, for example.

SEMPR was an attempt to make a measurement thasvapresentational as
possible. By adding a term in the rate-of-chang#&eazfuency to the sinusoid equation,
the model was thought to be a representation ofatiteal power system. In fact,
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because the power system typically contains haresothe fitting process is limited in

accuracy unless the harmonics are accounted ftire lhiarmonics are filtered out, the
measurement is more operational. If the harmonres imcluded in the SEMPR

objective function, the measurement is more repitasienal.

As the model complexity increases, it may at somiatge computationally
impractical to solve the fitting problem. Kirkhara continuing to work on this at
PNNL.
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