
Analysis of the Potential Benefits from Participation in 

Explicit and Implicit Demand Response 

Zane Broka, Karlis Baltputnis, Antans Sauhats 

Institute of Power Engineering 

Riga Technical University 

Riga, Latvia 

zane.broka@rtu.lv, karlis.baltputnis@rtu.lv, sauhatas@eef.rtu.lv 

Abstract—In this paper, a Monte Carlo scenario-based model is 

utilized in analyzing the economic feasibility of participation in 

demand response (DR) from the perspective of a flexible 

consumption asset owner. Furthermore, the impact of implicit 

DR on the ability to provide explicit DR is assessed. Case study 

based on smart electric thermal storage heaters allows to 

conclude that implicit DR does not necessarily hinder the ability 

of providing ancillary services to the power system. Instead, it 

adds a supplemental benefit to the asset owner. 

Index Terms—balancing; demand response; flexibility; Monte 

Carlo; simulation 

I. INTRODUCTION 

Demand response (DR) is deemed a potentially valuable 
tool for providing several benefits to power systems, e.g., 
balancing, renewable energy integration, spinning reserves, 
grid cost reduction etc. [1], [2]. While, in general, this topic is 
widely studied in recent literature in context of the ongoing 
transition to the Smart Grid paradigm [3], there is nevertheless 
still some uncertainty in terms of DR implementation. 

While the reserve and regulating power markets do offer 
new and exciting possibilities for small consumers to 
participate in developing DR markets, the insufficiently clear 
rules regarding resource aggregation provide an apparent 
obstacle [1], [4]. Luckily, the situation is improving and 
policy-makers and power system operators throughout Europe 
are working on more efficient utilization of potential DR 
resources. For instance, it is increasingly viewed as an 
important and underutilized asset in the Baltic region [5], but 
the EU Clean Energy Package also calls for the involvement 
of demand side resources in all electricity markets. 

However, participation in ancillary services (i.e., explicit 
DR) is not the only way to benefit from load controllability. 
Implicit DR, when consumers voluntarily adjust their 
consumption according to external price signals (e.g., 
optimizing load schedule as per hourly electricity prices), can 
also provide notable benefit [6], and the entry barriers are 
significantly smaller, e.g., no definitive need for aggregation. 
Technical capability to reschedule load and incentivizing tariff 
structure are the only requirements for implicit DR. 

The study presented in this paper aims to analyze the 
profitability of participation in both explicit and implicit DR 
from the perspective of the owner of flexible load assets on a 
householder level. Furthermore, it is tested whether price-
based optimization of the flexible consumption schedule 
negatively affects the ability and profitability of participation 
in explicit DR, particularly focusing on the balancing market. 

II. METHODOLOGY

A. Model Overview 

For the analysis carried out in this study, a stochastic 
model for economic assessment of demand response based on 
Monte Carlo simulations was used. The tool has been 
introduced in [7] and relies on simulating the activation of 
explicit demand response assets for power system balancing 
purposes and calculating the cash flows therewith generated. 
The sequence of operations performed during a model run can 
be broadly summarized by the following steps: 

1) day-ahead electricity market price scenario generation;
2) balancing market liquidity and price scenario generation;
3) balancing activation simulation carried out according to

the consumer model and the generated scenarios;
4) annual economic assessment of DR profitability.

The day-ahead price scenarios are generated from settings
describing the expected statistical parameters of the average 
scenario, i.e., mean price, expected ratios of 
weekday/weekend and daytime/nighttime means, the 
minimum price, the normal maximum price and the absolute 
maximum price for the right-side tail of the annual hourly 
price distribution, as well as the standard deviations for all 
these parameters, since for each scenario their values are 
drawn from a normal distribution. 

The main inputs to generate the balancing market liquidity 
and price scenarios are the expected percentage of hours 
annually when the power system requires balancing which 
could be provided by aggregated DR assets, the expected ratio 
between upward and downward balancing calls, as well as the 
expected ratio between upward and downward balancing price 
versus the day-ahead market price at a respective hour. 
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Afterwards, all the scenarios are assigned equal realization 
probabilities. 

B. Assessing Benefit from Explicit DR 

The potential benefit from participation in DR is evaluated 
from the DR asset owner’s perspective which is a residential 
customer with DR-enabled smart electric thermal storage 
heating installed at their household. It is assumed that, within 
normal operation, the asset owner pays a contracted dynamic 
price for the metered consumption, whereas DR activations 
and the subsequent recovery effect does not incur them 
imbalance penalties, as they themselves are not balance 
responsible. Thus the resulting benefit from a particular 
explicit DR activation can be calculated as in (1) for a load 
increase and (2) for a load reduction event [7]: 

incr.

DR+ bal rec– ret ,
tDR tDR trec trecB E E= −  +  (1) 

where DR+

tDRE is the increased energy consumption due to a DR 

activation during the set of hours tDR , purchased at the 

balancing energy price at that time bal

tDR , and rec–

trecE is the 

energy consumption decrease in a subsequent time period 
trec  due to the recovery effect, purchased at the electricity 

retail price at that time ret

trec . 

( )red.

DR– bal ret rec+ ret ,
tDR tDR tDR trec trecB E E=   +  −  () 

where DR–

tDRE is the reduced energy consumption due to a DR 

activation, which brings two positive cash flows – payment for 
balancing energy and reduced metered consumption during 
the event; however, the subsequent consumption increase 

(recovery effect, rec+

trecE ) provides a negative component, as this 

energy has to be purchased at the retail price. 

These same cash flow positions can be restructured in 
different components to explore particularly what effects 
produce the sum benefit. The considered effects are the benefit 
from the balancing market (3)–(4), the benefit from efficiency 
improvement (5)–(6) and, finally, the benefit from price 
variability (7)–(8): 

( )incr.

bal.market ret bal DR ,
tDR tDR tDRB +=  −    () 

red.

bal.market bal DR– ,
tDR tDRB =    () 

( )incr. incr.

efficiency rec DR+ ret1 tDR tDRB k E= −   () 

( )red. red.

efficiency rec DR– ret1 tDR tDRB k E= −    () 

( )incr. incr.

pr.var. ret ret DR+ rec ,
trec tDR tDRB E k=  −     () 

( )red. red.

pr.var. ret ret DR– rec ,
tDR trec tDRB E k=  −    () 

where 
incr.

reck  and 
red.

reck  are recovery coefficients signifying the 

proportion of energy utilized in DR to be recovered (by 
increased or reduced consumption) in subsequent hours. 
Essentially, it encodes the energy efficiency of explicit DR. 

Note that only positions (3) and (4) can be ensured to be 
positive given an appropriate bidding strategy, whereas (5)–
(8) can in some situations result in negative benefit (i.e. 
losses) if, for instance, the DR event causes efficiency 
decrease or if the retail price at recovery hours differs from the 
DR hour for the worse. However, the sum of these positions 
ought to be generally positive. Nevertheless, the overall 
profitability of participation in explicit DR also depends on the 
capital and operational expenditure (CAPEX, OPEX) related 
to the implementation and maintenance of the DR capability. 

C. Assessing Benefit from Implicit DR 

The equations (1)–(8) describe solely the benefit 
obtainable from participation in explicit DR programs for 
system balancing. However, it is reasonable to assume a 
consumer possessing some amount of consumption flexibility 
would primarily be interested in taking advantage of the time-
varying electricity prices. For this purpose, the DR economic 
potential assessment model [7] has been enhanced with the 
ability to assess benefit from implicit demand response (i.e., 
purchasing electricity at dynamic hourly prices which are 
known the day before). In essence, sequential day-ahead 
optimization is performed for the whole year with the 
objective to minimize electricity purchase costs: 

( )
24

unopt.

cons. ret.

1

min,t t t

t

E
=

+   →  (9) 

subject to 

min max

flex. flex. ,t t tE E E   (10) 

24

1

0,t

t

E
=

 = (11) 

where unopt.

cons.tE – the original, unoptimized energy consumption

at hour t , 
tE  (the optimization variable) – the change in 

hourly consumption for cost minimization, 
ret.t – electricity

retail price at hour t , and 
min

flex.tE , 
max

flex.tE – the lower (load

reduction) and upper (load increase) bounds on the available 
consumption flexibility at each hour. 

The constraint (11) ensures that the total daily 
consumption remains unchanged. The optimization problem 
(9)–(11) is clearly linear and can be solved with a simple 
linear programming approach. 

If day-ahead rescheduling is modeled, the flexibility 
profiles available for balancing are readjusted accordingly 
before performing explicit DR activation simulations, but the 
overall consumption flexibility bounds remain the same, while 
the profile is changed as per the results of the price-based 
optimization. The annual benefit from implicit DR is 
estimated by contrasting the consumed electricity costs with 
and without rescheduling. For both explicit and implicit DR 
the resulting annual benefit is obtained in the form of 
probability distributions, since it accounts for all scenario 
results. Thus, the scenario mean is the expected benefit. 



D. Required Number of Scenarios 

The results of the model and their credibility strongly 
depend on the number of Monte Carlo simulations performed. 
However, evaluating a high number of scenarios can demand 
significant computational resources. Thus, a compromise 
between precision and evaluation time has to be found. 

Fig. 1 illustrates the differences in results of model runs 
with varied number of scenarios (ten runs with each number to 
distinctly illustrate the dispersion of results). The green dots 
represent the deviation of each model result (expected benefit) 
from the overall average. The violet line, however, represents 
the mean calculation time of the runs. 
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Figure 1.  Tradeoff between calculation time and precision. 

Evidently, 1000 scenarios are sufficient. They provide 
satisfactory low deviations (the highest value within the test 
runs – 1.31%) while still providing reasonable computational 
time (~153 seconds on an ordinary desktop computer). More 
simulations need significantly higher computational effort. 

E. Case Study Description 

The case study is based on thermostatic load, which has 
been identified in literature as one of the most promising load 
types for residential DR applications [8]–[10]. Particularly, we 
model smart electric thermal energy storage devices [11] able 
to receive external control signals (e.g., from an aggregator). 
The rated input power of each device is 2.2 kW, and we 
assume a household with five units installed. The default 
behavior (no gateway connection) envisions electricity 
consumption (i.e., storing thermal energy) in the first hours of 
each day, as the good thermal insulation of heaters allows the 
heat to be released when necessary throughout the day. 
Variable OPEX is disregarded in this study, but fixed OPEX is 
set to 20 € per annum. 

Four different consumption and flexibility profiles for a 
week are used in the study to capture seasonal differences (the 
year is divided in four 3-month seasons). Heat energy demand 
is derived from building thermal modeling results in Riga, 
Latvia, suggesting that the average heat demand in spring is 
about 50% of the winter load, autumn – 20%, summer – 10%. 
In terms of flexibility, we assume any idle heater units can be 
turned on and any working units switched off for one hour up 
to 14 times a week if there is enough flexibility in the opposite 
direction for recovery to be completed within the next 12 
hours. Summer is an exception – we assume only one 
additional heater unit can be turned on for load increase DR. 
The model has hourly resolution, and DR event duration is 
also set to one hour. The recovery effect is characterized by 
incr.

reck = 0.9 and 
red.

reck = 0.9, i.e., load increase DR results in 

slightly wasted energy, whereas load reduction DR manifests 
some energy savings. 

The day-ahead price scenario generation is based on 
statistics in the Latvian price area of Nord Pool (01.11.2017–
31.10.2018) and is summarized in Table I. A 10% standard 
deviation is set to these parameters during scenario generation. 

TABLE I. DAY-AHEAD PRICE SCENARIO EXPECTED PARAMETERS 

Day-ahead price scenario parameter Expected value 

Minimum price 1.59 €/MWh 

Mean price (for 99.5% of hours) 45.81 €/MWh 

Maximum price (for 99.5% of hours) 100.06 €/MWh 

Maximum price (for 100% of hours) 255.03 €/MWh 

Mean weekday and weekend price ratio 1.21 

Mean daytime and nighttime price ratio 1.39 

Parameters for balancing market scenarios are derived 
from the common Baltic balancing market data (01.01.2018–
31.10.2018) and summarized in Table II. The market was 
launched on January, 2018 and has already proven to provide 
accurate and efficient system balance management [12]. The 
parameters from both tables are used to generate scenarios as 
per the algorithm described in [7]. 

TABLE II. BALANCING MARKET SCENARIO EXPECTED PARAMETERS 

Balancing liquidity and price scenario parameter Expected value 

Balancing market liquidity (hours w demand for DR) 63.08% 

Negative vs positive hourly system imbalance ratio 0.49 

Balancing vs day-ahead price (at positive imbalance) 0.64 

Balancing vs day-ahead price (at negative imbalance) 1.87 

However, the owner of the flexible load purchases 
electricity for its regular consumption at a dynamic retail price 

defined as ( )ret. DA1.21 62.91 ,t =   +  which is a 

representative electricity retail tariff in Latvia comprised of 

the hourly day-ahead wholesale price 
DAt , trade commission 

(4.20 €/MWh), mandatory procurement component 
(14.63 €/MWh), distribution tariff (44.08 €/MWh) and a 21% 
value added tax on top. The consumption-independent 
monthly components of the tariff have been disregarded, as 
they would not be affected by DR.  

For comparability, all the calculations within this study 
have been performed using the same 1000 scenarios for the 
day-ahead and balancing market (i.e., they have been 
generated only once). The distributions of the hourly prices 
generated are summarized in Fig. 2. 

Figure 2.  Histogram of electricity prices. 



III. RESULTS AND DISCUSSION

For comparison purposes, let us carry out two model runs. 
Firstly, with only explicit DR (for power system balancing, 
assuming aggregated DR capability to participate in the mFRR 
market in the Baltics) and, secondly, with additional implicit 
DR implemented by price-based rescheduling of the 
consumption on a day-ahead basis. 

Fig. 3 summarizes the modeled scenario results in terms of 
the positive and negative annual cash flow positions incurred 
due to explicit DR activations for a case where the initial 
consumption has not been price-optimized. When compared to 
the same indicators for a case where there has been a day-
ahead rescheduling performed beforehand (Fig. 4), three main 
implications can be inferred.  

Firstly, the benefit from implicit DR is well comparable to 
that from explicit DR (e.g., 74.67 € from rescheduling, 
336.16 € from balancing DR). Secondly, implicit DR does not 
negatively affect the profitability of participation in explicit 

DR but supplements it instead. Thirdly, the cash flow 
components directly dependent on the hourly retail price are 
most affected by the day-ahead rescheduling.  

The same overall explicit DR benefit can also be expressed 
by its different components defined in (3)–(8). Fig. 5 and 
Fig. 6 provides the mean values (mathematical expectation) of 
these indicators. 

While the mean overall annual benefit from explicit DR is 
slightly decreased (from 321.05 € to 316.15 €) if day-ahead 
optimization has been performed beforehand, the actual 
income from the balancing market is increased in the second 
case. However, it has been offset by the notably higher 
negative effect of the price variation component.  It can be 
explained by the greater likelihood for the recovery effect post 
load-reduction DR to take place during high-price hours, since 
the initial pre-DR consumption is already placed at the 
cheapest hours in the second case. This becomes even more 
evident if we study the statistics of the modeled DR 
activations summarized in Table III. 

Figure 3.  Probability histograms of the modeled cash flow positions (red – positive, green – negative, blue – total) without day-ahead rescheduling. 

Figure 4.  Probability histograms of the modeled cash flow positions (red – positive, green – negative, blue – total) with day-ahead rescheduling.



Figure 5.  Breakdown of explicit DR mean total benefit (origin. schedule). 

Figure 6.  Breakdown of explicit DR mean total benefit (optim. schedule). 

TABLE III. MEAN ANNUAL VALUES OF THE MODELED DR EVENTS 

Case DR events DR Energy, MWh Specific benefit, €/MWh 

incr. red. incr. red. increase reduction 

origin. 431 222 3.13 1.04 80.95 84.60 

optim. 386 154 3.26 1.30 76.97 65.44 

Even though the total number of annual DR events has 
decreased (from 653 to 540 events) when the underlying 
consumption pattern of electric thermal storage heaters has 
been optimized, the sum amount of energy delivered for 
system balancing has actually increased (from 4.17 MWh to 
4.56 MWh). Presumably, this is because post-optimization 
there are some hours with remaining flexibility only in one 
direction, and thus there are overall less hours when either 
directional DR is possible. However, the amount of flexibility 
in terms of energy in one direction is higher. The specific 
benefit per unit of energy served in explicit DR, however, is 
also decreased, notably so for demand reduction DR events. 

If the asset owner were to incur notable variable OPEX 
due to energy served in explicit DR (e.g., loss of productivity, 
value of comfort lost etc.), the difference between both cases 
might become starker; however, this assertion remains to be 
studied. Some other significant assumptions that could 
influence the results is the balance responsibility of DR asset 
owner and prospective compensation to its retailer (for both, 
we assumed none), and it is also presumed that the payments 
to/from balancing market are equal to the respective balancing 
market price. If the DR asset owner were to pay additional 
taxes or share the benefit with its aggregator, the resulting 
profit would certainly be less. 

IV. CONCLUSIONS

The DR economic assessment model explored in this study 
enables identification of benefits from explicit DR activation 
for system balancing purposes. It also allows studying the 
benefit by its components – balancing payment, efficiency 

increase (or decrease), and hourly price variations if a 
dynamic retail tariff is used. In the particular case study, the 
last two components provided a negative effect, albeit the sum 
cash flow remains positive and beneficial to the DR asset 
owner. 

Furthermore, the analysis of smart electric thermal storage 
devices as an asset for explicit DR allows to draw the 
conclusion that being subjected also to implicit DR by means 
of price-based consumption rescheduling does not impede the 
overall profitability of explicit DR. While the parameters of 
DR activations and related cash flows do change, the sum 
benefit remains similar in both cases. Moreover, the exposure 
to implicit DR itself adds notable supplemental benefit to the 
overall profitability of DR-enabled smart electric thermal 
storage heaters. 
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