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Abstract 

 

The main research objective is power grid and phasor measurement units. 

It is posited that the act of measuring the various parameters of signal is the 
same to solving the equation for the chosen mathematical model. Essentially is a fitting 
problem in mathematics. The equation is a model of what metrologists term the 
measurand, the name given to the quantity to be measured, and the measurement 
equipment must be designed around it. The equation being fit is a model based on the 
“physics” of the signal and natural phenomenon behind it. Regardless of exactly how 
the measurement is made, a metric defined and called the Goodness of Fit allows the 
measuring system to comment on the match between the signal it is observing and the 
model. The metric is based on the residuals, the differences between the signal itself 
and the value calculated from the result of measurement. Results from real-word phasor 
measurement units and real-world signals illustrate that the equation of the PMU is well 
solved during steady conditions. The effects of a fault in the transmission system is 
analyzed on the Goodness of Fit metric for a PMU. 

This work addresses how to deal with non-stationary power signals. Firstly, to 
measure a time varying signal, in a world of digital measurements, the relationship 
between the sampling window of the measurement system and the rate at which the 
signal is varying must be addressed. In this work several changing-frequency cases are 
examined. It is shown that the parameters of the AC signal can be found by curve-
fitting. A working proof-of-concept signal estimator is shown and realized in the 
MATLAB environment. Lessons can be drawn about the role of different noises in 
measurement and about the very meaning of the result. Statistical tools, such as Allan 
variance are used to examine the stability of performance for estimator, as well as noise 
influence on estimation process. 

A new statistical analysis tool is experimentally shown to be applicable to 
digital measurements, called “sampling variance”. By varying sampling rate, it is 
shown that an optimum exists for smallest parameter variance depending on noise type. 

 

The Doctoral Thesis has been written in English. It consists of an Introduction; 
5 Chapters; Conclusion; 58 figures; 2 tables; 3 annexes; the total number of pages is 
91. The Bibliography contains 60 titles 
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Anotācija 

 

Promocijas darba galvenais pētījuma objekts ir elektroapgādes sistēma un 
vektoru mērījumu iekārtas. 

Šajā darbā tiek parādīts, ka dažādu signāla parametru mērīšanas process ir tas 
pats, kas atrisināt izvēlētā matemātiskā modeļa vienādojumu. Būtībā to var apskatīt kā 
līknes parametru noteikšanas problēmu matemātikā. Vienādojums šajā gadījumā ir tas, 
ko metrologi apzīmē kā mērāmo vērtību, un mērīšanas iekārta ir jāizstrādā ap to. 
Vienādojums, kura vērtības tiek piemērotas līknei, ir nekas cits kā modelis, kas balstīts 
uz signāla "fiziku". Neatkarīgi no tā, kā tieši mērīšana tiek veikta, tiek piedāvāta 
metrika, kas definēta un nosaukta kā “Goodness of Fit”, ļauj mērīšanas sistēmai sniegt 
komentārus par atbilstību starp novēroto signālu un konceptuālo modeli. Metrikas 
pamatā ir starpības, atšķirības starp novērotā signāla vērtībām un vērtībām, kas 
aprēķinātas no mērījuma rezultāta. Rezultāti no uzstādītām reālām rotējošā vektora 
(phasor) mērījumu iekārtām (PMU) un reāliem signāliem parāda, ka šīs iekārtas, lai arī 
to neapzinoties, atrisina rotējošā vektora vienādojumu. PMU metrikas iespējas tiek 
demonstrētas izmantojot reālas pārraides sistēmas datus, tai skaitā līnijas bojājuma 
laikā. 

Šajā darbā apskatīts, kā rīkoties ar nestacionāriem energosistēmas signāliem. 
Pirmkārt, lai izmērītu laikā mainīgu signālu, izmantojot digitālos mērījumus, ir 
jāatrisina saikne starp mērīšanas sistēmas mērījumu logu ilgumu un signāla parametru 
mainīšanas ātrumu. Šajā darbā tiek izskatīti vairāki mainīgas frekvences gadījumi. Ir 
parādīts, kā AC signāla parametrus var atrast ar līknes montāžu. Izstrādāts līknes 
montāžas matemātisks koncepts, kas realizēts MATLAB vidē. No iegūtajiem 
rezultātiem tiek izdarīti secinājumi par dažādu trokšņu nozīmi mērījumos un par 
rezultāta patieso nozīmi. Tiek pielietoti dažādi statistikas rīki, tai skaitā, Allana 
dispersiju, kas izmantota, lai pārbaudītu koncepta veiktspējas stabilitāti, kā arī trokšņu 
ietekmi uz mērījumu procesu. 

Eksperimentāli tiek pierādīts, ka jauns statistiskās analīzes rīks, kas nosaukts 
par "diskretizācijas dispersiju" ir piemērots digitālajiem mērījumiem,. Mainot signāla 
paraugu ņemšanas frekvenci, tiek parādīts, ka pastāv viszemākais parametru novirzes 
punkts, kas atkarīgs no traucējumu veida. 

 

Doktora promocijas darbs ir angļu valodā. Tam ir šādas sadaļas: Ievads, 5 
nodaļas, Secinājumi, 58 attēli, 2 tabulas, 3 pielikumi un kopējas lappušu skaits ir 91. 
Literatūras sarakstā minēti 60 literatūras avoti. 
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Introduction 
 

While enjoying wine and contemplating why phasor measurement units for 
transmission systems struggle to meet requirements set out by IEEE [1] Dr. Kirkham 
had a novel idea. In 2015 I was introduced with his idea that the act of making a 
measurement is actually the same as solving a mathematical equation. Consequently, 
an incomplete equation would give inaccurate measurement. The concept can be 
proved, and in 2015 we set out to do just that. 

It became clear that one of the most important and trusted measurement devices 
for high and extra-high voltage alternating current transmission systems may have an 
incomplete mathematical model. IEEE even gave allowance to skip reporting 
measurements during signal transitions [2]. This doesn’t seem right. 

The idea for measurement as solving an equation gives freedom to define the 
model and therefore define the equations and measurands according to our best 
understanding of reality. Models in this case are very important and it appears that 
Phasor Measurement Units (PMU) during the moments we need the measurements the 
most – system faults - struggle to make sense of the reality with chosen model. Just as 
a reminder PMUs currently play a very important part in a modern transmission 
(recently also distribution [3]) system and helps to keep lights on. 

I was very lucky to work with Dr. Kirkham during year 2015 and 2016 at Pacific 
Northwest National Laboratory, Richland, USA where we designed a mathematical 
proof of concept for an intelligent measurement. At first the priority was to find the 
model for instantaneous frequency of the power system that is essentially the main 
purpose for the PMU – to indicate sudden changes in system frequency. This work led 
to other findings and during the productive work together a working proof-of-concept 
solution, called SEMPR (Signal Estimation by Minimizing Parameter Residuals) was 
designed and put to the test with synthetic as well as real data. Since SEMPR is time 
domain calculation with complete independence between measurements, it is important 
to show, that calculation (or parts of calculation involving Goodness of Fit) can be done 
by any PMU. Joint work resulted in numerous conference publications, transactions 
paper and a report [4] [5] [6] [3] [7] [8] [9] [10] [11]. Interested reader is sincerely 
encouraged to go through the published work first, before reading this thesis as it is a 
continuation and unpublished extension of the current work.  

First chapter deals with philosophical questions and basis for the non-stationary 
power system waveform measurements. Nature must be separated from the conceptual 
models in ones mind, while keeping the model tractable and related to nature. Models 
can be re-adjusted, but nature can’t. 

Second chapter focuses on phasor measurement units, mathematical model 
underneath, and their use in power system synchronized measurements. Model 
limitations have been indicated and possible solutions offered. 
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Third chapter shows the mathematical and developed practical proof-of-concept 
for Kirkham equation-based model for phasor-like measurements in power system 
(Signal Estimation by Minimizing Parameter Residuals). 

In fourth chapter the limitations for SEMPR are explored with various synthetic 
signals, containing variations of noises and harmonics. Statistical analysis methods are 
implemented and sampling variance is introduced. Chapter provides first experimental 
results on sampling variance for possible uses in real-world applications. 

Fifth chapter contains results from real-world signals and PMU measurements, 
including a fault in Extra-High Voltage network. It is shown that SEMPR in general 
performs better with measurements over the fault sampled data than PMU. Results of 
statistical analysis is provided for real-world Medium Voltage distribution network 
signal. 

This work is on 91 pages, has 58 figures, 2 tables, 3 annexes and 60 references.  
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1 Analysis of different mathematical models for real world 
representation 

 

Curiosity has been one of the most beneficial characteristics of our society. Our 
constant urge to ask questions has led to scientific discoveries and great 
accomplishments. At the very basis of each question is our perception of things we 
observe. Note that the perceptions may be different from person to person and not easily 
comparable. This is where mathematics comes to aid and can describe our perceived 
model in our heads in a very definitive way. 

Mathematical models are our constructions of the reality and for most cases can 
be branded as “our best guess” while the chase for universal model for explanation of 
the universe is still on. One of our best guesses and Standard model [12] is incomplete 
and could be part of bigger picture. Nonetheless, we have come a long way since 
Pythagoras around 500 BCE was one of the first to begin to describe Earth as spherical 
and a student of Plato – Eudoxus put the Earth at the center of the Universe and 
described first known mathematical model for the celestial motions [13]. This model 
was then advanced by Greek philosopher Aristotle, but eventually dismantled by 
Nicolaus Copernicus in 1543. For understanding how things work, models are 
important. 

Like with Aristotle and Copernicus models, both are based on observations and 
meant to explain celestial motions, but the outcome is very different. Here the scientific 
method is essential. An empirical method must be provided to root the model in reality.  

 

1.1 Carnap equation and model 
 

Rudolf Carnap was a German-born American philosopher and considered one 
of the giants among twentieth century philosophers. His work and contribution to 
inductive logic is considered one of the greatest achievements of modern philosophy 
[14]. 

Large part of his early work is related to philosophy of physics and experimental 
method. The experimental method (scientific method) allows us to take action, instead 
of being just onlookers. Instead of waiting for a situation where observation could 
happen we can purposely make such situation, essentially make an experiment. 

The most relevant notion to begin with is the Carnap quantitative language of a 
measurement, or in other words - labeling for different models. A good example is 
given in [15] with spatial length. Consider two bodies with length, for example pieces 
of wood a and b. If they are combined so that they are end to end lying in a straight line 
the new physical entity is now a combination of two objects and have length that is the 
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sum of the lengths of a and b. This sounds like additive rule for length. Unfortunately, 
quite often this rule is not satisfactory. As Carnap observes, this is a very poor way to 
formulate a rule, main issue being that the word “add” is being used twice in the same 
equations, but with very different meanings. At first, it’s used for joining together two 
physical objects and then it’s used to describe an arithmetical operation. It is not 
possible to arithmetically add two lines and expression  

 ��� + �� = ���� + ����		, (1) 

where L is the length of the two pieces, is erroneous. The second symbol “+” 
expresses the arithmetical operation of adding, but the first one does not. You can add 
two numbers, but you cannot add two bits of wood as they are physical objects in space. 
In this sense the first symbol “+” denotes the physical operation of combining and 
Carnap really stresses out the difference between the two worlds – physical and 
mathematical. The symbol for physical joining operation “∘” is then introduced. Correct 
way of expressing the joining of two lines then is 

 ��� ∘ �� = ���� + ����		. (2) 

It is obvious that the left part of the equation denotes the real, physical world 
and the right part is the conceptual or mathematical one. The “=” is the bridge between 
them and realized as the act of measurement. By the act of measuring we can transfer 
from operations with physical objects to mathematical operations in the conceptual 
world. The “=” of course is true only if we can know the actual true value by measuring 
the thing and whether “≈” would be more appropriate, is a conversation topic on its 
own. 

By this point we can talk about the characteristics of a wave function and its 
representation in our conceptual minds. Every periodic function has a frequency 
parameter, but frequency by definition “number of occurrences per unit of time” is 
something existing in real world as swinging pendulum or celestial cycles. Once we 
cross the “=” in Carnap equation (2) it becomes a variable in an equation of a wave 
function. There is a large difference and we should avoid confusing them at all times. 
For the purpose of this work the term “frequency” denotes second variable in wave 
function (symbol ω) and the physical property of this number should be put aside, since 
there are questions like: 

- What is the frequency when frequency is changing? 
- What is the frequency for a quarter of a cycle signal? 

In this sense in this work “frequency” (if not said otherwise) is only true for the 
measurement window and is a parameter in an equation for a mathematical model. 
During work it was proposed to switch from term “frequency” to “apparent local 
frequency (ALF)” (apparent, because conceptual, local, because true only for 
measurement window), but it was never widely used.  
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1.2 Rutman models 
 

Jacques Rutman is a French scientist who has contributed greatly to precision 
oscillators in clocks and frequency stability measurements. Keeping in mind the 
distinction between the nature and our conceptual world J. Rutman put it this way: 

“… models are used to represent the physical world which 
is so complex that many details are ignored in the model: 
otherwise, the latter would become intractable. On the other hand, 
properties that have no direct meaningful counterparts in the real 
world have to be included in the model to make it tractable 
(stationarity of random processes is a well-known example). “ [16] 

So, we are quite free to add or remove parameters and assumptions to our 
conceptual models of reality, but have to always keep in mind that it does not change 
the reality itself, just our understanding. If something changes in nature, we have to 
accommodate in our models, otherwise our knowledge of the phenomenon being 
observed will be completely wrong, yet measurement can still be very accurate. 

In [17] J. Rutman points out that: 

“At first, it is important to emphasize on the fact that the 
two following facets are often confused: 

- The real world, with its physical devices, measurement apparatus, 
experimental results derived from reading meters, counters, dial 
settings and so on. 

- The mathematical model, with the means and rules for operating 
with the symbols introduced in it.” 

The mathematical model of an oscillator is given in [17]: 

 ��� = ��� + ���� sin�2��� + ����		, (3) 

where V0 is nominal amplitude, υ0 is nominal frequency, ξ(t) is random 
amplitude noise and φ(t) is random phase noise.  

So, what is the frequency when the frequency is changing? Instantaneous 
frequency? 

Instantaneous angular frequency for (3) is 

 ��� = �� ��� + ���� = 	�� +	����� 	, (4) 
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where �� �� = ������  is a random frequency fluctuations around the ideal value 

ω0. But for model tractability in physical world (Carnap equation left part) the 
mathematics get very tricky, pointed out by Rutman in [17].  

There is stationarity problem for φ(t) where theoretically white noise in 
oscillators leads to phase diffusion process similar to Brownian motion. In this case it 
becomes impossible to introduce exact correlation function or a spectral density of the 
phase. Since a lot of random processes has no derivative function, the existence �� �� 
is at question. Even if the physical interpretation seems obvious, is not always 
mathematically defined. As Rutman concludes, one must be very careful when dealing 
with phase and frequency noises, since it may lead to a use of non-existent quantities. 
In this work SEMPR is made to operate with frequency, phase, and amplitude noises, 
but it is done controllably keeping in mind the physical implications.  

For physical sense for this work Rutman states in [17] that essentially 
instantaneous frequency for Carnap left side of the equation can never be instantaneous 
since it always involves a finite averaging interval τ. The notion of frequency for a dot 
on a wave function is simply not possible and the same distinction must be drawn 
between mathematical frequency (e.g. ALF) and physical frequency of a periodical 
wave. 

 

1.3 Kirkham model 
 

The question about what the frequency is when the frequency is changing 
resulted in new ideas and research in phasor-like measurements [11]. It did not stop 
there, and many philosophical questions have been discussed. Interested reader is 
referred to Annex No. 3 for frequency measurand discussion. 

Consider equation (2) and separation of nature and conceptual model of nature. 
In [18] Claude Shannon admits that frequently the messages sent over 
telecommunication channel has meaning that is, they refer to or are correlated. He then 
went on to discard this notion as this, in his words, is not part of the engineering problem 
for the communication channel he was considering. It is Dr. Kirkham’s idea to show 
that the "message" coming from a measuring device has "meaning" and it must not be 
ignored. The correlation to the nature in left side of Carnap equation should be kept. 
The equal sign in the equation (2) is the link between conceptual and real worlds, but it 
must be approached carefully as it does not mean "is the same as", instead it should be 
interpreted as "is the same value as". Therefore, the physical frequency of repeating 
oscillations is not the same as the value for the frequency in a mathematical model, it’s 
just a representation.  
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The same stands true not only for measurement, but also for signal generation. 
Dr. Kirkham shows that those are practically the same just in different directions in 
Carnap equation, 

 

 

(5) 

 

where measurement is an act of solving an equation for mathematical model 
values, but the process of signal generation moves information from the mathematical 
model into physical world. As Kirkham indicates, calibration, of course involves both. 
The calibration block diagram is given in [11] 

 

Figure 1.1 Calibration block diagram 

In Figure 1.1 the calibration corresponds to Carnap equation very well. On the 
left side there are real-world non-perfect and noisy signals, and on the right side is the 
conceptual mathematical world, that in both cases (measurement and generation) 
contains some mathematical models, made by our understanding of physics and 
mathematics. 

Coming from this work is the notion that mathematical models for 
measurements (and signal generation) are extremely important if one wants to keep the 
correlation to actual real-world signals. The majority of work then has been in the 
direction of AC sinusoidal signals in power transmission systems and phasor 
measurement units as the main measuring devices. Real-world signals usually are not 
stationary and power system AC waveform is not any different. So, if the signal in real-
world is changing, so should our conceptual model for this signal. This is where a slight 
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change to a phasor equation was made and Kirkham introduces rate of change of 
amplitude and rate of change of frequency in the model (15) for phasor measurement 
units.  
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2 Synchronized phasor measurements in transmission network 
 

Synchronized phasor measurements are becoming one of the most vital 
measurements of a modern power system. This information, based on stream of 
measurements, can tell a lot about system dynamics and system stability ensuring that 
lights stay on.  

There are many control and supervision systems already in place for power 
systems (like SCADA), but there are still very strong incentives to introduce solutions 
that are faster and more insightful. With SCADA the measurements are captured every 
4 seconds or so and from different areas they are not captured at the exact same time. 
If monitored for only voltage, power and reactive power, the solution can be satisfactory 
because these things usually don’t change very suddenly (unless large disturbance). 
However, system monitoring is essential during large disturbances and transient 
processes. In order to capture system dynamics and for fast real-time 
control/supervision faster capture periods and synchronized data is essential [19].  

Synchronized phasor measurements mean that all measurements are using the 
same time reference and are synchronized with UTC (Coordinated Universal Time) 
using GPS (Global Positioning System) clocks [20]. This way all measurements can be 
drawn on one single axis and shown frame by frame. With fast measuring rate (25 
measurements per second in 50 Hz system and 30 measurements per second in 60 Hz 
system) system dynamics begin to appear (Figure 2.1) and it is possible to monitor 
system transient processes. Now, by using synchronized measurements it is possible to 
discover blackouts, line tripping, generation unit dropping from network, FIDVR (Fault 
Induced Delayed Voltage Recovery) and other transient processes in real time. With 
resilient and fast telecommunications network, it is also possible to control the power 
system elements in real time to apply counter measures and keep the system in balance. 

 

Figure 2.1 Voltage angle difference oscillations Dortmund-Bucharest [21] 
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The though behind using synchro-phasors for system state estimation is rooted 
in notion that sine-wave between two adjacent buses will change the phase angle 
depending on the load as seen in Figure 2.1. By measuring synchronized phasors at both 
instances the P flow can be then computed. 

As shown in Figure 2.2 it makes sense to measure phasor angle across all parts 
of large interconnections to monitor system and individual line connection 
performance. In this case drop of generation unit or line tripping will be immediately 
observed in corresponding phasor measurements. Information gathered from all 
measurements simultaneously and synchronized to UTC can help to monitor system 
dynamics (oscillations), improve system models and protection gear settings as well as 
react to system transient processes and prevent possible blackouts. 

PMU

PMU

PMU

PMU

PMU

PMU

PMU

 

Figure 2.2 Phasor angle measurements across power system 

Because the main characteristics of interest in a power system usually are 
voltage, frequency and their stability, phasors are used for much more than just line 
load estimation. One implementation lies in control and protection domain, where 
phasors can be very useful [22] [23]. The system must be at equilibrium between 
generated and consumed power at all times in order to ensure stable voltage levels and 
system frequency. Stability depends on three factors: rotor-angle stability, frequency 
stability and voltage stability. With the evolving grid it is challenging to monitor and 
maintain all the parameters. Increasing complexity and interconnectivity of a modern 
power system [24] as well as larger penetration of distributed renewable energy sources 
[25] can create instability of the power system frequency and cause oscillations between 
different areas. These usually are low frequency oscillations, like for example European 
interconnected network including 28 countries oscillates at around 0.15Hz (Athens-
Stuttgart-Seville-Algiers) [24]. System oscillations at some circumstances can cause 
severe system instability, falling out of synchronism and blackouts [26].  
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2.1 Model of a phasor 
 

In order to make power systems tractable it is necessary to use mathematical 
models and the model of a sinusoid is a good representation at a first glance of a stable 
power system. It is then possible to express power system signal mathematically as a 
sinusoid equation [27]: 

 !�� = "# cos�� + �� (6) 

where Xm is amplitude, ω is frequency and φ is phase. This model includes all 
information to reconstruct a sinewave. It is customary to imagine a diagram 
representing this equation. The time is set to zero, and a line drawn at angle φ to the 
horizontal, with (scaled) length Xm. This line was originally termed a vector, and later 
became called a phasor. 

Arun Phadke, J. Thorp and M. Adamiak proposed a new idea in their 1983 paper 
on how to measure frequency really fast and without counting signal zero-crossings 
[28] by using model of a phasor. In their scheme, the two parameters are known as a 
synchrophasor. A mathematician might call them the stationary phasor, since by setting 
the time to zero, the effect of frequency is removed. Frequency is regarded as a separate 
quantity for measurement. Consider the exponential notation representing the sinusoid: 

 "&Re)*+�, -��. = "&Re)"&*+�, � +	*+���.		. (7) 

In power applications, it is customary to omit the Re notation and to omit the 
frequency term, so that a sinusoidal input signal as in (6) is written 

 !�� = "#*+� . (8) 

Note that the simplified equation of the sinusoid does not include the frequency. 
It includes only the stationary phasor. Also showed in Figure 2.3 in time domain (a) 
and complex domain (b). 
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Figure 2.3 Sine-wave representation (a) Sine-wave (b) Phasor representation  



21 

 

All the information about the stationary signal is there: amplitude, frequency, 
and phase angle. Measuring amplitude is not so challenging but measuring phase angle 
and frequency is a hard thing to do (for real time applications). As shown by A. Phadke 
et. al. in [28] it is possible to measure the difference in the phase angles between the 
recursive phase measurements and, by doing that, find the change in the frequency: 

 �/� = /0 − /023�1/508�  
(9) 

where ψ is derived from a “phase factor” *+9: , the differentiated phase angle, r 
is recursive measurement and N is sampling rate in samples per cycle.  

Difficult measurements like frequency in real time on the power system has 
been a long-time interest for power engineers. A value called “rate of change of 
frequency” (ROCOF) was expected to be a very useful tool to indicate changes in the 
power system. In case of generation unit loss or line tripping, the frequency would be 
affected and ROCOF would indicate how fast the changes are. Then actions can be 
taken based on ROCOF information. From change in the frequency between two 
recursive measurements ROCOF can be derived, 

 �;� = 12� �</�<  

 

(10) 

where f is the frequency. 

It is important to note that the model of a phasor describes a sine-wave with 
static frequency and amplitude that is true from reference time to infinity of time. This 
is the mathematical model used in phasor measurement units (PMUs).  

 

2.2 Synchro-phasor measurement units 
 

From the idea proposed in 1983 [28] it took 5 years for developing a PMU 
prototype [21] in 1988 at Virginia Tech, USA and in 1992 first commercial PMU was 
produced at Macrodyne Inc., USA (Model 1690). In 1995 the first standard was 
developed, and most recent update was released in 2014 [1] to change performance 
requirements.  
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Figure 2.4 Macrodyne Inc. Developed PMU “Model 1690” (www.macrodyneusa.com) 

PMU (in Figure 2.4) is a time synchronized measuring device reporting estimates 
of positive sequence voltage amplitude and phase angle, local frequency, and rate of 
change of frequency. It is previously shown that measurements are done only for 
amplitude and phase angle. The other values are then calculated based on 
differentiation.  

The input for any PMU is a sine wave signal that gets filtered usually with a 
low-pass filter to get rid of possible harmonics and noise on the signal that can cause 
aliasing. Then it is turned into a digital signal by sampling in A/D converter and creating 
point-on-wave data stream. The data stream is synchronized with UTC signal that is 
received from GPS receiver. Using the data and reference time (t=0) processing unit 
can calculate the phase angle and positive sequence voltages and currents (Figure 2.5). 
Based on these measurements local frequency and rate of change of frequency is 
determined. 
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Figure 2.5 Main functional blocks of a PMU 

Based on performance requirements posed by [27] and [1] all PMUs can be 
sorted in two categories: P and M type. P type PMUs usually are used for protection 
applications and their requirements include very fast reporting times (at least 25 
measurements per second). M type requirements are more intended to deal with 
adversely aliased signals and do not require blazingly fast reporting speeds e.g. 
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response time for ROCOF step change estimate is 14/f0 over P type 6/f0, where f0 is the 
nominal frequency. Testing of PMUs is a very interesting topic to which an interested 
reader is forwarded to [6] and [4] for more detailed insight. 

Actual measurement unit algorithms are commercial secrets for each PMU 
manufacturer, but in general at least some parts of digital signal processing are taking 
place in each and every one of them. Discrete Furrier Transform (DFT) is calculated to 
transfer from time domain to frequency domain. Seemingly logic thing to do because 
frequency and rate of change of it is what we are really after. The DFT is done according 
to [20]  

 ! = √28 >!?
@

?A3 B2+<?C@ , 
 

(11) 

where N is total number of samples in one period of the signal, x is the phasor 
and xk is the point-on-wave sample. 

The main feature of frequency-domain based calculations as described by Arun 
Phadke in [20] is that it produces the positive sequence phasor  

 !3 = |!3|B+�		, 
 

(12) 

with an angular velocity exactly corresponding to the difference between system 
reference frequency and observed frequency. The system frequency is then 

 � = �� + ��3� . 
 

(13) 

While details of the phasor calculation techniques in PMUs are unknown to the 
public, for sure they include common key points: 

- Input signal is filtered; 
- Sampling rates can vary greatly (from 24 samples to 512 samples per cycle 

[29]); 
- DFT is calculated; 
- Sampling may be synchronized with the UTC clock or the signal itself; 
- Phase angle differentiation is performed to calculate system parameters; 
- Parameters are time-stamped and forwarded to a data concentrator. 

The outcome information from the PMU is 3 phase positive sequence voltage 
magnitude and angle, 3 phase positive sequence current magnitude and angle, local 
frequency (as deviation from nominal), Rate of change of frequency, additional defined 
analog or digital signals (like transducer values, relay statuses or other flags). Since all 
this information comes from phasors, the accuracy of a PMU measurement is expressed 
in parts per unit as TVE (Total Vector Error) of a “perfect theoretical phasor” [30]. TVE 
is described in the standard [27]: 
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 E�F�G� = HI"J0�G� − "0�G�K< + I"JL�G� − "L�G�K<�"0�G��< + �"L�G��< , 
 

(14) 

where "J0�G� and "JL�G� are the sequences given by phasor estimates, "0�G� and "L�G� are theoretical values of the input signal at given time (n). 
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Figure 2.6 Total Vector Error visual representation 

According to [1] allowed TVE for a steady state test is 1%, which means that 
there can be 1% difference between observed phasor and theoretical phasor. 

 

2.3 PMU limitations 
 

Synchrophasor measurement units have to deal with many problems and just to 
mention couple of them are timing and synchronization, signal filtering, noise, and 
sudden large disturbances in the signal. 

Timing is very important in synchronized measurements. The precision requires 
µs precision on the clock (allowed 1% TVE error corresponds to ±31µs time error in 
50Hz system [1]) therefore GPS clocks (or equivalent) are essential. PMU therefore 
have to account for connection latency and delay of UTC signal to make synchronized 
A/D conversion. This becomes very important when comparing two different vendor 
PMUs because synchronization processes can be implemented differently (some A/D 
converters are phase locked to the system frequency).  

Filtering the signal is necessary to solve aliasing problems and also to remove 
any harmonic disturbances with any out of band signals. Filtering brings a delay that 
has to be taken into account. Using filtering across many windows the reported value 
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is not entirely independent of previous, so there is a delay for reporting times because 
of the signal filtering [31] [32].  

Basic principles of phasor measurements intend differentiation and that is a very 
noise sensitive operation. This puts more strain on filtering and filters distort the view 
of the real signal. Even with all the filtering used PMUs still struggle to measure 
ROCOF [4]. This was a serious issue that resulted in a standard amendment in 2014 [1] 
giving PMUs more achievable requirements.  

Interesting PMU performance indication comes out of the G.Stenbakken and 
M.Zhou 2007 paper and also PMU standard amendment [1] [2]. The standard under 
dynamic compliance (performance during ramp of system frequency) states: 

Measurements made during an exclusion interval shall not be 
used when determining measurement compliance. The exclusion 
interval is the time interval after the ramp leaves or before the ramp 
reaches the frequency range limit or a point where ROCOF changes.  

This is curious situation. On one hand it is well known that the system frequency 
(therefore ROCOF) is changing all the time and at no point, it is static as the system is 
indeed dynamic in nature. On other hand, during testing the PMU can ignore windows 
when ROCOF is changing. In [2] it is experimentally showed how it looks in practice. 
When applying linear frequency ramp to the device under test and ignoring the 
transitions it is shown that TVE does not exceed 0.001%. But the graph looks silly 
(Figure 2.8).  

 

Figure 2.7 Linear frequency ramp test signal [2] 

 

Figure 2.8 TVE calculated for the linear frequency ramp test [2] 



26 

 

 Transitions is something that is closer investigated in [4]. It is shown that 
allowing for a ROCOF to change in the mathematical model (Kirkham equation) the 
transition process can be monitored. Of course, more investigation is needed to fully 
understand the implications, but at least we can look at transitions and discuss. 
Interested reader is referred to [4] for more detailed discussion. 

This is something that needs to be looked at in more detail. When attempting to 
replicate the conditions PMU would face during frequency ramp testing a strange 
phenomenon was discovered. More details of this is described in [4] and [6]. 

We have to begin with right side of Carnap equation and the way the input signal 
is generated. This process involves modulation techniques. This is not broadly 
considered a problem and frequency modulation has been around a long time.  

In 1946 Balthazar van der Pol presented a paper [33] in which he argued for 
referring to the whole cosine argument in (6) as the “phase” (nowadays term “phase” 
is mostly reserved to just φ). Referring to the whole cosine argument as the phase allows 
comparison of phases for two signals with different frequencies and express it 
mathematically.  

A term “total phase” can be used with Ψ assigned to it. Then the (6) can be re-
written as 

 !�� = "# cosΨ			. 
 

(15) 

Expression (15) compared to (6) is more general and doesn’t require the 
argument to be linear function to time. This is also better representation of non-
stationary signals in power systems. This is discussed more in chapter 3.1. 

To define different modulation methods, van der Pol uses expression similar to 
(6)  

 N�� = O cos�� + ��			, 
 

(16) 

where A is amplitude, ω is angular frequency and φ is phase constant, but most 
importantly the argument of cosine function �� + �� is the phase. For example, 
amplitude modulation can be expressed  

 O�� = ���1 + PQ���			, 
 

(17) 

where g(t) is the modulation signal and m is the modulation depth coefficient. 
For phase modulation we can quite conveniently stick to the same technique and 
express modulation as 

 ��� = ���1 + PQ���			. 
 

(18) 

For frequency modulation it would be very intuitive to use the same expression 
and substitute ω in 
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 ��� = ���1 + PQ���			, 
 

(19) 

but van der Pol stresses it right away that such expression is erroneous and, in 
his words, “lead to physical absurdity”. For frequency modulation van der Pol reasoned 
rewriting the expression (16) as 

 N�� = O cos RS �� + � 
� T			, 

 

(20) 

where the argument of cosine function is the phase ψ(t). 

A hint of physical absurdities is given by Boashash in [34] where he argues that 
when substituting (19) in (16) the phase will not comply with (18). Indeed, when the 
oscillating signal is calculated with multiple modulations and changes of modulation, 
then phase jumps in the signal start to appear. This problem, however, appears only 
with the transition from the conceptual world to the real world, because, just like 
Rutman pointed out, we disregarded a part of physical phenomena to make the model 
more tractable. Others have also run into this problem, but have not realized it or 
haven’t investigated further, like case discussed in [6]. 

The essence of the problem is within creation of the synthetic signal, for 
example, with spreadsheet. Consider creating ramping frequency signal using (19) 
beginning with stationary signal (rate of change of frequency is zero)  at t0 and then at 
some given time point tk introduce a rate of change of frequency. From t=0 to t=tk 
spreadsheet is calculating the signal and describing a cosine waveform. At tk the rate of 
change of frequency starts to change the phase. Suppose that the rate at which the 
frequency is changing is changing again (like in Figure 2.7) at t=tm. The spreadsheet 
continues to produce cosine describing sample numbers, but at tm the phase has changed 
from t=t0 so a phase jump is created – a physical absurdity.  

This problem got named “van der Pol problem” during the research. The 
solution is simple and for each sample calculation the calculation must be done for new 
frequency and phase values in each step. This comes natural for real signal generators, 
because then (20) would apply. 
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3 Theoretical background for phasor-like measurements 
 

The classical phasor equation (6) describes a static sinusoidal signal that is true 
from the beginning of time till infinity. Unfortunately, this static situation is never true 
for real world signals, even in laboratory environment. Consider the signal in Figure 
3.1. 

 

 

Figure 3.1 Signal with increasing frequency [11] 

Let’s say we need to determine the frequency of given signal. It is clear that 
ROCOF is nonzero and positive as the frequency (assuming that the word can somehow 
be interpreted in a way that applies to the signal shown) is increasing. It is clear that 
traditional time measurement between zero-crossings will not be useful. However, what 
is the frequency we should report? What is the frequency when frequency is changing? 
What does the “frequency” even mean in this sense? If we report one number, should 
it be the average frequency for a given period or instantaneous frequency at the middle 
of measurement window? At the end of the window? 

It would be very obvious to look for “instantaneous frequency” and watch it 
advance, but it is worth noting that for physical measurements instantaneous frequency 
for just one sample of the signal cannot be defined. Any measurement requires a finite 
time that cannot approach zero – instantaneous frequency by definition cannot be 
measured [35]. We have to define a measurement window with more than one sample. 
This brings back the question about changing frequency (also when generating the 
signal  [33]).  

Say we obtain the average value for frequency within the measurement window. 
By using the value and a mathematical model of a phasor (6) it would be false 
representation of the real signal (model does not allow frequency to change within the 
window). A more suitable mathematical model is needed for representation of changing 
signals. As put by Boualem Boashash [34]: 

Nonstationary signals in particular do not lend themselves 
well to decomposition into sinusoidal components. For such signals, 
the notion of frequency loses its effectiveness, and one needs to use a 
parameter which accounts for the time-varying nature of the process. 
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Note, that B. Boashash also tells us that a new meaning for the “frequency” 
parameter should be defined, because for nonstationary signals there is little sense 
talking about frequency. 

 

3.1 Kirkham equation 
 

Observing the changing nature of the real world it becomes clear that this 
change needs to be represented also in our mathematical models. In 2014 report [36] 
Harold Kirkham presented what seemed to be a novel and fundamental idea for the 
digital age of metrology – making a measurement is actually the same as solving an 
equation (mathematical model). 

Consider the increasing frequency signal in Figure 3.1. There is no parameter 
in phasor model to accommodate that sort of frequency change over the measurement 
window. In the 2014 report at Pacific Northwest National Laboratory Kirkham 
suggested suggests modifying the equation of a phasor (6) with additional parameters 
that would allow the signal to change. In later work Kirkham called it a “phasor-like” 
equation (hereinafter in this document referred to as “Kirkham equation” as it is the 
foundational principle of all further work in this document): 

 !�� = U" + VW2 X YZ[ \U� + V]2 X  + U� + V�2 X^, 
 

(21) 

where each of phasors parameters are modified with coefficients C, to allow for 
them to change in linear manner (the simplest way of change). Since change in the 
signal phase cannot be distinguished from changing “frequency”, these two coefficients 
can be merged, and the Kirkham equation modified: 

 !�� = R"_ + VW_2 T YZ[ `R�_ + V�_2 + V]_2 T  + �_a. 
 

(22) 

The mark to each parameter is added for indication of non-stationarity (as a 
difference to a phasor). Very important remark is that the linear change and the 
parameters of Kirkham equation applies only to a duration of measurement window (in 
contrast to phasor that holds true for t=0 to infinity).  

Reconsider the signal in Figure 3.1 with the Kirkham equation. It becomes 
apparent that the frequency is changing while amplitude is remaining constant so the 
mathematical model for the measurement should be: 

 !�� = "_YZ[ `R�_ + V]_2 T  + �_a. 
 

(23) 
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For this purpose, "_ is the amplitude, �_ is “frequency”, V]_  is ROCOF and �_ 
is phase. Mathematically, to obtain the actual values we would need to solve the 
equation for all the parameters. As shown by Kirkham it is exactly what we can do to 
make a measurement [36] [11] [37]. 

 

3.2 Principles of a digital measurement 
 

These following principles can be applied to almost all digital measurements, 
but for explanation purposes and close relation to previous work, more emphasis will 
be put on phasor-like models and measurements.  

In Kirkham equation (23) for the signal in  Figure 3.1 on the left side of the 
equation we have the real-world signal (realized quantity) observed and then quantified 
by the A/D converter. On the other side we have our best guess of mathematical 
representation of the real-world process. It is obvious that we cannot truly measure a 
quantity that is not expressed in mathematical model, therefore defined in our 
understanding of the real world.  

Digital measurement system for this is very well shown and described in [11]. 
In Figure 3.2 is shown the basic structure of a digital measurement system. Analog 
signal is fed into A/D converter and the signal is sampled according to time reference 
(time stamped samples) and voltage reference (sample values). The “front-end” of this 
system is susceptible to noise, which can affect not only the analog signal, but also time 
reference and voltage reference. Point-on-wave data is then processed by measurement 
algorithm (e.g. FFT in conventional PMUs) and declared value is presented at the end 
of this process. This value then must not be taken out of the context, for example, if it 
is “apparent frequency” in the Kirkham equation then it is true only for the 
measurement window and represents the second parameter in the equation (model). 
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Figure 3.2 Measurement system for digital measurements 
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While the “front end” (grey part in Figure 3.2) is susceptible to different kind 
of noises (white, Gaussian, Brownian etc.) the “back-end” of the measurement system 
is more affected by “semantic coloration” [37] or in other words incomplete 
mathematical model for the measurement. In a basic sense this happens on two 
occasions: 

- The mathematical model for the measurement is erroneous and therefore 
the declared values do not represent the process observed; 

- The signal is affected by some unforeseen disturbance. In this case there 
will be no representation for it in the model and measurement algorithms, 
therefore this value is not only ignored by measurement, but other declared 
values get affected by it.  

This coloration could be a DC component on the AC signal measured in 
accordance to (21) in which case, probably the declared value for amplitude would be 
altered slightly. Put it in other way, semantics is meaning, and semantic coloration is a 
meaningful mismatch between the observed reality and the model. 

It becomes clear that the declared value is not the quantity of the real world we 
observe, but instead it is an answer to our question posed by our understanding and our 
instrument. The great physicist Werner Heisenberg put it this way: 

“… since the measuring device has been constructed by the 
observer, we have to remember that what we observe is not nature 
itself, but nature exposed to our method of questioning” [38] 

By allowing the “frequency” to change in the model we have accounted for 
frequency change and presumably improved our representation of the signal observed. 

Using this notion, it would be possible and beneficial to implement an automatic 
self-calibration e.g., after transducer change [9]. This would also improve measurement 
accuracy and device user experience.  

 

3.3 Proof of concept 
 

For the proof of concept, it was authors opinion that it would beneficial to show 
several different non-stationary signals and develop a workable solution to make 
measurements. 

After realization that the act of measurement is the same as equation solving the 
question becomes clear: what are the values that produce the real-world signal? To find 
out, one method is to use curve fitting. By fitting the equation to the samples of the 
observed signal, could the values in the mathematical equation be found that give the 
best fit and therefore can account for the signal observed? 
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The software used, was “Mathworks Inc. MATLAB” and it was used to make 
a fitting method for the proof of the measurement concept. MATLAB was chosen 
because of ease of use and previous experience working with this software. 

A number of estimator versions were built and improved in this effort. The best 
results until now have been produced by a least squares estimator. This minimizes the 
mean square residual between the signal measured and values predicted by the equation. 

 

3.3.1 Input data 
 

The test signal is synthetically generated by using Microsoft Excel spreadsheet. 
On 60Hz system the PMUs usually sample at 24 samples per nominal cycle. To retain 
approximate same time distribution between samples for 50 Hz system, 30 samples per 
nominal cycle were used.  

 

Figure 3.3 Generated point-on-wave synthetic data input 

The mathematical model for the measurement is the equation (22) with added 
degrees of freedom for amplitude, frequency, and phase to change (compared to 
classical phasor) within the measurement window. The measurement window is 
selected to be 2 cycles, since that is the most popular window size (not accounting for 
signal filtering) for real P application PMUs. So, equation (22) is the mathematical 
representation of the signal the measurement system is supposed to analyze, and report 
declared values of this model. For modulated signal generation, of course, (20) is 
implemented. 

In terms of input of information for the measurement method there is not only 
the mathematical model, but also a “trust region” for the variables in the equation. It is 
beneficial to provide the measurement algorithm, the device and also the person 
interpreting a measurement, with all available information about the real world we are 
about to explore. In this case it is known that the amplitude will not likely exceed twice 
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its nominal value, frequency cannot drop below 0 and exceed, say, 100 Hz. The same 
goes with phase as it is constrained by 2π radians. Looking at grid events suggests for 
ROCOF value ranging between tens to couple of hundreds of mHz/s, but for research 
purposes the trust region is selected wider (couple of hundreds ±mHz/s).  

For proof of the model and measurement method a signal with non-zero 
ROCOA (rate of change of amplitude) and ROCOF were used. ROCOA value is set to 
0.1 pu/s and ROCOF is set to 3 Hz/s) 

Variables for the signal generating equation (22) are selected: 

- Amplitude    X’ =  1  [pu] 
- Rate of change of amplitude C’x =  0.1  [pu/s] 
- Frequency    ω =  50  [Hz] 
- Rate of change of frequency C’ω =  3  [Hz/s] 
- Phase    φ =  0  [rad] 

 

Figure 3.4 Generated point-on-wave synthetic input data for the model with non-zero ROCOF and 
ROCOA 

As seen in the Figure 3.4 even though the changes are large (10% change in 
amplitude and increase by 3Hz of nominal frequency within a second), they are not 
obviously noticeable with the naked eye within one measurement window (2 nominal 
cycles). It is fair to assume that the values normally found on the power system, being 
smaller than the values here, would be even harder to observe visually. 

 

3.3.2 Measurement method 
 

To deal with the non-stationary signal generated, a nonlinear robust least 
squares fitting algorithm was selected, and MATLAB software used to implement the 
measurement (solving) concept.  
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The main thought behind the method used was that it minimizes the summed 
square residuals that are the difference between the estimated data point Yi and the 
observed signal value yi. Therefore, residuals are defined as 

 bL = NL − cL. 
 

(24) 

Then, the summed square of residuals is defined by 

 d = >bL<e
LA3 = >�NL − cL�<e

LA3 . 
 

(25) 

Based on the fact that the input signal is nonlinear, the method must approach 
the solution iteratively [39] to lower the residual values. 

Considering that real-world signals are noisy and there can occur sample 
“outliers” that would greatly impact the residual minimization process (when squared 
the outlier residual influence on the quality of the fit is amplified greatly) it is possible 
to reduce their effects or even remove them by using bisquare weights. Each residual 
is weighted according to its distance from the fitted line. Really extreme samples get 
zero weight [39].  

The algorithm follows this procedure: 

1. Start with a set of reasonable starting values. In normal operation, the values 
are the values at the end of a previous measurement window. 

2. Calculate the Yi values for the current set of input values. 
3. Calculate a matrix of partial derivatives with respect to the values, ie. the 

Jacobian. 
4. Weigh the residuals with the weighting algorithm. 
5. Compute the weighted residuals. The residuals are given by 

 b,L = bLf1 − ℎL. 
 

(26) 

where rwi are the least-squares residuals and hi are “leverages” that adjust 
the residuals. 

6. Standardize the residuals: 

 h = b,i[. 
 

(27) 

where K is a tuning constant and s is the “robust variance” given in the 
MATLAB documentation [39]. 

7. Calculate the weights as function of u. The bisquare weights are given by 

 jL = \�1 − �hL�<�<				|hL| < 10																									|hL| ≥ 1. (28) 
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The final weight is the product of the two numbers produced by MATLAB, 
one called the “robust” weight and the “regression” weight. 

8. Adjust the coefficients and determine whether the fit improves.  
9. Iterate the process by returning to 2nd step until the fit reaches the specified 

convergence criteria [39]. 

This is one of the MATLABs default algorithms and it is used because 
coefficient constraints can be specified. It solves the nonlinear signal reasonably 
efficiently. Use of MATLAB also allows for code to be exported and re-used in C++ 
applications. 

 

3.3.3 Output 
 

The result of the algorithm is the set of all values in the defined mathematical 
model. Those are the values necessary to create a complete picture of the equation in 
the particular window of time. Once these values are obtained MATLAB offers 
additional metrics for the algorithm, like iteration count, that can be used for evaluation 
of the performance of the particular algorithm. 

The output for the input signal generated in Excel spreadsheet is spot-on. It is 
clear that the estimation with clean signals works with precision of the computer. 
Declared values for the input signal (equation (22)) are: 

- Amplitude    X’ =  1  [pu] 
- Rate of change of amplitude C’x =  0.1  [pu/s] 
- Frequency    ω =  50  [Hz] 
- Rate of change of frequency C’ω =  3  [Hz/s] 
- Phase    φ =  0  [rad] 

 

3.3.4 Goodness of Fit 
 

Of particular interest is a parameter called Goodness of Fit (GoF). This is a 
number based on the residuals of the result of the measurement. In essence, a metric 
showing the quality of the fit is expected to be readily available for a fitting algorithm. 
For the purposes of the PMU measurement, such a metric offers something that 
measurements have not had available before: an estimate of the quality of each 
individual measurement made. This is entirely different than the typical statement of 
uncertainty that accompanies a statement of the result of a measurement, the statement 
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of uncertainty that is described in the Guide to the Expression of Uncertainty in 
Measurement [40]. 

Note that the use of GoF does not depend on the choice of measurement method. 
Once it is accepted that a representational measurement is an equivalent step to solving 
an equation, it follows that the results of any such measurement can be used to find the 
value of the residuals, and hence find a GoF metric. A GoF number can be used as a 
metric and calculated by any PMU. In fact, the application does not stop there and GoF 
can be used in other representationalist measurements (more information discussed in 
Annex 3) with different measurement methods (as long the observed quantity is 
available to compare to reconstructed mathematical model). This concept will be 
explored next in more detail [5]. 

For the test case described above, when the input signal is reconstructed with 
the values obtained by the estimation and is subtracted from input signal the residuals 
show clearly, (Figure 3.5) that the model and input signal are an almost perfect match. 

 

Figure 3.5 Residuals from reconstructed point-on-wave data subtraction from the input data 

It comes as no surprise that the fit for a known mathematical model (a “clean” 
signal) should be this good, but this also shows that models can be adjusted, and the 
result can be improved. (Figure 3.6) shows how residuals look (larger by at least 1013) 
if the mathematical model for fitting algorithm is just the phasor. 

 

Figure 3.6 Residuals by subtracting reconstructed phasor point-on-wave data from the input data 

In addition to variables in the equation the algorithm also can provide useful 
information about the fit, like for example already discussed residuals, R-square 
calculation, residual RMS calculation etc.  

It was pointed out to the author that the fit refers to the signal and not to the 
parameters (e.g. it is possible to get a good fit with way too many parameters) and while 
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that is true, one has to go back to Rutman idea of model tractability and Carnap idea 
for real world transition into conceptual models. This is something that requires 
understanding of the physical properties being measured and the mathematical model 
of the measurement to draw the line where model is not tractable anymore and what 
level of real-world representation in the model is acceptable. 

When the signal is not the “clean” signal seen above, the Goodness of Fit (GoF) 
shows itself to be a very useful tool coming out of the notion that the act of measurement 
is in fact solving of the equation. Once the measurement is done (made byu fitting or 
not) the residuals enrich the system metadata – there is the original input signal, the 
method’s metadata, the mathematical model (equation), the declared values, and now a 
new parameter indicating the quality of the measurement process. 

For an ideal synthetically generated perfect signals (yet non-stationary) it is 
clear that a perfect match can be achieved and that the residuals approach zero. In this 
situation all metadata and other parameters represent a non-existent perfect world that 
tells nothing about the real world. 

The obvious answer for putting the method to the test is to try to estimate a 
signal that cannot be expressed in a single model (equation) for whole measurement 
window, like a step-change in phase of a sinusoidal signal. Visual representation of 
1800 step-change is given in the (Figure 3.7) and it is clear that the input signal cannot 
be described with phasor-like quantities. But for sure one can try and estimate the values 
(just like PMU has to for non-stationary signals). First, let us look at some synthetic 
signals that test the GoF method. 

 

Figure 3.7 A 180 degree phase jump in the input signal 

Consider the signal in the (Figure 3.7) with sudden change in phase by 1800. 
The estimation still can be made, and values can be obtained. In (Figure 3.8) there is 
the reconstructed signal from the declared values next to the input.   

-1.5

-1

-0.5

0

0.5

1

1.5

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60

A
m

pl
itu

de
, [

pu
]

Sample No.



38 

 

 

  Figure 3.8 Input signal with step change in phase and its estimated signal 

As stated in [7] there are two questions: what does user want to know, and what 
will the instrument tell him? The answer to the last one is clear for used estimation 
algorithm developed in MATLAB. The method reports the values for the reconstructed 
signal. But is this something that anybody wants to know? If the actual input signal is 
compared to the measurement values, it is arguably useless – the match is clearly not 
good. On the other hand, the result is “best” in the sense of being a least-squared-error 
estimate of the input using the model that is available. How “good” is that “best 
estimate”? 

This returns the attention to GoF. With such indication it would be possible to 
declare the level of trust for the measurement. Rather than use the GoF as understood 
by MATLAB, a variation was created [5] in which the GoF is introduced as reciprocal 
value of the fit standard error normalized and expressed in decibels. The reciprocal has 
the advantage that the value increases as the fit improves, and the logarithmic 
compression of decibels keeps the numbers more accessible. The formula used was: 

 mZn = 20 log "_
q 1�8 − P�∑ �h? − s?�<@?A3

			, 
 

(29) 

where N is the number of samples, m is the number of parameters being 
estimated in the equation, X’ is the signal amplitude, uk is the signal sample value and 
vk is the estimated sample value. The parameter (N-m) is called the residual degrees of 
freedom [41]. 

GoF calculated for the perfect signal is very good. In fact, it’s down to precision 
of the computer at couple of hundreds of dB (for example for Figure 3.4 it is 304 dB). 
Where it really matters is describing measurements that don’t fit and tell user how good 
or bad the measurement is at representing the real world. 

Consider the signal in Figure 3.7. The calculated GoF value for this 
measurement is 7 dB which compared to 304 dB in Figure 3.4 is considerably less. This 
means that user confidence that the declared values really represents the reality should 
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greatly diminish. Further questions should be asked, like, what is going on in this 
particular measurement window? One information source is residuals. If plotted (Figure 
3.9) they show interesting information. 

 

Figure 3.9 Residuals from estimated signal and input signal with 180 degree phase jump 

It is evident that the algorithm must make a choice, to align to the first part of 
sinusoid or the second part. In both occasions declared values are not the ones for first 
half of signal or the second half, but the algorithm (PMU also) has to somehow find a 
reason for such signal behavior using the information that user gave to it (equation). In 
this case the best fit is if the signal is decreasing frequency very rapidly, to 
accommodate for the jump in phase.  

Of course, the test signal in this example is somewhat extreme. Phase jumps do 
occur on the real power system (for example, when a phase-to-phase short circuit 
occurs) but at the location of a PMU it would be rare to see such a large step. In the 
following section, we will see some examples of how the goodness of fit responds with 
more realistic signals. 

Parts of estimation algorithm are given in Annex 1. Estimation algorithm 
hereinafter in the text will be called SEMPR or “Signal Estimation by Minimizing 
Parameter Residuals”. 
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4 Analysis of the phasor-like model limitations 
 

As the concept of phasor measurement is equivalent to an equation solving, it 
is necessary to understand the model limitations. Limitations in real world scenarios 
are posed from different sources, but probably the most prominent is the noise on the 
input signal. In order to get rid of it, PMUs use very heavy signal processing, including 
filtering. Filtering the signal has its drawbacks, like latency of the output (each 
measurement gets affected from previous measurements) and that is predominantly 
why during the testing for standard PMUs declared values over changing parameters 
are left out of evaluation [2]. 

In order to understand the limitations for the estimator algorithm it would be 
beneficial to use no filtering at all. In theory noise influence should be less than classical 
PMU because phase differentiation, which is very noise sensitive operation, is not 
implemented.  

Another major benefit in this fitting method also would be completely 
independent measurements (no overlapping measurement windows, with no filtering 
adding “memory of an earlier signal”).  

Noise in the power grid is very well known as a fact yet it is a very little 
understood process. There are many kinds of “noises”, like, harmonics, random noise, 
large disturbances etc. and some of them contribute most of the time. When signal is 
influenced by noise, this changes sample values and the measurement/estimation can 
contain error. This process may contribute to semantic coloration discussed earlier, but 
both of noise and distortion contribute to the error. It is important to note, that once the 
“noise” process is better understood and can be put in the model it no longer has 
influence on the estimation, because it is part of the equation. 

 

4.1 Noise types and their effects 
 

An empirical investigation was made of the effect of “noise” by adding 
controlled amounts to the basic quantity of interest, the sine-wave. For signal generation 
purposes there are different kinds of noise models available (usually called in names or 
colors), but for PMU model it only makes sense to use ones actually found in power 
system. Those are: 

- harmonics; 
- Gaussian white noise; 
- Brownian noise (also known as red noise or random walk); 
- DC offset. 
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Harmonics are defined as steady state distortions with frequencies that are 
multiples of the fundamental frequency. Based on Fourier series the power system 
signal with just harmonics can be expressed as sum of infinite number of oscillating 
functions [42] (phasors): 

 ;�!� = 12�� + >�eYZ[�G	��t
eA3 + >�e[uG�G	��t

eA3 		, 
 

(30) 

where 
3< �� is the average amplitude value, an and bn are amplitudes and n is the 

integer multiplier of the fundamental frequency. Harmonics occur as an effect from 
non-linear loads. In this case, non-linear loads, like inverters, consume non-sinusoidal 
current and this current (signal) contains harmonics that also influences voltage 
linearity and adds harmonics. Based on signal dispersion in Fourier series (30) and 
notion that the most expressed harmonics on the power grid are the odd number 
harmonics – 3rd, 5th and 7th harmonic (in 50 Hz system that is 150, 250, 350 Hz) [42] 
the signal distorted by harmonics can be easily obtained. Harmonics rarely exceed 5% 
of fundamental component amplitude, but for illustration purposes in Figure 4.1 
showed 5th harmonic is 12% of fundamental. 

 

Figure 4.1 Fundamental frequency and 5th harmonic 

Since the signals are additive all three mentioned harmonics can be added to the 
fundamental frequency (3rd; 5th and 7th harmonic with 20%; 12% and 8% pu). The signal 
is shown in Figure 4.2. 
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Figure 4.2 Harmonic distorted signal 

As seen in picture the harmonics distort the sine wave to a point where it is far 
from textbook sinusoidal. This can be a problem for measurement algorithms in PMUs, 
because they expect sine wave at all times. This is why heavy filtering is applied to the 
input signal to get rid of harmonics. In SEMPR case however, it can be specified that 
the model contains harmonics and we can estimate them as non-stationary signals 
(harmonics will change because the fundamental frequency is never constant either). 
This will be investigated further. 

The other noise type present in power grids is Gaussian white noise or normal 
distribution noise. The signature feature of this signal is its random nature and standard 
deviation. For this purpose, the noise signal was chosen with standard deviation of 0.5 
and 3% amplitude and mean value of 0. For 50 000 samples the deviation is shown in 
Figure 4.3. 

 

Figure 4.3 Normally distributed Gaussian white noise 

When the noise is added to the harmonic distorted signal in Figure 4.2 the final 
signal is given in Figure 4.4. 
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Figure 4.4 Distorted (noise plus harmonics) input signal 

White Gaussian noise is used to simulate all kinds of random processes going 
on in the system and all systems nearby ranging from radio to cosmic background 
radiation. According to central limit theorem properly normalized random noise values 
tends to Gaussian distribution, as can be observed in Figure 4.3.  

Brownian noise or Brownian motion (also known as red noise or random walk) 
is a very special kind of noise that is mostly associated with thermal and other stability 
issues of devices and measurement systems. Brownian noise can be expressed 
mathematically as integral of white noise. Given that ξt is a Gaussian random sample 
value with expected value µ=0, 

 " = � 			. 
 

(31) 

Then the Brownian motion value is given by, 

 " = S ���v��v 
� �v		, 

 

(32) 

essentially  

 " = " 23 + � 				. 
 

(33) 

Brownian motion is usually caused by equipment or its parts beginning to decay 
and the parameters begin to drift away. This happens to clocks, reference values etc. 
This process usually is very tiny and very slow and that is why it influences every 
measurement window only slightly, but increasingly with time. Since for short time 
frames the Brownian motion is similar to white noise final input signal is similar to 
signal given in Figure 4.4. 

Direct Current (DC) is also a very undesirable component of a modern AC 
distribution system. DC can be induced in AC network by failure of rectifiers and this 
adds unwanted current to other devices. DC current can overheat devices and saturate 
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transformers. DC can also be the result of a problem in the A/D converters in the PMU. 
The final test signal is given in Figure 4.5 with 10% pu DC offset. 

 

Figure 4.5 Distorted input signal 

The final generated input signal consists of; 

- Fundamental frequency of 50Hz and amplitude 1 pu; 
- Harmonics: 3rd 5th and 7th with amplitude 0.2 0.12 and 0.08 pu; 
- White Gaussian noise with 0.03 pu amplitude and mean value 0; 
- DC offset with amplitude 0.1 pu. 

 

4.2 Noise effect on the model 
 

Considering the large disturbances given in Figure 4.5 it is clear that this 
wouldn’t be typical situation in power system. By consulting AS “Sadales tīkls” and 
doing research on noise in distribution systems1 more realistic values would be: 

- 0-3 % harmonics; 
- 0-1 % noise; 
- 0-1 % DC offset. 

SEMPR implements no filtering so all the disturbances have effect on the final 
declared value and estimation process itself. For the first understanding of the model 
and its properties handling distorted signal an additive disturbance is implemented. This 
means that every sampled noise value at the given moment in time is added to the input 
signal sample value. The true nature and mathematical models of the noise processes 
are still quite unknown. As in [17] “additive noise” to this model is a property we use 
to make the model tractable. 

                                                
1 Experimentally examined in Artis Riepnieks MSc. thesis “Vadāmības traucējumu noteikšana un 
izpēte zemsprieguma elektrotīklā viedajām mērīšanas sistēmām”. 
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At first a small Gaussian white noise (0.1 %) is added to the 50Hz signal with 
amplitude 1 pu and ROCOF of 0.3 Hz/s. The sum of the signal and the noise is then fed 
into the SEMPR estimation algorithm. 

Table 1 

Estimated values of the input signal with 0.1% noise 

Measurand Input Output 
Amplitude, pu 1 1.00 
Frequency, Hz 50 49.99 
ROCOF, Hz/s 0.3 0.33 
Phase offset, rad 0 5.00e-05 

 

 

Figure 4.6 Reconstructed oscillography along with the signal estimate 

As seen the Figure 4.6 the match is almost perfect. Even though the estimation 
is very close, the value difference is noticeable. When analyzing the residuals (Figure 
4.7) it is clear that mostly residuals consist of the random noise signal.  
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Figure 4.7 Residuals from estimation compared to the noise signal 

The calculated error for this measurement is 1mHz in frequency and 30mHz/s 
for ROCOF estimation. This gives GoF value of 69.63 dB.  

GoF is a good indication of the quality of the measurement e.g. 70dB would 
indicate that the model used can account at least for 99.999% of the real world observed. 
The GoF value decreases once the model cannot account for larger parts of the observed 
signal, like when phase jumps 1800 or large part of the signal is noise/other 
disturbances. With GoF it is possible to evaluate each disturbance effects on SEMPR 
and chosen model (Table 2). As expected, by including the harmonics and the DC offset 
in the model, these “noises” do not prevent a good measurement. Gaussian and 
Brownian noise are not accounted for, however, and the fit is not so good. 

 

Table 2 

Estimated values of the input signal with different noises 

Measurand 
model 
 
         % 

GoF, dB 
(Harmonics) 

GoF, dB 
(Gaussian) 

GoF, dB 
(Brownian) 

GoF, dB (DC offset) 

0.1 1 1.5 3 0.1 1 1.5 3 0.1 1 1.5 3 0.1 1 1.5 3 

Phasor 61 41 37 31 68 49 46 40 37 17 14 8 59 40 36 30 

Kirkham 
equation 

61 41 37 31 69 49 46 40 37 18 14 8 59 39 36 30 

Kirkham 
equation 

with 
harmonics, 

DC 

304 318 310 307 69 49 45 39 51 29 20 8 264 233 231 246 
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By simulating different noise types at different amplitudes and using different 
models for measurement a couple of interesting conclusions can be observed by 
examining the GoF value summary given in Table 2. 

- The Brownian noise impacts the measurement the most. It is 
understandable, as random walk increases with time; 

- With lesser disturbance to a measurement is the Gaussian noise (the average 
value should be approaching zero), but since there is no mathematical 
model to predict noise values (random values) it affects all measurements 
equally. 

- With small ROCOF (comparable to noise signal [4]) values the 
measurement quality is comparable with phasor model measurements, but 
one must keep in mind, that the small ROCOF values are what we are really 
after.  

- Harmonics and dc offset can be described in the model and therefore 
improves the measurement for those types of disturbances. For Brownian 
noise the model assigns at least some of the random walk amplitude to dc 
offset so fit for “Kirkham equation with harmonics, DC” slightly improves. 

Interestingly, a call for PMU noise performance levels is explained in [31]. 

4.3 Allan variance  
 

SEMPR works exclusively in time domain so Allan variance, or two sample 
variance is appropriate way to measure the stability of the estimator in the time domain. 
Allan variance is widely used in precision clock and oscillator industry to measure clock 
stability due to noise, so the same principles can be applied to SEMPR stability while 
handling noisy signals. If the clock precision is dependent on oscillator stability and 
constant frequency of the oscillator in SEMPR method is depending on good and stable 
estimation of the system frequency. The Allan variance wx< as defined by David Allan 

is best shown in Figure 4.8. 

 

Figure 4.8 Measurements for Allan variance calculation [43] 
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 Expressed mathematically in [44] and later in [45] as: 

 wx<�v� = 12v< 〈�Δ<!�<〉 = 12 〈�ΔN�<〉							, 
 

(34) 

where the τ is the measurement interval and brackets <>  denote ensemble 
average for infinite time. The essence of the variance is that the signal parameters are 
constant and taking three adjacent measurements xn ; xn+1 and xn+2 spaced evenly by an 
interval τ. Averaged over measurement interval τ: 

 Ne = Δ!ev 					, 
 

(35) 

where Δxn is the difference between the adjacent measurements !e-3 − !e as 
shown in Figure 4.8. Similarly, the average difference for the next two measurements 
can be written as 

 Ne-3 = Δ!e-3v 		. 
 

(36) 

Now the change of the measurements between first measurement interval τ over 
to the second can be expressed by 

 ΔNe = Ne-3 − Ne			. 
 

(37) 

This in [45] is called second difference (the difference of a difference) and 
indicated as Δ2 (34). Allan variance is then computed over large strings of 
measurements and more measurements the better confidence on the estimate. Usually 
calculated Allan variance plotted as a function of measurement window length looks 
similar to Figure 4.9 [7]. Increasing measurement window gives smaller variances. If 
the noise process is Gaussian and the quantity being measured is a linear function, the 
slope of the line is –1 (i.e., 45 degrees). Doubling the time will halve the variance, but 
given long enough window lengths a minimum can be achieved after which the variance 
starts to increase. This is usually caused by drifting parameters or low frequency noise 
(like Brownian noise). 
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Figure 4.9 Deviation as a function of measurement length [7] 

In PMU case, of course, the system is not constant. Even though the notion that 
the signal is constant during single measurement window, the next window the input 
parameters will have changed, and the fluctuations of parameters occurs naturally in 
power system.  

The notion of constant parameters over the measurement window τ gives 
opportunity to use Allan variance for SEMPR frequency estimates (assumed constant 
through whole measurement window). Constant parameters are very doable with 
synthetic generated signals. This also allows to precisely control the noise parameters 
and estimate the limitations of the estimator in a sense of resilience to noise and 
different measurement window lengths τ. 

Consider 1% white Gaussian additive amplitude noise on the input signal (22) 
with constant parameters for amplitude and apparent frequency. As shown in 3.3.3 with 
perfect signals SEMPR works flawlessly, but noise is adding imperfections on the 
input, therefore affecting the estimation and the output. Since the white noise has mean 
value of zero, given long enough, the average influence on the measurement should 
average to zero. By introducing 1% noise on the signal and using SEMPR the Allan 
variance can be calculated. Running the SEMPR on longer string of data (100 
measurements), the 2-cycle measurement window gives GoF in range of 42-45dB. By 
making the frequency and amplitude estimation for the string of input data (1-50 
seconds worth of data at 30 samples per cycle) with different measurement windows: 

- Single cycle  (0.02s) 
- Double cycle  (0.04s) 
- 4 cycle   (0.08s) 
- 10 cycles   (0.2s) 
- 50 cycles   (1s) 

the Allan variance can be calculated for all measurement windows. The results 
are given in Figure 4.10 and Figure 4.11 where each dot represents 100 measurement 
variance at 1% additive white Gaussian noise.  
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Figure 4.10 Allan variance for amplitude variable as a function of measurement window length 

Figure 4.10 shows the measured variance of the amplitude parameter. The 45 
degree Allan variance signature slope is added as dotted line to visualize the link 
between SEMPR measurement variance and simplest Allan variance. These slopes are 
the same. 

 

 

Figure 4.11 Allan variance for frequency variable as a function of measurement window length 

Figure 4.11 shows the variance measured on the frequency parameter. It can be 
observed that given larger the measurement window the less the variance and more 
confidence in the measurement. This comes clearly from the definition of White 
Gaussian noise characteristics that over larger observation period the mean value 
approaches to 0 and does not affect the variance so much. It is also evident, that even 
though the variance is decreasing, it is not decreasing at the same rate as did the 
amplitude. Frequency is more sensitive to measurement window length and will benefit 
more from longer observation times (similarly like with zero-crossing counting 
method). 
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By adding larger amplitude noise, the variance would also change. Large 
information capacity of Allan variance plots gives opportunity to also show different 
inputs on a single graph. Different White Gaussian noise amplitudes are considered: 

- 0.5% 
- 1.5% 
- 5% 
- 15%  

and added to the input signal. Then the Allan variance is calculated. The results 
for frequency and amplitude are given in Figure 4.12 and Figure 4.13. 

 

Figure 4.12 The Allan variance of the amplitude values as a function of measurement window length for 
different noise amplitudes 

 

Figure 4.13 The Allan variance of the frequency values as a function of measurement window length for 
different noise amplitudes 
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Interestingly, independently from noise amplitude frequency estimate keeps the 
trend and confirms that the frequency estimation would greatly benefit from longer 
measurement windows. 

Next, let’s consider phase and ROCOF variances. The phase variance evidently 
follows the same pattern as the amplitude and tracks the 45-degree line. 

 

Figure 4.14 The Allan variance of the phase values as a function of measurement window length for 
different noise amplitudes 

In power system case a parameter of particular interest is ROCOF. In the 
generated synthetic data, the ROCOF is set 0 Hz/s, but if the estimator is allowed to 
search for it, it is possible that there is a value assigned to ROCOF to better fit the model 
(this should be more pronounced in short-window cases). ROCOF value usually is very 
small and it gets drowned by noise very fast, so with assigned noise values for Gaussian 
white noise the estimates for short measurements should be unstable. ROCOF variance 
as function of measurement window length and with multiple level of noises is given 
in Figure 4.15. 
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Figure 4.15 The Allan variance of the rate of change of frequency values as a function of measurement 
window length for different noise amplitudes 

By the look of the Figure 4.15 it is clear that ROCOF benefits from longer 
observation windows even more than frequency measurement (no surprise here, as 
ROCOF can be thought of as frequency derivative). Short measurement windows 
produce widely variable ROCOF values, even if the ROCOF is constant. This poses the 
challenge to measure frequency and ROCOF at ever higher speeds and shorter 
windows. It is possible that ROCOF (whose contribution to the whole signal is about 5 
magnitudes smaller than frequency variable [5]) for very short observation windows is 
not possible to measure in presence of even small noise (comparable to ROCOF itself). 
This concept may account for the fact that the IEEE Standard [27] was amended after 
a few years to become [1], with very “relaxed” requirements for ROCOF accuracy. 

Overall, it is obvious that longer measurement windows produce measurements 
that are more reliable with low variance and higher confidence. The problem is that 
PMUs are asked to report the values within very short time (couple of cycles). 
Considering the measurement window length effect on measurement variance it could 
be possible to use different length measurement windows for different parameters since 
for a proof of concept the ROCOF measurement would benefit greatly from longer 
measurement windows.  

So, the Allan variance clearly shows the benefits of having longer observation 
times, but how bad are the actual estimates? In Figure 4.16 all estimated values of 
frequency are shown for signal with 300mHz/s ROCOF and 5% added white Gaussian 
noise. 

1E-12

1E-11

1E-10

1E-09

1E-08

0.0000001

0.000001

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1 10

R
O

C
O

F
 v

ar
ia

nc
e 

[σ2
]

Measurement window length [in cycles]

0.50% 45deg
1.50% 5%
15%



54 

 

 

Figure 4.16 Estimated frequency with 5% added white Gaussian noise 

It is shown that 1 cycle measurement variance is very large (from 49.2 Hz to 
50.2 Hz) and larger measurement windows converge more to 50Hz. To better illustrate 
the variance of ROCOF in Figure 4.17 shows 50-cycle measurements. 

 

Figure 4.17 Estimated ROCOF with 5% added white Gaussian noise and measurement window of 50 
cycles 

In Figure 4.17 the variance for single cycle measurement is not very large also 
considering the difficulty distinguishing ROCOF from noise, but single cycle 
measurement variance showed up to 40Hz/s deviation, so 300mHz/s does not go on the 
same graph. It is very clear, that larger measurement windows reduces this variance 
quite drastically and for 50 cycle measurement windows the effect of white noise is 
reduced and the error is down to 15mHz/s max. Whether this value is realistic is not 
known, because the level of such noise in the power system is not generally known. It 
may be that this error level is actually pessimistic, and the measurement could be more 
accurate. 
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The other type of noise is low frequency Brownian motion or red noise. This 
noise will affect the Allan variance final part of the graph, since longer the measurement 
window, the larger the influence of this type of noise. Presumably a minimum can be 
found for variance to indicate the optimum window length for particular level and 
composition of noise. For Brownian noise, the amplitude levels are selected as: 

- 0.009%; 
- 0.03%; 
- 0.5%; 
- 1%, 

for combined additive sample values with Gaussian white noise. Combined 
noise is then added to the input signal and fed into estimation algorithm. The same 100 
measurements are made, and Allan variance is calculated. The results for phase 
estimation are given in Figure 4.18. 

 

Figure 4.18 Allan variance of phase measurement affected by different levels of White Gaussian and 
Brownian noises as a function of window length 

From Figure 4.18 it is evident that a minimum can be observed. With given 
resolution it appears that the optimum measurement window length for 0.5% White 
Gaussian and very small 0.009% Brownian motion is 10 cycles. Increasing or 
decreasing the window length from the optimum value will increase variance. For large 
noise value minimum variance is for 2 cycle-windows, but the variance is still 3 orders 
of magnitude larger just because of noise. This is mathematical calculation that could 
be performed in a PMU device as after measurement analysis and, since the point-on-
wave sample data is available all model values can be re-estimated with different 
measurement windows, also different models. 

On other hand, the noise might as well not be additive in its nature. The true 
processes of the noise characteristics are unknown and therefore very hard to put in 
mathematical models. In this case it was assumed that all noises are additive noise 
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values that were added to signal samples. It could be that the noise is affecting some 
parameters more than others, like for example, phase noise [30]. Rutman in [35] 
distinguishes between phase noise φ(t) and amplitude noise ξ(t). It is not a coincidence 
that both noises have different symbols they are also different functions of time. This 
gives a lot of variation for signal generation and estimation. By adding different kind 
of noise to each parameter in Kirkham equation (22) it can be observed that the effects 
are different. With separately added 5% of white Gaussian noise to amplitude, 
frequency, ROCOF and phase it is shown that it affects the Allan variance on different 
parameters differently.  

Figure 4.19 shows the change of estimated amplitude variation over increasing 
measurement window lengths and for different types of noises. The noise is added to 
each parameter in the Kirkham model separately so the effect on the parameter 
estimation is very different, as shown in graphs below. 

 

Figure 4.19 The change of amplitude estimation variance by different types of noises for differently sized 
measurement windows 
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Figure 4.20 The change of frequency estimation variance by different types of noises for differently sized 
measurement windows 

 

Figure 4.21 The change of phase estimation variance by different types of noises for differently sized 
measurement windows 
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Figure 4.22 The change of ROCOF estimation variance by different types of noises for differently sized 
measurement windows 

By observing Figure 4.19, Figure 4.20, Figure 4.21 and Figure 4.22 a couple of 
conclusions can be discussed: 

- First of all, the ROCOF noise results in the smallest variance. This is due 
to the tiny ROCOF role in the model [4] and adding the noise it is still a 
tiny influence on the final result. However, estimation of ROCOF is very 
similar as estimation of noise signal and all variances for ROCOF are large 
for narrow window sizes; 

- The most influential noises are the amplitude noise and phase noise. This 
is also the reason those are usually separated and examined as different 
functions. For phase estimation phase noise is the most influential, but for 
amplitude estimation the amplitude noise. This is not a huge surprise. 

- Frequency noise theoretically cannot be distinguished from phase noise, but 
since it is a derivation of phase noise its influence is reduced below 
amplitude and phase noises; 

- Interestingly some noises cause an increase in variance in larger 
observation windows. This is evident with frequency noise for amplitude 
and phase estimations. Also, ROCOF noise for longer measurement 
windows causes all parameter estimation variances to go up; 

- Lastly, even though ROCOF noise influence on the variance is very small, 
it increases with observation time and by 1s it has reached the same 
influence on the estimated parameter variance as other noises. In Figure 
4.19 it can be observed how all parameter variances from different noises 
become very close and the difference is within one order of magnitude. This 
makes 1 second observation a boundary where ROCOF and frequency 
noises could overwhelm amplitude and phase noises. So, for the lowest 
variance 1 s could become optimal because while with increasing 
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measurement windows amplitude and phase noise influence would 
decrease, frequency and ROCOF would increase, causing the same 
estimation variance. 

 

4.4 Sampling variance 
 

Advancements in device computing capabilities and digital technology over the 
last decades have made it easier than ever to implement faster and more capable 
microprocessors that can perform very fast sampling. This is the part of the work where 
we have to dig into sampling itself. 

There are several “sampling theorems” for example the Fractional sampling 
theorem [46], the Walsh sampling theorem [47], the Zhu sampling theorem [48] and so 
on, just to mention few. The fact that there are so many related theories and topics points 
out the significance of signal processing to the modern technology for communication, 
control, and processing applications. However, all theories trace back to Harry Nyquist 
[49] and Claude Shannon [18]. 

Shannon’s theorem states: 

If a function f(t) contains no frequencies higher than W cps, it is 
completely determined by giving its ordinates at a series of points spaced 
1/2W seconds apart. [50] 

This means that if the signal f(t) is band limited then it can be fully described 
by countably infinite set of values equally spaced by 1/2W seconds: 

 ;�� = > I G2|Kt
eA2t

sin 2�| } − I G2|K~2�| } − I G2|K~ 			, 
 

(38) 

where n is the sample value obtained by sampling. Spectrum of such signal f(t) 
outside band W is zero.  

The main problem with real-world applications is that no real signal is perfectly 
band limited nor filtered to be perfectly band limited. In fact, in order for a signal not 
to have any energy outside finite frequency band, it must be infinite in time [51]. 

For real applications [52] suggests: 

… Nyquist rate isn’t a line in the sand … it is more like an 
electric fence or a hot poker; something what won’t hurt you if you keep 
your distance, but never something you want to saunter up to and lean 
against. 
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This something that designers of PMU systems have kept in mind knowingly or 
unknowingly, because each and every manufacturer chooses it own approach. In real 
devices the sampling rate can be from 24 samples to 512 samples per cycle. This raises 
the question – are we doing oversampling in PMUs? Sampling rate nowadays is 
something that can be changed by a software (firmware) change, so it is very doable. 
What then would be the optimum sampling rate? In theory it can be deducible with 
measurements and their variance. 

In 1968 Karl Johan Åström in [53] discussed different sampling rates or time 
analysis of N samples at equal spacing h. He shows how there is an optimum choice of 
h, an optimum value to keep the variance down. By considering a stochastic differential 
equation: 

 �! = −�!� + �j			, 
 

(39) 

where α is a parameter to be estimated, {w(t)} is random walk (Wiener process) 
and values x are observed at sampling intervals with equal spacing h. It is then 
mathematically shown that the smallest variance is given by 

 ��b	�� = �<8 ;��ℎ�, 
 

(40) 

where 

 ;�!� = *<� − 1!< . 
 

(41) 

The graph of the function given in Figure 4.23 shows that there is a minimum 
for the variance of α estimate given by 

 �� = 6.177�<8 . 
 

(42) 
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Figure 4.23 Graph of the function f(x) = (e2x - 1)x-2 . The variance of the estimate α using N values with 
the spacing h is α2f(αh)/N.] [53] 

The conclusion given in [53] for optimum sampling choice is h – 0.797/α which 
gives the smallest variance of ��. The variance of �� increases significantly for sampling 
rates lower than h (larger sampling intervals). 

Considering the practical implementation of SEMPR it should be also possible 
to determine the optimum sampling frequency based on the components (harmonics 
and noise, not only Wiener process) in the signal. In such case the optimum for the 
sampling rate would also be very well described by a variance value, but instead of 
changing observation time, one would change sampling rate. It should be possible to 
determine the optimum experimentally by implementing SEMPR. Sampling variance 
then can be expressed similarly to Allan variance, but instead averaging the 
measurements over increasing time period, we can average measurement over 
increasing sample number, but keep measurement window the same. 

Input signal similar to one described in Section 4.3 was used to determine the 
optimum sampling frequency for noisy input signal. Since with clean synthetic signals 
SEMPR works flawlessly even with few samples, the minimum is set at this value, but 
maximum at fastest known commercial application in micro-PMU at 512 samples per 
nominal cycle [29]. Every dot in Figure 4.24 represents the variance for 50 
measurements. 
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Figure 4.24 Sampling rate variance for Amplitude estimation 

The simulation results in Figure 4.24 shows an interesting trend, that includes 
a minimum condition for variance. Of course, the smallest variance is for smallest of 
noises, but three other interesting observations can be made: 

- The optimal sampling frequency decreases with larger noise influence. 
- With fairly plausible noise levels (0-3%) the optimum sampling frequency 

is in fact somewhere between 192 and 512 samples per cycle (in this 
simulation closes point is 384 samples per cycle). This is in a same 
category as for micro-PMU, therefore their sampling frequency could be 
around optimum. 

- The curves are all relatively flat, implying that a change in sampling rate 
of a factor of five or perhaps even ten would likely not make a significant 
change to the measured results. 

This also shows that gross under-sampling and over-sampling should be 
avoided and by purely mathematic calculations it is possible to find an optimum 
sampling frequency based on the typical signal that the device should be observing. 
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5 Experimental data analysis 
 

During the research in United States of America the real-world point on wave 
data was shared from AEP (American Electric Power) power network. Unfortunately, 
all attempts to get similar data from Latvian transmission system operator AST (AS 
“Augstsprieguma tīkls”) was unsuccessful as they were met by silence. Therefore, with 
permission from AEP anonymized real data analysis was done with available EHV 
(345kV 60Hz) system data. 

The data obtained were samples, taken at 3.840 kHz sampling frequency (64 
samples per cycle) and lasting about a second. Data includes 3 phase voltages before 
and during a fault in a 345kV line with line-to-ground fault along with multiple cycles 
of system recovery. This sequence allows us to compare real PMU measurements to 
SEMPR during nominal operation, fault, and system recovery. 

Happenings during fault is of a particular interest and the reconstructed 
waveform can be observed in picture. It is clear that fault happens on 59th sample of the 
two-cycle measurement window. It looks that fault is most pronounced in phase C and 
perhaps phase A, but the data do not suggest a solid short circuit. Perhaps it represents 
contact with a tree, or a distant fault. Probably the most important observation is that 
the signal after fault does not resemble sine wave, yet PMU has nothing else to report 
– just sine wave parameters. Notice that the amplitude for the second cycle of 
measurement window in phase C is significantly low and SEMPR should be able to 
accommodate for that with ROCOA (Rate of change of amplitude). During the Fault in 
phase C the fault current exceeds 500A. 

 

Figure 5.1 Fault in 345kV EHV three phase system 

The data is accompanied with reported phasor values of the industrial PMUs so 
the GoF can be calculated and PMU performance can be determined. Couple cycles 
prior to fault PMU reported values for phase C phasor are 0.990 pu amplitude, 44.2890 
phase, 60.000 Hz for frequency. Using these values it is possible to reconstruct the 
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signal that PMU has reported and compare it to the real oscillography. The result is 
given in the Figure 5.2. 

 

Figure 5.2 PMU reconstructed signal comparison with observed oscillography data 

The match between two lines is very good, indicating that PMU values correctly 
represent situation in the system. This goodness of fit, as we discussed earlier, can be 
put in numbers from the calculated residuals, given in picture Figure 5.3. 

 

Figure 5.3 Residuals for PMU reconstructed signal and observed oscillography 

The GoF level for this measurement is 34.88 dB and from Figure 5.3 it can be 
observed that the real signal contains large fundamental component as well as some 
periodic higher frequency components that PMU doesn't account for. Residual peak 
values are around 0.03 pu or 3% of the fundamental. 

When similar task is performed to 1 second worth of data the picture of GoF is 
given in Figure 5.4. Plotted along GoF values are the current values to indicate fault 
duration. 
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Figure 5.4 Goodness of Fit for 60 measurements with corresponding current measurements for phase C 

It is clear that during fault the GoF values decrease significantly (approximately 
20dB) and current increase corresponds well with obtained measurements. The GoF 
indicates that the wave is no longer sinusoidal in shape (PMU can no longer describe 
well the signal Figure 5.1) and can be provided along the reported values in real time.  

Note that the GoF values during normal operation is more or less consistent and 
residual values are also. This indicates a constant slight mismatch in phase. The effect 
seems to be  caused by the harmonics that are present in the signal. 

When we zoom in on what is in Figure 5.4 measurement No.4 PMU signal 
reconstruction show exactly what is asked of a PMU – cosine wave, even if it is not the 
best representation of reality (Figure 5.5). Also note that the effects of the fault are 
present at least for 4 cycles (two measurement window lengths). Fault effects over 4 
cycles given in Figure 5.6 with significant drop in voltage and recovery overshoot at 
the peak of 4th cycle. 

 

Figure 5.5 PMU reconstructed signal comparison with observed oscillography data during fault in phase 
C 
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Figure 5.6 Fault in EHV system phase C, over 4 nominal cycles 

The values reported by PMU are 0.803 for amplitude and 59.961 for frequency. 
It is clear that this representation by a phasor in this case doesn't work well, and the 
GoF is only 17 dB. In Figure 5.5 and Figure 5.6 no peak value is the same, though PMU 
has to report a single value and that is clearly not a good match to the observed signal 
as no peak value matches 0.803 pu. 

 

5.1 Real data estimation vs the models 
 

The phasor measurement unit was created to measure power system parameters, 
on the assumption that the system could be well-represented by a phasor. That means 
almost steady-state. The system is far from this condition during a fault. A commercial 
PMU includes much filtering in its design, and its response to a fault would be largely 
determines by the characteristics of the filters. SEMPR, on the other hand, includes no 
filters, but is (like the commercial PMU) trying to fit a phasor to a non-phasor signal.  

SEMPR therefore gives as its declared values the least-squares best fit of a 
phasor to the distorted signal. A commercial PMU will give some other estimate based 
on its filters. Neither is “right,” because both assume a phasor model. Whether the 
output of either method is useful would depend on the purpose intended for the result. 

Next, I explored the possibility of modifying the SEMPR model for this real-
world signal estimation. The main advantage of SEMPR is that the model is selectable 
freely, so different models can be applied (also with capabilities to run them 
simultaneously as parallel processes). At least 3 models are worth looking at: 

- Phasor model (6); 
- Kirkham model (23); 
- Kirkham model with ROCOA (22). 
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All measurements are performed with the same 2-cycle measurement windows 
and the same 1 second real-world input data (phase C). The result compilation is given 
in Figure 5.7.  

 

Figure 5.7 GoF calculation for SEMPR measurements compared to GoF calculations from commercial 
PMU declared values 

It is clear that in this SEMPR can achieve better signal representation, especially 
during fault conditions. Over nominal operation SEMPR produces results on average 8 
dB better than PMU values, but over fault there is 11dB difference. Interestingly there 
is not a lot of difference between SEMPR with ROCOF/ROCOA and simple phasor 
model during normal operation. This indicates that over nominal conditions PMU also 
has very good representation of the real world. It is also worth noting that during fault 
conditions SEMPR with phasor model is no better than PMU in making sense of non-
sinusoidal wave, therefore the key is not in the method, but in the model. 

Interestingly measurement No.21 (Figure 5.7) indicates slight drop in GoF from 
SEMPR measurements and very slight worsening of GoF in PMU declared values. This 
shows that SEMPR (independent 2-cycle measurements) is more sensitive to change of 
conditions and PMU could roll-through some very minor and fast changes in input 
signal due to signal filtering and latency. This is also indicated by the recovery speed 
of GoF after fault, where SEMPR shows very rapid recovery (measurement No.5) but 
PMU is slower to react. 

Broadly speaking, one might say that none of the measurements gives a good 
match to the faulted signal, and all give a better match before and after. If the purpose 
of the measurement is to know the cosine parameters during the fault, none give much 
hope. On the other hand, if the purpose is to know that something has caused the signal 
to go non-sinusoidal, all methods are roughly equal. Some differences are explored 
next. 

Estimated values during fault (measurement No.3) is 1.072 pu for amplitude, -
28.848 pu/s for ROCOA, 60.639 Hz for frequency, -33.727 Hz/s for ROCOF, and 
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46.0710 for phase. This means that for amplitude SEMPR estimates that the voltage is 
dropping by astonishing 28 pu per second, or 0.23 pu per cycle. This means that in one 
cycle voltage level is estimated to decrease by at least 81kV. ROCOF value also 
indicates slowing down of the sine-wave by 33 Hz per second. 

When plotted together the results of SEMPR shows clearly better fit (Figure 

5.8) 

 

Figure 5.8 SEMPR algorithm reconstruction along with PMU reconstruction and real oscillography data 

It is evident that SEMPR makes better estimation of the signal and for large 
parts of input data the estimation and oscillography lines are indistinguishable while 
PMU data reconstruction underestimates the peak values in first half of the 
measurements and overshoots at the second. It is made more visible if we look at the 
residuals in Figure 5.9. 

 

Figure 5.9 SEMPR and PMU measurement residuals during fault measurement 
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It is shown in Figure 5.9 that the residuals during the actual fault are almost 
equally large showing that both models don't represent the fault conditions fully, but 
right before and after the fault SEMPR shows much better results than PMU calculated 
residuals. It shows that it is beneficial to allow the model for more degrees of freedom 
and give the observer ore tools to describe the signal e.g. allow the amplitude and 
frequency to change within the measurement window.  

 

5.2 Real data variance analysis 
 

Consider the same AEP data used for fault measurement analysis. The fault 
occurs at the beginning of almost one second worth of sample set. A PMU looks at the 
fault in two cycle measurement windows, but SEMPR can look at it even at half-cycle 
windows and 4 cycle windows (using model of a phasor). The frequency figures are 
given below. 

 

Figure 5.10 4-cycle measurement window measurements for data including EHV line fault 
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Figure 5.11 2-cycle measurement window measurements for data including EHV line fault 

 

Figure 5.12 Single-cycle measurement window measurements for data including EHV line fault 
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Figure 5.13 Half-cycle measurement window measurements for data including EHV line fault 

From Figure 5.13, Figure 5.12, Figure 5.11, and Figure 5.10 the variability is 
very clear. With the measurement window decreasing we seemingly get more detail, 
but with half-cycle reported values we also get very high variance over the data where 
the fault occurred and the frequency at first jumps to 68 Hz and then plummets to 52 
Hz giving 16 Hz difference between two adjacent half-cycles, which just does not make 
sense (not physically possible). Considering the waveform of the fault (given in Figure 
5.6) it is more understandable – the signal only vaguely resembles sine-wave, so 
measurements only vaguely resemble sensible information (when using model of a 
phasor). With 4-cycle measurements the frequency is seemingly undisturbed by the 
fault. 

It is important at this stage to look at the SEMPR and the meaning of the 
measurement. First, 52 Hz is what apparently gives the least amount of residuals at that 
given moment. Second, we are looking for coefficient in a phasor model (6) and by the 
looks of it, the signal is not a phasor. Our model for representing the nature makes no 
sense. We get that indication also from GoF that for the measurement producing 52 Hz 
is 26 dB, instead of steady 44 dB for rest of data set. 

It basically doesn’t matter whether we use half-cycle or 4-cycle measurements, 
with wrong underlying mathematical model it will still make little sense. For less 
variance use longer windows, for more sense (intelligence) use better conceptual 
models.  

Unfortunately, AEP data is not suitable to sensibly represent Allan variance 
calculations, there simply isn’t enough data. Allan variance is, after all, based on the 
variations from a supposedly stable signal. Larger data chunks were made available by 
a µPMU device [29] sampling at 512 samples per cycle and providing 30 seconds worth 
of data from a medium voltage distribution grid. These data are courtesy of Alex 
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McEachern of Power Standards Laboratory. For starters, there is a lot of noise and 
harmonics on the signal, that can be observed in Figure 5.14. 

 

Figure 5.14 uPMU sampled data in MV distribution system 

The harmonic content can also be observed in the spectrum of the time series in 
Figure 5.15 

 

Figure 5.15 Spectrum of the uPMU sampled data 

Signal clearly contains 3rd, 5th and 11th harmonic as well as high frequency 
noise. Since the data set is from normal system operation period, the values should be 
reasonably stationary and Allan variance can be calculated.  
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Figure 5.16 Allan variance for distribution network frequency measurements 

In Figure 5.16 each dot represents an Allan variance calculated from different 
number of measurements since the data set is finite. Figure 5.16 shows a distinctive 
minimum at 32 cycle measurement window, which would give approximately half a 
second frequency reporting time. Of course, twice per second reporting rate is well 
below what’s expected from PMU, but also single cycle measurements have very small 
variance – ppm. It is also worth repeating at this point that SEMPR doesn’t implement 
any signal filtering. 

6 Conclusions 
 

The notion that the process of measurement is in fact the same as solving an 
equation lends itself well for examination with time-varying signals that can be 
reasonably modeled, as is expected to be the case for the various power system 
quantities. The “experiment” of making a measurement by curve-fitting gives results 
that are similar to the results of other methods, proving that the act of measuring is one 
that can be done in various ways, but the end result should not depend on the method 
selected. Most importantly, it teaches that measurement is the act of using signals from 
the real world to find parameters of a model. That model is almost always a 
simplification. 

Firstly, the notion to separate the conceptual world from nature and reality is 
very important.  

The concept is not new: Maxwell was aware of the need to keep these things 
separate when he said this in a presentation in 1870 to the British Association: 

“I shall only make one more remark on the 
relation between mathematics and physics. In 
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themselves, one is an operation of the mind, the other 
is a dance of molecules.” 

Rudolf Carnap [15] stressed the importance of separating the conceptual world 
and nature in his equation for adding quantities. All this gives the philosophical 
foundation for the Kirkham model and brings changes in phasor model, calling it 
“phasor-like” for Phasor Measurement Units (PMUs).  

The idea of measurement being the same as solving an equation gives more 
room for improving and adjusting our conceptual models for reality observed. In this 
case a Kirkham equation is used instead of just a phasor to show its advantages in real-
world applications. This gives PMUs added degrees of freedom for amplitude and 
frequency to account for time-varying signal that is in power system.  

PMUs now are one of the most influential modern measurement devices 
especially for stability-challenged power systems. For the same system control and 
supervision targets it could be possible to also use PMUs in distribution network. Of 
course, strong communication backbone is essential for synchronized measurements. 

Research shows that commercial PMUs struggle with signals under transition 
process. This caused the amending the PMU standard at IEEE. This shouldn’t be so, 
and PMUs must report something. The fundamental problem seems to be that the model 
used in the solution algorithms is a poor match for the actual signal. How believable 
are the measurements? What happens when parameters are changing constantly? The 
commercial PMU does not give any indication. 

A metric Goodness of Fit is introduced here and has been integrated in SEMPR. 
The Goodness of Fit parameter, developed from an idea in [5], has showed potential to 
be very useful with real PMUs and real signals. It indicates in real time the degree of 
match between the signal (changing with the power system), and the measurand (fixed 
by the design of the PMU). 

About the Goodness of Fit Metric: 

1) GoF level can be calculated by any PMU. The calculation is straightforward, 
and does not depend on the measurement method; 

2) The Goodness of Fit indicates that near-ideal results can be obtained with an 
ideal signal; 

There is confidence that GoF method will show good results on more real-world 
data and real-world PMUs than what have already been examined. As mentioned the 
method offered here is not limited to PMUs. It could be implemented as part of any 
digital measurement whose measurand equation can be elucidated (an example of 
double exponent is given in Annex 2). Altogether, GoF is proved to be a promising 
technique for a large class of digital measurements. 
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The effect on PMU measurement of different noises has been tested. The results 
show that Brownian noise has the greatest impact on measurement. There is less impact 
for white (Gaussian) noise. For harmonics, we can adjust the model and the impact is 
minimized. 

From performed calculations it has been showed that ROCOF is actually a tiny 
variable in the mathematical model and its contribution to the final signal is down 
almost to noise levels. More research in noise and its effects on the model could be 
performed to further improve the ROCOF measurement. It seems quite meaningless 
before we improve our understanding [54]. 

As part of the noise assessment, an Allan variance metric was used. This is a 
statistical analysis tool usually used for precision oscillators. It was found, interestingly, 
that  frequency and ROCOF measurements are sensitive to window lengths 
(significantly more so than amplitude or phase). Measurement of these quantities would 
greatly benefit from longer measurement windows. 

It has also been found by introducing synthetic semantic coloration (Brownian 
noise), and based on Allan variance calculations, that an optimum emerges for window 
lengths. The optimum changes according to the contents of the signal (noise content 
and amplitude), e.g. for phase measurement with smaller noise amplitudes (up to 1.5% 
white Gaussian (WG) and 0.3% Brownian (B)) the optimum is around 10 cycles, but 
for larger amplitudes (up to 15%WG and 1%B) around 2 cycles. For more typical 
1.5%WG and 0.03%B noise levels an optimum was found for 512 samples per cycle 
which is what µPMU uses in [29]. 

An additional statistical analysis tool has been proposed called “sampling 
variance”. It is showed that an optimum value also exists for sampling rate, depending 
on the signal and noise content. For smaller noise amplitudes (0.5%WG and 0.09%B) 
the optimum sampling frequency is 384 samples per cycle, but for large noises 
(15%WG and 1%B) optimum is quite flat around 100 samples per cycle. 

The results of this work, looking at real-world data, support the notion that PMU 
devices are actually solving a phasor equation. The main issue with that is that a lot of 
time, the power system signals don’t perfectly resemble a phasor. The GoF metric 
shows that Kirkham equation would be better option, since more degrees of freedom 
are provided for signal to change. Using Kirkham model showed a 6dB increase in GoF 
(14% increase since steady state GoF is around 43dB) over the fault data. 

When variance techniques are applied to obtained real world data, it shows that 
shorter observation windows are not necessarily more informative than a sensible 
compromise. Considering small ROCOF signal and high disturbance content on signal 
during fault, it is actually useless to look at the event through glasses of a phasor. Short 
(for example half-cycle) measurement windows result in the largest variance.  
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Statistical analysis is something that PMU also can do just like GoF calculation. 
In this case it is possible to adjust the conceptual model (including observer notification, 
of course), window length (possible multiple measurement windows at the same time), 
sampling frequency to achieve best possible representation of the real signal (maximum 
GoF value). Such device would perform informed and intelligent measurements 
providing more information about the nature. 

One of the findings is that the noise in the power system is not very researched 
topic and true nature of the disturbances are still quite unknown. As the matter of fact, 
also the power system signals under fault conditions are yet to be studied and not only 
curve fitting but pattern recognition approach may be suggested. This way it would be 
possible to get better and better GoF values and increase our understanding about the 
true nature of the physical phenomena in real time (to PMU sense). 

Real PMU with GoF integration is under way [55], therefore more data and 
possible findings are possible. With reported GoF values along declared parameter 
values will bring knowledge to the observer whether to trust or discard the measurement 
and in power system operations this is huge improvement. 

Underlying principles of intelligent measurements discussed in this work are 
truly fundamental and affect almost all current day metrology, since it relies on digital 
measurements. Dr. Kirkham calls it “The third revolution in measurements”, first being 
directly readable measurement devices, second the digital measurements. An example 
of double exponent use case is given in Annex 2. There are more, however. Much more. 
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7 Annexes 
Annex No.1 Example of MATLAB code used in SEMPR 

clear  
clc 

 
%Read real world sampling data from a file; 

 
yy = xlsread( 'Data_file.xlsx' ,1, 'AF292:AF4707' );  
T  = xlsread( 'Data_file.xlsx' ,1, 'T100:T163' );  
  
 for  i = 1:68  
     low = i * 64;  
      
     for  n = 1:64;  
          
     p(n) = yy(low+n);  
        
     end  
 y = p';  
  
%% Fitting algorythm: 'fit1'. 

 
[xData, yData] = prepareCurveData( T, y );  
  
% Set up fittype and options 
 
ft = fittype( '(a + b*x)*cos(2*pi*c*x+ 2*pi*(d)*x*x +e)+f' , 
'independent' , 'x' , 'dependent' , 'y'  );  %Fitting the equation  
opts = fitoptions( 'Method' , 'NonlinearLeastSquares'  );  %Set Method  
opts.DiffMaxChange = 0.0001;                %Maximum step change  
opts.Display = 'Off' ;                       %Disable display option  
opts.Lower = [0.5 -100 30 -500 -6.28 -0.5]; %Lower trust region 
boundaries  
opts.MaxFunEvals = 10000;          %Maximum evaluations allowed  
opts.MaxIter = 10000;              %Maximum iterations  
opts.Robust = 'Bisquare' ;          %Selecting bisquare robust fitting  
opts.StartPoint = [1 0 60 0 0 0];  %Starting values for estimation  
opts.TolFun = 1e-14;               %Termination tolerance for 
functiuon  
opts.TolX = 1e-14;                 %Termination tolerance for x  
opts.Upper = [1.2 100 110 500 6.28 0.5];   %Upper trust region 
boundaries  
  
% Fit model to the data 

 
[fitresult, gof, fitinfo] = fit( xData, yData, ft, opts );  %Export 
values from the curvefitting  
  
RMS(i) = 20*log10(1/gof.rmse);      %Calculated GoF values  
f(i) = fitresult.c;                 %Frequency values  
A(i) = fitresult.a;                 %Amplitude values  
ph(i) = fitresult.e;                %Phase values  
C_A(i) = fitresult.b;               %Rate of Change of Amplitude 
values  
C_W(i) = fitresult.d;               %Rate of Change of Frequeuncy 
values  
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DC_offset(i) = fitresult.f;         %DC offset values  
  
if  RMS(i) < 30;                     %Capture measurement if GOF 
indicates a bad fit  
    for  j = 1:64;  
    y1(j) = 
(A(i)+C_A(i)*T(j))*cos(2*pi*f(i)*T(j)+ph(i))+DC_off set(i);  
 
 %Reconstruct the estimated signal 
 
    end  
    L = 1:64;  
    Resid = y - y1';                %Calculate residuals  
       
    figure (1)                      %Plot the residuals  
    bar(L,Resid)  
    grid on 
    tt = i;  
     
    figure (2)  
    plot(L,y,L,y1')  
    grid on 
     
   filename = 'Measurements_results1.xlsx' ;  %Write the results to 
file  
   xlswrite(filename,y,1, 'A1' )  
   xlswrite(filename,y1',1, 'B1' )  
   xlswrite(filename,Resid,1, 'C1' )  
    
end  
  
i  
 end  
  
%% Plots for data representation  
 
K = [1:64];  
  
figure(3)  
plot( K, A)  
grid on;  
title( 'Amplitude' , 'fontsize' , 12 )  
xlabel( 'Time (s)' , 'fontsize' , 12 )  
ylabel( 'Amplitude (pu)' , 'fontsize' , 12 )   
  
figure(4)  
plot( K, f)  
grid on;  
title( 'Frequency' , 'fontsize' , 12 )  
xlabel( 'Time (s)' , 'fontsize' , 12 )  
ylabel( 'Frequency (Hz)' , 'fontsize' , 12 )   
  
figure(5)  
plot( K, ph)  
grid on;  
title( 'Phase' , 'fontsize' , 12 )  
xlabel( 'Time (s)' , 'fontsize' , 12 )  
ylabel( 'phase (rad)' , 'fontsize' , 12 )   
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figure(6)  
plot( K, RMS)  
grid on;  
title( 'Goodness of the fit' , 'fontsize' , 12 )  
xlabel( 'Time (s)' , 'fontsize' , 12 )  
ylabel( 'dB' , 'fontsize' , 12 )   
  
%-------------------------------------------------- ----  
  
%% Data writing to a file  
  
 filename = 'Measurements_results.xlsx' ;  
 xlswrite(filename,RMS',1, 'E1' )  
 xlswrite(filename,K',1, 'F1' )  
  
 filename = 'Measurements_results.xlsx' ;  
 xlswrite(filename,RMS',1, 'A1' )  
 xlswrite(filename,fn',1, 'B1' )  
  
 xlswrite(filename,An',1, 'C1' )  
 xlswrite(filename,phn',1, 'D1' )  
 xlswrite(filename,K',1, 'E1' )  
 xlswrite(filename,C_An',1, 'F1' )  
 xlswrite(filename,C_wn',1, 'G1' )  
  
 xlswrite(filename,yy,1, 'H1' )  
 xlswrite(filename,T,1, 'I1' )  
  
%% Allan Variance calculation -example- 

 
clear  
clc  
  
%% INPUT 
%Measurement input 
  
 SF = 30;                        %Sampling frequency  
 l = [1 2 4 10 20 50];           %select window sizes in cycles  
 MM = 50;                        %number of measurements  
  
%White noise input 
 
 white_noise_volume_all = [0.01];  %Noise amplitude modifier  
 red_noise_volumes = [0];          %Red noise amplitude modifier  
  
%Harmonics input 

 
 Hn = [0];                       %Harmonics number  
 Ha = [0];                       %Harmonic amplitudes, pu  
 Hp = [0];                       %harmonics phases, rad  
  
%MATLAB generated signal  
  
 Amplitude = 1;                  %pu 
 ROCOA = 0;                      %pu/s  
 ROCOF = 0;                      %Hz/s  
 Frequency = 50;                 %Hz 
 phase = 0;                      %rad 
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 DC_offset = 0;                  %pu 
  
%% Measuring algorythm  
  
for  r = 1:length(white_noise_volume_all)     %Performs measurements 
according to the designated noise volumes  
  
    clearvars yc  HH H noise  y RMS fn  An phn  C_wn delta_f  delta_phn  
delta_A  delta_C_wn                            %Clearing all previous 
cycle values  
             
    white_noise_volume = white_noise_volume_all(r);   %Selects noise 
volume  
    red_noise_volume = red_noise_volumes(r);         %Selects noise 
volume  
         
for  j = 1:length(l)             %Main cycle. Changes window sizes.  
         
    T = 0:( 1 / (SF * 60) ):(( (l(j) * SF ) )/( SF * 60 ))-( 1 / (SF 
* 60) );     
 
%Constructs appropriate time series for given windo w length  
         
    for  i = 1:MM                %Measurement counter  
              
  white_noise = ((1) + ((-1)-1).*rand(1,length(T)))  * 
white_noise_volume;             %Generates broadband unfiltered noise  
      
  red_noise = (cumsum(randn(1,length(T))))*red_nois e_volume; 
%Generates red noise  
   
  noise = white_noise + red_noise; %Final noise signal  
     
       parfor  a = 1:length(T)      %generate fundamental  
      
            yc(a) = ( Amplitude + ROCOA * T(a)+ noi se(a)) * cos( 2 * 
pi * Frequency  * T(a) + 2 * pi * ROCOF * T(a) * T( a) + phase ) + 
DC_offset;    %Generates the fundamental with Kirkham 
equation +noise  
          
       end  
        
     HH = zeros(1,length(T));      %generates harmonics signal  
  
for  u = 1:length(Hn)               %loop for harmonics generation  
  
  parfor  a = 1:length(T)  
     
     H(a) = (Ha(u)) * cos( 2 * pi * 60 * Hn(u) * T( a) + Hp(u) );  
%generates harmonics with phasor equation  
      
  end  
  
 HH = HH + H;                       %all harmonics added together  
  
end  
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     y = yc + HH;                   %Final input signal  
  
 %% Fit: 'fit1'. 
 
[xData, yData] = prepareCurveData( T, y );  %preparing data for curve 
fitting  
  
% Set up fittype and options 

 
ft = fittype( '(a + b*x)*cos(2*pi*c*x+ 2*pi*(d)*x*x +e)+f' , 
'independent' , 'x' , 'dependent' , 'y'  );     %Fitting the equation  
opts = fitoptions( 'Method' , 'NonlinearLeastSquares'  );  %Set Method  
opts.DiffMaxChange = 0.0001;                %Maximum step change  
opts.Display = 'Off' ;                       %Disable display option  
opts.Lower = [0.5 -100 30 -500 -6.28 -0.5]; %Lower trust region 
boundaries  
opts.MaxFunEvals = 10000;                   %Maximum evaluations 
allowed  
opts.MaxIter = 10000;                       %Maximum iterations  
opts.Robust = 'Bisquare' ;                   %Selecting bisquare 
robust fitting  
opts.StartPoint = [1 0 60 0 0 0];           %Starting values for 
estimation  
opts.TolFun = 1e-14;                        %Termination tolerance 
for functiuon  
opts.TolX = 1e-14;                          %Termination tolerance 
for x  
opts.Upper = [1.2 100 110 500 6.28 0.5];    %Upper trust region 
boundaries  
  
% Fit model to the data  
[fitresult, gof, fitinfo] = fit( xData, yData, ft, opts );  %Export 
values from the curvefitting  
  
RMS(i) = 20*log10(1/gof.rmse);             %Calculated GoF values  
f(i) = fitresult.c;                        %Frequency values  
A(i) = fitresult.a;                        %Amplitude values  
ph(i) = fitresult.e;                       %Phase values  
C_A(i) = fitresult.b;                      %Rate of Change of 
Amplitude values  
C_W(i) = fitresult.d;                      %Rate of Change of 
Frequeuncy values  
DC_offset(i) = fitresult.f;                %DC offset values  
  
if  i > 1;                       %Calculate the differences in 
measurements for Allan variance calculation  
  
    delta_f(i) = (f(i) - f(i-1))^2;       %frequency differences  
    delta_ph(i) = (ph(i) - ph(i-1))^2;    %phase differences  
    delta_A(i) = (A(i) - A(i-1))^2;       %amplitude differences  
    delta_C_A(i) = (C_A(i) - C_A(i-1));   %ROCOA differences  
    delta_C_W(i) = (C_W(i) - C_W(i-1));   %ROCOF differences  
end  
  
    end  
     
    %Allan variance calculation and vector assembly 

 
 Allan_variance_f(r,j) = (sum(delta_f))/(2*(i-1));        
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 Allan_variance_ph(r,j) = (sum(delta_ph))/(2*(i-1)) ;  
 Allan_variance_A(r,j) = (sum(delta_A))/(2*(i-1));  
 Allan_C_A(r,j) = (((sum(delta_C_A))/(i-2))^2)/2;  
 Allan_C_W(r,j) = (((sum(delta_C_w))/(i-2))^2)/2;  
 Avg_GoF(r,j) = mean(RMS);         %Average GoF values  
    
%% Write to the Excel file  
  
 filename = 'Alan_variance.xlsx' ;  
  
   xlswrite(filename,f',(1+j), 'A2' )  
   xlswrite(filename,A',(1+j), 'B2' )  
   xlswrite(filename,ph',(1+j), 'C2' )  
   xlswrite(filename,C_W',(1+j), 'D2' )  
   xlswrite(filename,RMS',(1+j), 'E2' )  
  
end  
  
end 
 
%% Allan deviance  
  
 Allan_deviance_f = sqrt(Allan_variance_f);        
 Allan_deviance_ph = sqrt(Allan_variance_ph);  
 Allan_deviance_A = sqrt(Allan_variance_A);  
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Annex No. 2 An Example of a Double Exponent Signal Estimation 

 

Mathematical model for double exponent: 

 ��� = �*2 � − *2 � 		, 
 

(1) 

Where time constant α establishes the rise of the impulse and β accordingly the 
fall of the impulse. With α=0.02 and β=5 the signal; is given in Figure1. 

 

Figure1. A synthetic double exponent signal. 

For clean signals SEMPR can estimate the values perfectly, which is shown in 
residuals below in Figure2. 

 

Figure2. Residuals from generated and reconstructed signals. 
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With introduced 3% white Gaussian noise the signal and residuals are given if 
Figfure3 and Figure4. 

 

Figure3. Double exponent signal with introduced 3% white Gaussian noise. 

 

Figure4. Residuals from generated signal and reconstructed signal. 

The residuals are practically the same as the noise signal, showing that SEMPR can 
indeed estimate different mathematical models in presence of noise (approximately 
0.4% of the noise signal actually contributed to the parameters estimation). 
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Annex No. 3 representational measurements 

There are many ways to measure frequency: 

- Count zero crossings 
- Fourier analysis 
- Measure zero crossing intervals 
- Finite difference phase values. 

But these are ways to measure, not descriptions of what we measure. They do 
not define the quantity being measured, the thing called “frequency.” 

In fact, the IEEE Standard [1] does not define the thing being measured except 
via a textbook kind of definition, one that assumes constant frequency. There seems not 
to be a good definition of the word frequency that applies when the frequency is 
changing. The definition can be different for different measurement methods, like 
Apparent Local Frequency for SEMPR, which can indeed be defined. 

What this means is that the PMU is actually measuring something that is not 
defined. As a result, the value that is obtained as the result of the measurement depends 
on the details of how the measurement is performed.  

As it happens, this kind of measurement is more common than is generally 
realized. Many measurements give results that depend critically on the way the 
measuring is done” air temperature (quoted on weather reports) is a common example. 
It can be measured as the level of mercury in glass tube with no reference to what 
“temperature” means in physics. 

Measurements of this kind are known as operationalist (because the operation 
of measurement must be followed exactly for the result to be useful) and the kind of 
measurement that we imagine we are usually making is known as representational, 
because (following Carnap) the way the physical quantities are thought to interact is 
represented by the way the mathematical quantities interact. [56] 

In power systems, there are many quantities that are measured operationally. An 
example that is simple to see as operational is that of partial discharge. The way the 
measurement is to be carried out is very closely defined in the standard [57]. The 
bandwidth of the input filter is specified, the kind of detector, and some filtering of the 
output. 

The measurement of frequency in the PMU is a measurement of this kind, 
though it is not generally recognized. The IEEE Standard contains a good deal of 
descriptions of filtering before and after the measurement is made, for example.  

SEMPR was an attempt to make a measurement that was as representational as 
possible. By adding a term in the rate-of-change-of frequency to the sinusoid equation, 
the model was thought to be a representation of the actual power system. In fact, 
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because the power system typically contains harmonics, the fitting process is limited in 
accuracy unless the harmonics are accounted for. If the harmonics are filtered out, the 
measurement is more operational. If the harmonics are included in the SEMPR 
objective function, the measurement is more representational.  

As the model complexity increases, it may at some point be computationally 
impractical to solve the fitting problem. Kirkham is continuing to work on this at 
PNNL. 
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