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Abstract:  We analyze Markov impulsive difference model for age structured population 

divided into three groups under the assumption of perturbations at random time moments. 

Assuming sufficiently small intervals between changes, we apply the stochastic averaging 

procedure and construct an ordinary 3-dimensional differential equation for population 

dynamics in the mean and a linear 3-dimensional stochastic differential equation for 

deviations from the mean trajectories. The results are applied for modelling of population 

dynamics using the data on Latvian residents collected by the Central Statistical Bureau of 

Latvia. 
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1 Introduction 

 

Population aging is becoming an increasingly serious problem in most of developed countries. So  

not only demographers, but also economists, statisticians and mathematicians offer and analyze 

various models for population dynamics, applying recent methods. A wide description of such 

papers can be found in [1]. Samuelson used a simple demo-economic model for studying general 

questions about equilibrium in [6]. Many results were obtained for a static two-age group model, 

(see, for example, [2]). However, such type of a model cannot describe well the human economic 

life circle. As it was shown by Samuelson, it is crucial to separate the long middle period for people 

spent in employment, i.e. producing more than consuming. Like [5], we divide a population into 

three groups. Many authors use simplistic demographic assumptions. For instance, the model of 

Hock and Weil ignores childhood and early-adult mortality at all, assuming that death occurs only 

among the retired. In our model mortality exists in each group, moreover, with different 

coefficients. Bommier and Lee ([1]) studied overlapping generations models with realistic 



demography. The models were improved having been turned into dynamical. However, they still 

suffered from the lack of uncertainty.  

 

We assume that increments in the groups caused by mortality and transferring people from one 

group to another have small random perturbations. We do not pretend that our model is detailed 

enough but it is closer to reality. The model can be improved from the viewpoint of demography. 

It is not our goal. We aim to offer a new approach to analysis of this type of demographical models, 

namely after introducing small perturbations we apply the averaging procedure ([8],[9]), then 

rewrite the model in a form of stochastic differential equations of Poisson type, define the 

normalized deviations of the solutions from averaged processes and apply the diffusion 

approximation ([7]-[9]) to these deviations. 

 

 

2 The model 

 

We consider the following split of a population of people into groups:  

Group 1 – people who haven’t been working since birth (youth dependents),  

Group 2 – people having worked at least one day, but not retired (workers),  

Group 3 – retired or disabled people (elderly dependents).  

The following notations are used: 𝑥(𝑡) – the number of people in Group 1 at time t, 𝑦(𝑡) - the 

number of people in Group 2 at time t, 𝑧(𝑡) - the number of people in Group 3 at time t. 

The finite difference scheme for the dynamics of the size of groups over the period 𝛥 in moments 

𝑡𝑛 = 𝑛𝛥, 𝑛 ∈ 𝑁 may be defined as follows: 

 𝑥(𝑡𝑛+1) = 𝑥(𝑡𝑛) + 𝛥11𝑥(𝑡𝑛) − 𝛥12𝑥(𝑡𝑛) − 𝛥13𝑥(𝑡𝑛), (1) 

 𝑦(𝑡𝑛+1) = 𝑦(𝑡𝑛) + 𝛥13𝑥(𝑡𝑛) − 𝛥21𝑦(𝑡𝑛) − 𝛥22𝑦(𝑡𝑛), (2) 

 𝑧(𝑡𝑛+1) = 𝑧(𝑡𝑛) + 𝛥22𝑦(𝑡𝑛) − 𝛥31𝑧(𝑡𝑛),                        (3) 

  

where 𝛥11𝑥(𝑡) is the number of births in period [𝑡, 𝑡 + 𝛥), 
𝛥12𝑥(𝑡) is the number of deceased people in Group 1 in period [𝑡, 𝑡 + 𝛥); 
𝛥13𝑥(𝑡) is the number of people who started working first time in period [𝑡, 𝑡 + 𝛥); 
𝛥21𝑦(𝑡) is the number of deceased people in Group 2 in period [𝑡, 𝑡 + 𝛥); 
𝛥22𝑦(𝑡) is the number of people who left Group 2, but stayed alive in period [𝑡, 𝑡 + 𝛥); 
𝛥31𝑧(𝑡) is the number of deceased people in Group 3 in period [𝑡, 𝑡 + 𝛥).  
 

The terms in (1)-(2)-(3) on a sufficiently small interval [𝑡, 𝑡 + 𝛥) are usually taken proportional to 

𝑥, 𝑦, 𝑧 respectively and to the length of interval 𝛥 with some coefficient ℎ𝑗𝑘. 

However, in fact, these coefficients are influenced by permanent random perturbations. In our 

paper these perturbations are supposed to be small, frequent and happening in random moments. 

Increments in the number of people in groups are given by equalities: 

𝛥1𝑘𝑥𝜀(𝑡) = {
ℎ̄1𝑘𝑥𝜀(𝑡)𝛥 + 𝜀ℎ1𝑘(𝜉1𝑘)𝑥𝜀(𝑡), 𝑖𝑓𝛥 ≥ 𝜏1𝑘,

ℎ̄1𝑘𝑥𝜀(𝑡)𝛥, 𝑖𝑓𝛥 < 𝜏1𝑘,
   𝑘 = 1,2,3; 



𝛥2𝑘𝑦𝜀(𝑡) = {
ℎ̄2𝑘𝑦𝜀(𝑡)𝛥 + 𝜀ℎ2𝑘(𝜉2𝑘)𝑦𝜀(𝑡), 𝑖𝑓𝛥 ≥ 𝜏2𝑘,

ℎ̄2𝑘𝑦𝜀(𝑡)𝛥, 𝑖𝑓𝛥 < 𝜏2𝑘,
  𝑘 = 1,2; (4) 

𝛥31𝑧𝜀(𝑡) = {
ℎ̄31𝑧𝜀(𝑡)𝛥 + 𝜀ℎ31(𝜉31)𝑧𝜀(𝑡), 𝑖𝑓𝛥 ≥ 𝜏31,

ℎ̄31𝑧𝜀(𝑡)𝛥, 𝑖𝑓𝛥 < 𝜏31,
  

 

where 𝜀 is a small positive parameter, 𝜉𝑗𝑘 are uniformly distributed on the interval (0; 1) random 

variables involved in the value of perturbation, and the time between perturbations is exponentially 

distributed with parameter 𝜀−1𝜆𝑗𝑘: 

𝜉𝑗𝑘 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0,1) ;                   𝑃 (𝜏𝑗𝑘 > 𝛥) = 𝑒𝑥𝑝{ − 𝜀−1𝜆𝑗𝑘𝛥}. 

Values of perturbations are equal to zero on average and random variables 𝜉𝑗𝑘 are independent on 

each other: 

                𝐸{ ℎ𝑗𝑘(𝜉𝑗𝑘)} ≡
𝑗𝑘
0            {𝜉𝑗𝑘, 𝜏𝑗𝑘, 𝑗 = 1,2,3 ; 𝑘 = 1,2,3} ~ 𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡 (5) 

 

Remark 1. The choice of the model in form (4)-(5) is caused by the aim to keep the property of 

predictability, i.e. dependence of  𝑥𝜀(𝑡 + 𝑠), 𝑦𝜀(𝑡 + 𝑠), 𝑧𝜀(𝑡 + 𝑠) for all 𝑠 > 0 and 𝑡 ≥ 0 only on 

𝑥𝜀(𝑡), 𝑦𝜀(𝑡), 𝑧𝜀(𝑡).  
 

Remark 2. Assume that 𝜉𝑗𝑘 has arbitrary continuous distribution 𝐹𝑗𝑘(𝑢), 𝑢 ∈ 𝑈𝑗𝑘 ⊂ 𝑅. Then for 

any function 𝑣(𝑢) the following equality is fulfilled: 

𝐸{ 𝑣(𝜉𝑗𝑘)} = ∫ 𝑣(𝑢)𝑑𝐹𝑗𝑘(𝑢)
𝑈𝑗𝑘

= ∫ 𝑣(𝐹𝑗𝑘
−1(𝑢))𝑑𝑢

1

0

 

if the integral exists. Therefore, all perturbations in (4) can be considered as functions of uniformly 

distributed random variables.   

 

 

3 Derivation of the averaged dynamics equations 

According to the definition, process �⃗�𝜀(𝑡) = (

𝑥𝜀(𝑡)
𝑦𝜀(𝑡)
𝑧𝜀(𝑡)

) possesses the Markov property (see [3]), so 

all its probabilistic characteristics are defined by the generator  

 

𝐿(𝜀)𝑣(𝑥, 𝑦, 𝑧) : = 𝑙𝑖𝑚
𝛥→0

1

𝛥
𝐸{𝑣(𝑥𝜀(𝑡 + 𝛥), 𝑦𝜀(𝑡 + 𝛥), 𝑧𝜀(𝑡 + 𝛥)) − 𝑣(𝑥𝜀(𝑡), 𝑦𝜀(𝑡), 𝑧𝜀(𝑡))/

{𝑡, 𝑥, 𝑦, 𝑧}}      (6) 

where  {𝑡, 𝑥, 𝑦, 𝑧} ⇔ {𝑥𝜀(𝑡) = 𝑥, 𝑦𝜀(𝑡) = 𝑦, 𝑧𝜀(𝑡) = 𝑧}, 
 

and 𝑣(𝑥, 𝑦, 𝑧) is a smooth enough bounded function. In derivation of (6), the asymptotical 

equality  

𝑃(𝜏𝑗𝑘 ≤ 𝛥, 𝜏𝑙𝑚 ≤ 𝛥/𝑙 ≠ 𝑗 ∨ 𝑘 ≠ 𝑚) = 𝑂(𝛥2) 



can be used, which gives us an opportunity to rewrite formula (6) in the following form: 

𝐿(𝜀)𝑣(𝑥, 𝑦, 𝑧) = 𝑙𝑖𝑚
𝛥→0

1

𝛥
𝐸{𝑣(𝑥𝜀(𝑡 + 𝛥), 𝑦𝜀(𝑡 + 𝛥), 𝑧𝜀(𝑡 + 𝛥)) − 𝑣(𝑥𝜀(𝑡), 𝑦𝜀(𝑡), 𝑧𝜀(𝑡))/{𝑡, 𝑥, 𝑦, 𝑧}} 

= 𝐿(𝜀)𝑥𝑣(𝑥, 𝑦, 𝑧) + 𝐿𝑦(𝜀)𝑣(𝑥, 𝑦, 𝑧) + 𝐿𝑧(𝜀)𝑣(𝑥, 𝑦, 𝑧),   (7) 

where 

𝐿𝑥(𝜀)𝑣(𝑥, 𝑦, 𝑧) = 𝑙𝑖𝑚
𝛥→0

1

𝛥
𝐸{𝑣(𝑥𝜀(𝑡 + 𝛥), 𝑦, 𝑧) − 𝑣(𝑥𝜀(𝑡), 𝑦, 𝑧)/𝑥𝜀(𝑡) = 𝑥} = 

= (ℎ̄11 − ℎ̄12 − ℎ̄13)𝑥
𝜕

𝜕𝑥
𝑣(𝑥, 𝑦, 𝑧) + 𝜀−1𝜆11∫ [𝑣(𝑥 + 𝜀ℎ11(𝑢)𝑥, 𝑦, 𝑧) − 𝑣(𝑥, 𝑦, 𝑧)]𝑑𝑢

1

0

+ 

+𝜀−1𝜆12∫ [𝑣(𝑥 − 𝜀ℎ12(𝑢)𝑥, 𝑦, 𝑧) − 𝑣(𝑥, 𝑦, 𝑧)]𝑑𝑢
1

0

+ 𝜀−1𝜆11∫ [𝑣(𝑥 − 𝜀ℎ13(𝑢)𝑥, 𝑦, 𝑧) − 𝑣(𝑥, 𝑦, 𝑧)]𝑑𝑢
1

0

, 

𝐿𝑦(𝜀)𝑣(𝑥, 𝑦, 𝑧) = 𝑙𝑖𝑚
𝛥→0

1

𝛥
𝐸{𝑣(𝑥, 𝑦𝜀(𝑡 + 𝛥), 𝑧) − 𝑣(𝑥, 𝑦𝜀(𝑡), 𝑧)/𝑦𝜀(𝑡) = 𝑦} = 

 

= [ℎ̄13𝑥 − (ℎ̄22 + ℎ̄23)𝑦]
𝜕

𝜕𝑦
𝑣(𝑥, 𝑦, 𝑧) + 𝜀−1𝜆13∫ [𝑣(𝑥, 𝑦 + 𝜀ℎ13(𝑢)𝑥, 𝑧) − 𝑣(𝑥, 𝑦, 𝑧)]𝑑𝑢

1

0

+ 

+𝜀−1𝜆21∫ [𝑣(𝑥, 𝑦 − 𝜀ℎ21(𝑢)𝑦, 𝑧) − 𝑣(𝑥, 𝑦, 𝑧)]𝑑𝑢
1

0

+ 𝜀−1𝜆22∫ [𝑣(𝑥 − 𝜀ℎ22(𝑢)𝑦, 𝑦, 𝑧) − 𝑣(𝑥, 𝑦, 𝑧)]𝑑𝑢
1

0

, 

𝐿𝑧(𝜀)𝑣(𝑥, 𝑦, 𝑧) = 𝑙𝑖𝑚
𝛥→0

1

𝛥
𝐸{𝑣(𝑥, 𝑦, 𝑧𝜀(𝑡 + 𝛥)) − 𝑣(𝑥, 𝑦, 𝑧𝜀(𝑡))/𝑧𝜀(𝑡) = 𝑧} = 

= (ℎ̄22𝑦 − ℎ̄31𝑧)
𝜕

𝜕𝑧
𝑣(𝑥, 𝑦, 𝑧) + 𝜀−1𝜆22∫ [𝑣(𝑥, 𝑦, 𝑧 + 𝜀ℎ22(𝑢)𝑦) − 𝑣(𝑥, 𝑦, 𝑧)]𝑑𝑢

1

0

+ 

+𝜀−1𝜆21 ∫ [𝑣(𝑥, 𝑦, 𝑧 − 𝜀ℎ31(𝑢)𝑧) − 𝑣(𝑥, 𝑦, 𝑧)]𝑑𝑢.
1

0
  (8) 

 

Differential equations of averaged dynamics are defined by operator  

 

𝐿𝑣(𝑥, 𝑦, 𝑧) : = 𝑙𝑖𝑚
𝜀→0

𝐿(𝜀)𝑣(𝑥, 𝑦, 𝑧) = 𝑙𝑖𝑚
𝜀→0

𝐿(𝜀)𝑥𝑣(𝑥, 𝑦, 𝑧) + 𝑙𝑖𝑚
𝜀→0

𝐿𝑦(𝜀)𝑣(𝑥, 𝑦, 𝑧) + 𝑙𝑖𝑚
𝜀→0

𝐿𝑧(𝜀)𝑣(𝑥, 𝑦, 𝑧).       (9) 

 

We find 

 𝑙𝑖𝑚
𝜀→0

𝐿𝑥(𝜀)𝑣(𝑥, 𝑦, 𝑧) = 𝐿𝑥
0𝑣(𝑥, 𝑦, 𝑧) = (ℎ̄11𝑦 − ℎ̄12𝑥 − ℎ̄13𝑥)

𝜕

𝜕𝑥
𝑣(𝑥, 𝑦, 𝑧), 

 𝑙𝑖𝑚
𝜀→0

𝐿𝑦(𝜀)𝑣(𝑥, 𝑦, 𝑧) : = 𝐿𝑦
0𝑣(𝑥, 𝑦, 𝑧) = (ℎ̄13𝑥 − ℎ̄21𝑦 − ℎ̄22𝑦)

𝜕

𝜕𝑦
𝑣(𝑥, 𝑦, 𝑧), 

 𝑙𝑖𝑚
𝜀→0

𝐿𝑧(𝜀)𝑣(𝑥, 𝑦, 𝑧) : = 𝐿𝑧
0𝑣(𝑥, 𝑦, 𝑧) = (ℎ̄22𝑦 − ℎ̄31𝑧)

𝜕

𝜕𝑧
𝑣(𝑥, 𝑦, 𝑧)               

and substitute in (9): 

𝐿𝑣(𝑥, 𝑦, 𝑧) : = 𝑙𝑖𝑚
𝜀→0

𝐿(𝜀)𝑣(𝑥, 𝑦, 𝑧)

= 𝑙𝑖𝑚
𝜀→0

𝐿(𝜀)𝑥𝑣(𝑥, 𝑦, 𝑧) + 𝑙𝑖𝑚
𝜀→0

𝐿𝑦(𝜀)𝑣(𝑥, 𝑦, 𝑧) + 𝑙𝑖𝑚
𝜀→0

𝐿𝑧(𝜀)𝑣(𝑥, 𝑦, 𝑧) = 

= (ℎ11𝑦 − ℎ12𝑥 − ℎ13𝑥)
𝜕

𝜕𝑥
𝑣(𝑥, 𝑦, 𝑧) + (ℎ13𝑥 − ℎ21𝑦 − ℎ̄22𝑦)

𝜕

𝜕𝑦
𝑣(𝑥, 𝑦, 𝑧) + 

+(ℎ22𝑦 − ℎ31𝑧)
𝜕

𝜕𝑧
𝑣(𝑥, 𝑦, 𝑧). (10) 

Therefore, the system of equations of averaged dynamics has form 

 



 

{
 
 

 
 
𝑑𝑥

𝑑𝑡
= (ℎ̄11 − ℎ̄12 − ℎ̄13)𝑥,             

𝑑𝑦

𝑑𝑡
= ℎ̄13𝑥 − (ℎ̄21 + ℎ̄22)𝑦,           

𝑑𝑧

𝑑𝑡
= ℎ̄22𝑦 − ℎ̄31𝑧.                          

 (11) 

 

The analogue of the law of large numbers is:           ∀T>0, 𝑃(𝑙𝑖𝑚
𝜀→0

𝑠𝑢𝑝
0≤𝑡≤𝑇

|�⃗�𝜀(𝑡) − �⃗�(𝑡)| − 0) = 1. 

The solution of system (11) can be easily found:  

 

         𝑥(𝑡) = 𝑥(0)𝑒(ℎ̄11−ℎ̄12−ℎ̄13)𝑡, 

         𝑦(𝑡) = 𝑦(0)𝑒−(ℎ̄21+ℎ̄22)𝑡 + 𝛼𝑥(0)(𝑒(ℎ̄11−ℎ̄12−ℎ̄13)𝑡 − 𝑒−(ℎ̄21+ℎ̄22)𝑡), 

𝑧(𝑡) = 𝑥(0)𝑒−ℎ̄31𝑡
𝛼

(ℎ̄11−ℎ̄12−ℎ̄13+ℎ̄31)(−ℎ̄21−ℎ̄22+ℎ̄31)
((1 − 𝑒(−ℎ̄21−ℎ̄22+ℎ̄31)𝑡)(ℎ̄11 − ℎ̄12−

  ℎ̄13) + (1 − 𝑒(ℎ̄11−ℎ̄12−ℎ̄13+ℎ̄31)𝑡)(ℎ̄21+ ℎ̄22) + ℎ̄31(𝑒(ℎ̄11−ℎ̄12−ℎ̄13+ℎ̄31)𝑡 −

𝑒(−ℎ̄21−ℎ̄22+ℎ̄31)𝑡)) + 𝑦(0)𝑒−ℎ̄31𝑡ℎ̄22
𝑒(−ℎ̄21−ℎ̄22+ℎ̄31)𝑡−1

−ℎ̄21−ℎ̄22+ℎ̄31
+ 𝑧(0)𝑒−ℎ̄31𝑡,          (12) 

where 𝛼 =
ℎ̄13

ℎ̄11−ℎ̄12−ℎ̄13+ℎ̄21+ℎ̄22
. 

 

These processes with several realizations of initial difference system (1)-(3), taking into account 

(4)-(5), are shown on Figure 1. The data about Latvian residents were used. (Time unit is 1/100 of 

a year.)  

 

 
Fig.1 

 

 

4 Approximate analysis of probabilistic characteristics of solutions  

 

Markov process �⃗�𝜀(𝑡), which is the solution of (1)-(5), can be written as a system of stochastic 

differential equations of Poisson type:  



{
 
 
 
 

 
 
 
 𝑑𝑥𝜀(𝑡) = (ℎ̄11 − ℎ̄12 − ℎ̄13)𝑥𝜀(𝑡)𝑑𝑡 + 𝜀 ∫ ℎ11(𝑢)𝑥𝜀(𝑡)𝜇11(𝑑𝑢, 𝑑𝑡, 𝜀)

1

0

−𝜀 ∑ ∫ ℎ1𝑘(𝑢)𝑥𝜀(𝑡)𝜇1𝑘(𝑑𝑢, 𝑑𝑡, 𝜀)
1

0
3
𝑘=2 ,

𝑑𝑦𝜀(𝑡) = [ℎ̄13𝑥𝜀(𝑡) − (ℎ̄21 + ℎ̄22)𝑦𝜀(𝑡)]𝑑𝑡 + 𝜀 ∫ ℎ13(𝑢)𝑥𝜀(𝑡)𝜇13(𝑑𝑢, 𝑑𝑡, 𝜀)
1

0

−𝜀∑ ∫ ℎ2𝑘(𝑢)𝑦𝜀(𝑡)𝜇2𝑘(𝑑𝑢, 𝑑𝑡, 𝜀)
1

0
2
𝑘=1 ,

𝑑𝑧𝜀(𝑡) = [ℎ̄22𝑦𝜀(𝑡) − ℎ̄31𝑧𝜀(𝑡)]𝑑𝑡 + 𝜀 ∫ ℎ22(𝑢)𝑦𝜀(𝑡)𝜇22(𝑑𝑢, 𝑑𝑡, 𝜀)
1

0

−𝜀 ∫ ℎ31(𝑢)𝑧𝜀(𝑡)𝜇31(𝑑𝑢, 𝑑𝑡, 𝜀)
1

0
,

 (13) 

where {𝜇𝑗𝑘(𝑑𝑢, 𝑑𝑡, 𝜀), 𝑗 = 1,2,3 ; 𝑘 = 1,2,3} are independent Poisson measures with parameters 

𝜀−1𝜆𝑗𝑘𝑑𝑢𝑑𝑡,𝑢 ∈ [0,1].   

 

It is proved for sufficiently small 𝜀 that deviations of vector �⃗�𝜀(𝑡) from �⃗�(𝑡) have the infinitesimal 

order √𝜀. Let us denote 

𝑋𝜀(𝑡) =
𝑥𝜀(𝑡)−𝑥(𝑡)

√𝜀
,       𝑌𝜀(𝑡) =

𝑦𝜀(𝑡)−𝑦(𝑡)

√𝜀
,        𝑍𝜀(𝑡) =

𝑧𝜀(𝑡)−𝑍(𝑡)

√𝜀
,     �⃗�𝜀(𝑡) = (

𝑋𝜀(𝑡)

𝑌𝜀(𝑡)

𝑍𝜀(𝑡)
). (14) 

 

According to the definition �⃗�𝜀(𝑡) is a non-homogeneous Markov process, and due to (11)-(13) its 

coordinates satisfy the system of stochastic equations of Poisson type:  

𝑑𝑋𝜀(𝑡) =
1

√𝜀
(𝑑𝑥𝜀(𝑡) − 𝑑𝑥(𝑡)) =

1

√𝜀
[(ℎ̄11 − ℎ̄12 − ℎ̄13) (𝑥(𝑡) + √𝜀𝑋𝜀(𝑡)) 𝑑𝑡 − 

(ℎ̄11 − ℎ̄12 − ℎ̄13)𝑥(𝑡)𝑑𝑡] + √𝜀∫ ℎ11(𝑢)(𝑥(𝑡) + √𝜀𝑋𝜀(𝑡))𝜇11(𝑑𝑢, 𝑑𝑡, 𝜀)
1

0

− √𝜀∑∫ ℎ1𝑘(𝑢)(𝑥(𝑡) + √𝜀𝑋𝜀(𝑡))𝜇1𝑘(𝑑𝑢, 𝑑𝑡, 𝜀)
1

0

3

𝑘=2

= 

= (ℎ̄11 − ℎ̄12 − ℎ̄13)𝑋𝜀(𝑡))𝑑𝑡 + √𝜀 ∫ ℎ11(𝑢)𝑥(𝑡)𝜇11(𝑑𝑢, 𝑑𝑡, 𝜀)
1

0

+ 𝜀∫ ℎ11(𝑢)𝑋𝜀(𝑡)𝜇11(𝑑𝑢, 𝑑𝑡, 𝜀)
1

0

− 

−√𝜀 ∑ ∫ ℎ1𝑘(𝑢)𝑥(𝑡)𝜇1𝑘(𝑑𝑢, 𝑑𝑡, 𝜀)
1

0
3
𝑘=2 − 𝜀 ∑ ∫ ℎ1𝑘(𝑢)𝑋𝜀(𝑡)𝜇1𝑘(𝑑𝑢, 𝑑𝑡, 𝜀),

1

0
3
𝑘=2      (15) 

 

𝑑𝑌𝜀(𝑡) =
1

√𝜀
(𝑑𝑦𝜀(𝑡) − 𝑑𝑦(𝑡))

=
1

√𝜀
[[ℎ̄13 (𝑥(𝑡) + √𝜀𝑋𝜀(𝑡)) − (ℎ̄21 + ℎ̄22) (𝑦(𝑡) + √𝜀𝑌𝜀(𝑡))] 𝑑𝑡 

−[ℎ̄13𝑥(𝑡) − (ℎ̄21 + ℎ̄22)𝑦(𝑡)]𝑑𝑡 + 𝜀∫ ℎ13(𝑢) (𝑥(𝑡) + √𝜀𝑋𝜀(𝑡)) 𝜇13(𝑑𝑢, 𝑑𝑡, 𝜀)
1

0

− 

𝜀∑∫ ℎ2𝑘(𝑢) (𝑦(𝑡) + √𝜀𝑌𝜀(𝑡)) 𝜇2𝑘(𝑑𝑢, 𝑑𝑡, 𝜀)
1

0

2

𝑘=1

] 



= [ℎ̄13𝑋𝜀(𝑡)) − (ℎ̄21 + ℎ̄22)𝑌𝜀(𝑡)]𝑑𝑡 + √𝜀∫ ℎ13(𝑢)𝑥(𝑡)𝜇13(𝑑𝑢, 𝑑𝑡, 𝜀)
1

0

+ 𝜀∫ ℎ13(𝑢)𝑋𝜀(𝑡)𝜇13(𝑑𝑢, 𝑑𝑡, 𝜀)
1

0

 

 

−√𝜀 ∑ ∫ ℎ2𝑘(𝑢)𝑦(𝑡)𝜇2𝑘(𝑑𝑢, 𝑑𝑡, 𝜀)
1

0
2
𝑘=1 − 𝜀 ∑ ∫ ℎ2𝑘(𝑢)𝑌𝜀(𝑡)𝜇2𝑘(𝑑𝑢, 𝑑𝑡, 𝜀)

1

0
2
𝑘=1 ,      (16) 

 

𝑑𝑍𝜀(𝑡) =
1

√𝜀
(𝑑𝑧𝜀(𝑡) − 𝑑𝑧(𝑡))

=
1

√𝜀
[[ℎ̄22 (𝑦(𝑡) + √𝜀𝑌𝜀(𝑡)) − ℎ̄31 (𝑧(𝑡) + √𝜀𝑍𝜀(𝑡))] 𝑑𝑡 − [ℎ̄22𝑦(𝑡) − ℎ̄31𝑧(𝑡)]𝑑𝑡] + 

+√𝜀∫ ℎ22(𝑢) (𝑦(𝑡) + √𝜀𝑌𝜀(𝑡)) 𝜇22(𝑑𝑢, 𝑑𝑡, 𝜀)
1

0

− √𝜀∫ ℎ31(𝑢) (𝑧(𝑡) + √𝜀𝑍𝜀(𝑡)) 𝜇31(𝑑𝑢, 𝑑𝑡, 𝜀)
1

0

= 

= [ℎ̄22𝑌𝜀(𝑡)) − ℎ̄31𝑍𝜀(𝑡)]𝑑𝑡 + √𝜀∫ ℎ22(𝑢)𝑦(𝑡)𝜇22(𝑑𝑢, 𝑑𝑡, 𝜀)
1

0

+ 𝜀∫ ℎ22(𝑢)𝑌𝜀(𝑡)𝜇22(𝑑𝑢, 𝑑𝑡, 𝜀)
1

0

 

−√𝜀 ∫ ℎ31(𝑢)𝑧(𝑡)𝜇31(𝑑𝑢, 𝑑𝑡, 𝜀)
1

0
− 𝜀 ∫ ℎ31(𝑢)𝑍𝜀(𝑡)𝜇31(𝑑𝑢, 𝑑𝑡, 𝜀),

1

0
    (17) 

 

where 𝜇𝑗𝑘(𝑑𝑢, 𝑑𝑡, 𝜀) is the Poisson measure with parameter 
1

𝜀
𝜆𝑗𝑘𝑑𝑢𝑑𝑡, 𝑢 ∈ [0,1].   

 

The generator of non-homogeneous Markov process �⃗�𝜀(𝑡) is given by formula: 

ℒ(𝜀)𝑣(𝑡, 𝑋, 𝑌, 𝑍) = 

= 𝑙𝑖𝑚
𝛥→0

1

𝛥
𝐸{𝑣(𝑡 + 𝛥, 𝑋𝜀(𝑡 + 𝛥), 𝑌𝜀(𝑡 + 𝛥), 𝑍𝜀( 𝑡 + 𝛥)) − 𝑣(𝑡, 𝑋, 𝑌, 𝑍)/𝑋𝜀(𝑡) = 𝑋, 𝑌𝜀(𝑡)

= 𝑌, 𝑍𝜀( 𝑡) = 𝑍} = 

=
𝜕

𝜕𝑡
𝑣(𝑡, 𝑋, 𝑌, 𝑍) + ℒ𝑣(𝑡, 𝑋, 𝑌, 𝑍) + 𝑂(𝜀),                                      

where 

ℒ = (ℎ̄11 − ℎ̄12 − ℎ̄13)𝑋
𝜕

𝜕𝑋
+ [ℎ̄13𝑋 − (ℎ̄21 + ℎ̄22)𝑌]

𝜕

𝜕𝑌
+ (ℎ̄22𝑌 − ℎ̄31𝑍)

𝜕

𝜕𝑍
− 

−𝜆13𝑔13𝑥
2(𝑡)

𝜕2

𝜕𝑋𝜕𝑌
− 𝜆22𝑔22𝑦

2(𝑡)
𝜕2

𝜕𝑌𝜕𝑍
+
1

2
∑𝜆1𝑘𝑔1𝑘

3

𝑘=1

𝑥2(𝑡)
𝜕2

𝜕𝑋2
+
1

2
𝜆13𝑔13𝑥

2(𝑡)
𝜕2

𝜕𝑌2
+ 

+∑ 𝜆2𝑘𝑔2𝑘𝑦
2(𝑡)

𝜕2

𝜕𝑌2
2
𝑘=1 +

1

2
(𝜆22𝑔22𝑦

2(𝑡) + 𝜆31𝑔31𝑧
2(𝑡))

𝜕2

𝜕𝑍2
 ,         (18) 

𝑔𝑗𝑘 = ∫ ℎ𝑗𝑘
2 (𝑢)𝑑𝑢

1

0
, {𝑗 = 1,2,3 ; 𝑘 = 1,2,3; }, and 𝑣(𝑡, 𝑋, 𝑌, 𝑍) is an arbitrary sufficiently smooth 

bounded function. One can write 

 lim
𝜀→0

ℒ (𝜀) =
𝜕

𝜕𝑡
+ ℒ. (19) 

 

Therefore, we apply the method of diffusion approximation for approximate analysis of population 

dynamics, where only operator ℒ is used, which is obtained in the result of taking the limit as 𝜀 →
0. The limit operator has the following vector form: 

 ℒ = (𝐴�⃗�, �⃗⃗�) +
1

2
(𝐺( �⃗�(𝑡))�⃗⃗�, �⃗⃗�). (20) 



We use the following notations here: �⃗�(𝑡) = (

𝑥(𝑡)
𝑦(𝑡)
𝑧(𝑡)

) , �⃗⃗� =

(

 
 

𝜕

𝜕𝑋
𝜕

𝜕𝑌
𝜕

𝜕𝑍)

 
 

,�⃗� = (
𝑋
𝑌
𝑍
), 

 𝐺( �⃗�) = (

(𝜆11𝑔11 + 𝜆12𝑔12 + 𝜆13𝑔13)𝑥
2 −𝜆13𝑔13𝑥

2 0

−𝜆13𝑔13𝑥
2 (𝜆21𝑔21 + 𝜆22𝑔22)𝑦

2 −𝜆22𝑔22𝑦
2

0 −𝜆22𝑔22𝑦
2 𝜆31𝑔31𝑧

2

), 

 𝐴 = (

ℎ̄11 − ℎ̄12 − ℎ̄13 0 0

ℎ̄13 −ℎ̄21 − ℎ̄22 0

0 ℎ̄22 −ℎ̄31

). 

 

Formula (20) defines non-homogeneous Markov process {𝑋(𝑡), 𝑌(𝑡), 𝑍(𝑡)}. One can see that 

equation (15) for 𝑋𝜀(𝑡) is not dependent on 𝑌𝜀(𝑡) and 𝑍𝜀(𝑡). So, it can be studied separately, using 

its diffusion approximation in a form of Ito stochastic differential equation:  

 𝑑𝑋(𝑡) = (ℎ̄11 − ℎ̄12 − ℎ̄13)𝑋(𝑡)𝑑𝑡 + √𝜆11𝑔11 + 𝜆12𝑔12 + 𝜆13𝑔13𝑥(𝑡)𝑑𝑤(𝑡). (21) 

 

However, for the analysis of the three components {𝑋𝜀(𝑡), 𝑌𝜀(𝑡), 𝑍𝜀(𝑡)} of the model altogether it 

is necessary to use the diffusion approximation in the form of a system of Ito stochastic equations 

that has a more complicated form of the equation for 𝑋(𝑡): 
 

11 12 13 13 13 1 11 11 12 12 2

13 21 22

13 13 1 21 21 3 22 22 4

22 31

22 22 4

( ) ( ) ( ) ( ) ( ) ( ) ( ),

( ) [ ( ) ( ) ( )]

( ) ( ) ( ) ( ) ( ) ( ),

( ) ( ) ( )

( ) ( ) ( )

dX t h h h X t dt g x t dw t g g x t dw t

dY t h X t h h Y t dt

g x t dw t y t g dw t y t g dw t

dZ t h Y t dt h Z t dt

y t g dw t z t

  

  

 

= − − + + +

= − + +

+ + +

= − +

+ + 31 31 5 ( ).g dw t











 (22) 

where {𝑤𝑘(𝑡), 𝑘 = 1,2,3,4,5} are independent standard Wiener processes. By definition, the first 

moment of Gaussian Markov process {𝑋(𝑡), 𝑌(𝑡), 𝑍(𝑡)} is equal to zero. The covariance matrix 

𝛴(𝑡) = (

𝜎𝑋𝑋(𝑡) 𝜎𝑋𝑌(𝑡) 𝜎𝑋𝑍(𝑡)
𝜎𝑋𝑌(𝑡) 𝜎𝑌𝑌(𝑡) 𝜎𝑌𝑍(𝑡)
𝜎𝑋𝑍(𝑡) 𝜎𝑌𝑍(𝑡) 𝜎𝑍𝑍(𝑡)

) of this process is given by matrix differential equation  

 
𝑑

𝑑𝑡
𝛴(𝑡) = 𝐴𝛴(𝑡) + 𝛴(𝑡)𝐴𝑇 + 𝐺( �⃗�(𝑡)) (23) 

 

with zero initial conditions.   

The equations for the elements of this matrix have form: 
𝑑

𝑑𝑡
𝜎𝑋𝑋(𝑡) = 2(ℎ̄11 − ℎ̄12 − ℎ̄13)𝜎𝑋𝑋(𝑡) + (𝜆11𝑔11 + 𝜆12𝑔12 + 𝜆13𝑔13)𝑥

2(𝑡), 

𝑑

𝑑𝑡
𝜎𝑋𝑌(𝑡) = (ℎ̄11 − ℎ̄12 − ℎ̄13)𝜎𝑋𝑌(𝑡) + ℎ̄13𝜎𝑋𝑋(𝑡) − (ℎ̄21 + ℎ̄22)𝜎𝑋𝑌(𝑡) + 𝜆13𝑔13𝑥

2(𝑡), 



𝑑

𝑑𝑡
𝜎𝑋𝑍(𝑡) = 0, 

𝑑

𝑑𝑡
𝜎𝑌𝑌(𝑡) = 2[ℎ̄13𝜎𝑋𝑋(𝑡) − (ℎ̄21 + ℎ̄22)𝜎𝑌𝑌(𝑡)] + (𝜆21𝑔21 + 𝜆22𝑔22)𝑦

2(𝑡), 

𝑑

𝑑𝑡
𝜎𝑌𝑍(𝑡) = ℎ̄13𝜎𝑋𝑍(𝑡) − (ℎ̄21 + ℎ̄22 − ℎ̄31)𝜎𝑌𝑍(𝑡) + ℎ̄22𝜎𝑌𝑌(𝑡) + 𝜆22𝑔22𝑦

2(𝑡), 

𝑑

𝑑𝑡
 𝜎𝑍𝑍(𝑡) = 2ℎ̄22𝜎𝑌𝑍(𝑡) − 2ℎ̄31𝜎𝑍𝑍(𝑡) + 𝜆31𝑔31𝑧

2(𝑡)                                                        (24) 

For approximative analysis of probabilistic characteristics of the initial process �⃗�𝜀(𝑡) = (

𝑥𝜀(𝑡)
𝑦𝜀(𝑡)
𝑧𝜀(𝑡)

)  

one can use formulae 

 

𝑥𝜀(𝑡) ≈ �̃�(𝑡) = 𝑥(𝑡) + √𝜀𝑋(𝑡), 𝑦𝜀(𝑡) ≈ �̃�(𝑡) = 𝑦(𝑡) + √𝜀𝑌(𝑡), 𝑧𝜀(𝑡) ≈ �̃�(𝑡) = 𝑧(𝑡) + √𝜀 𝑍( 𝑡) 
(25) 

For small 𝜀 this approximation gives sufficiently good results.  

 

Realizations of 𝑥𝜀(𝑡) taking into account equation (21) and the averaged solution (12), together 

with the solution of the averaged equation are given on Figure 2. 

 
Fig.2 

Realizations of all three approximative processes 𝑥𝜀(𝑡), 𝑦𝜀(𝑡) and 𝑧𝜀(𝑡) obtained altogether, using 

(22) and the averaged solution (12), together with correspondent averaged processes are shown on 

Figure 3. 

  
Fig.3 

 

4 Conclusion 
 

The value of our work is in applying of averaging and diffusion approximation to the considered 

demographical model. For the analyzed system of difference equations that describes age 



structured population growth, the averaged equations, as well as stochastic differential equations 

for the limit process of the normalized deviations of the solutions from the averaged solutions, are 

derived. The results are illustrated with data on Latvian residents.  

Without any doubt, the obtained stochastic model is better than the correspondent deterministic 

model, however, it also can be improved further. The model is closed, i.e. it does not include 

emigration and immigration, which is a significant factor of the change of values in the first two 

groups, especially for such open countries as Latvia. Other demographic parameters can be 

included into the model as well. 
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