Book of Abstracts Book of Abstracts International Symposium on Synthesis and Catalysis $\mid 2019$ | 79 | Nejc Petek | |-----|--| | P80 | Vitamin B ₁₂ : transporter of modified RNAs into bacteria and light-responsive tool for the release of bioactive molecules
Agnieszka Jackowska | | P81 | Vitamin B ₁₂ as the catalyst in organic reactions
<u>Joanna Turkowska</u> | | P82 | Simple hybrids based on Mo or W oxides and diamines: structure determination and catalytic properties <u>Patrícia Neves</u> | | P83 | Liquid Sulfur Dioxide – Beneficial Solvent for Alkyne
Transformations via Vinyl Carbenium Ion Intermediate
Krista Suta | | P84 | Liquid SO₂ as a Solvent for Organic Transformations
Jevgeṇija Lugiṇina | | P85 | Construction of C-Si Bonds in Carbohydrate Derivatives <u>Jevgenija Luginina</u> | | P86 | Synthesis and Biological Activity of Betulin-Isoxazole/Pyrazole
Conjugates
Viktors Kumpiņš | | P87 | Synthesis of Medium Ring Heterocycles by Directed C-C Bond Activation Olivia A. Boyd | | P88 | Synthesis and Photophysical Properties of N(9)-Alkylated 2,6-Substituted Purine Derivatives Irina Novosjolova | | P89 | Allenylboronic Acids: Synthesis and Application to Access Homopropargylic Alcohols and Amines; Demonstrated Asymmetric Organocatalysis <u>Denise N. Meyer</u> | | P90 | Ring Opening of Methylenecyclopropanes in Liquid Sulfur Dioxide
Kristaps Leškovskis | | P91 | Allylation of Aldehydes by Dual Photoredox and Nickel Catalysis
Francesco Calogero | | P92 | Total synthetic routes to racemic and enantiopure 4- fluorothreonine Simone Potenti | | P93 | An Organo
Tricyclic Su
Vojtěch Doč | |------|--| | P94 | Enantiosele
Heterocycli
Michael Frai | | P95 | 3D Metal Pri
for Demand
André H.M. | | P96 | Triazolyl Pu
Armands Se | | P97 | Synthesis a
Azole Conju
Armands Sel | | P98 | Preparation
Group Danc
Jānis Miķelis | | P99 | A New Prot
Reaction
Yaling Gong | | P100 | Mesoionic fl
Amélie Roux | | P101 | Arylmethyl II
1-alkyl-1 <i>H</i> -1,
Darta Zelma | | P102 | Water-solubl
tridentate su
Darya Schmic | | P103 | Approaches
Petr Matouš | | P104 | Synthesis of
Rastislav Anta | | P105 | Asymmetric Assemblies Carla Grosso | ## Ring Opening of Methylenecyclopropanes in Liquid Sulfur Dioxide Leškovskis K, Suta K, Turks M Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, Riga, LV-1048, Latvia Email: kristaps.leskovskis@rtu.lv Methylenecyclopropanes (MCPs) are easily accessible yet highly strained and reactive building blocks. MCP can be readily opened under transition metal or Lewis acid catalyzed conditions. We have hypothesized that a highly polar and Lewis acidic reaction medium could facilitate the ring opening of MCPs with simple nucleophiles. We have recently shown that liquid sulfur dioxide perfectly fulfils the aforementioned solvent requirements. Additionally, it dissolves well inorganic salts. Here we report ring opening of MCPs in liquid SO_2 with I and II group metal halides (**Scheme 1**). The substrates $\bf 2$ were obtained in reactions between ketones and (3-bromopropyl)triphenylphosphonium bromide (1). Practically all tested I and II group metal (and ammonium) halides were able to open benzaldehyde-derived MCP, which was used as the test substrate. The activity order of cations was found to be: $L^{i^*} > Mg^{2^*} > Cs^* > K^* > Na^* > NH4^*$. The activity order of anions was found to be: $L^{i^*} > Br^{i^*} > CI^i$. Variously substituted MCP were reacting with the aforementioned halides and products $\bf 3a-j$ were obtained with good to excellent isolated yields. As expected, higher isolated yields were achieved in the case of benzophenone-derived MCP (products $\bf 3f,g$) due to carbenium ion stabilizing substituents. Gratifyingly, the developed method is sufficiently mild against the acid-labile protecting groups. Thus Boc-protected substrate provided products $\bf 3h-j$ in excellent yields. This can be explained by the fact that the equilibrium $SO_2 + 2H_2O \rightarrow H_3O^* + HSO_3^*$ is not efficiently shifted to the right in the liquid SO_2 medium. Additionally, the exclusive E-selectivity for products $\bf 3h-j$ was unambiguously proved by single crystal X-ray diffraction analysis. Scheme 1: Synthesis of homoallylic halides from ketones Acknowledgements: We thank the Latvian Council of Science Grant LZP-2018/1-0315 for financial support. ## References: - 1. a) Shi, M.; Shao, L.-X.; Lu, J.-M.; Wei, Y.; Mizuno, K.; Maeda, H. *Chem. Rev.* **2010**, *110*, 5883; b) Brandi, A.; Cicchi, S.; Cordero, F. M.; Goti, A. *Chem. Rev.* **2014**, *114*, 7317. - 2. Shi, M.; Lu, J.-M.; Wei, Y.; Shao, L.-X. Acc. Chem. Res. 2012, 45, 641. - 3. a) Suta, K.; Turks, M. ACS Omega 2018, 3, 18065; b) Posevins, D.; Suta, K.; Turks, M. Eur. J. Org. Chem. 2016, 1414. - a) Luginina, J.; Turks, M. Synlett 2017, 28, 939; b) Luginina, J.; Uzulena, J.; Posevins, D.; Turks, M. Eur. J. Org. Chem. 2016, 1760.