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Abstract – A possibility of speeding up the job scheduling by a 

heuristic based on the shortest processing period approach is studied 

in the paper. The scheduling problem is such that the job volume 

and job priority weight are increasing as the job release date 

increases. Job preemptions are allowed. Within this model, the input 

for the heuristic is formed by either ascending or descending job 

order. Therefore, an estimator of relative difference in duration of 

finding an approximate schedule by these job orders is designed. It 

is ascertained that the job order results in different time of 

computations when scheduling at least a few hundred jobs. The 

ascending-order solving becomes on average by 1 % to 2.5 % faster 

when job volumes increase steeply. As the steepness of job volumes 

decreases, this gain vanishes and, eventually, the descending-order 

solving becomes on average faster by up to 4 %. The gain trends of 

both job orders slowly increase as the number of jobs increases. 

 

Keywords – Heuristic, job order, job parts, job scheduling, 

preemption, total weighted completion time minimization. 

I.  INTRODUCTION TO PYRAMIDAL PREEMPTIVE JOB 

SCHEDULING PROBLEMS 

Optimal scheduling is a very important means to efficiently 

executing multistage processes of manufacturing, assembling, 

building, rendering, dispatching, etc. Scheduling problems are 

addressed by the scheduling theory, which provides effective 

approaches to finding both exactly and approximately optimal 

schedules [1], [2]. An optimal schedule allows executing the 

process in the minimal total weighted completion time (TWCT). 

Job scheduling problems (JSPs), where the schedule is 

commonly considered without idle time intervals, are segregated 

in two classes, one of which allows a job to preempt, and another 

one does not support any preemptions [1], [3]. Preemptive JSPs 

(PJSPs) are also segregated in a few subclasses. One of them 

constitutes PJSPs, wherein the job volume and job priority weight 

are increasing as the job release date increases [4], [5]. These 

ones could be called pyramidal PJSPs (PPJSPs) whose 

complexity and costs grow as the process progresses [2], [3]. The 

PPJSP is a model of multi-sectional mounting, which is still 

possible by assembling “later” sections before “earlier” (i.e., 

simpler and cheaper) ones owing to supported preemptions. 

II.  RELATED WORKS AND MOTIVATION 

Most JSPs are solved by using heuristics because exact 

schedules are found intractably slow [6], [7]. When a JSP is 

given by job parts (or processing periods), release dates, and 

priority weights, without due dates or other constraining 

variables or parameters, it is effectively solved by the shortest 

processing period approach (SPPA) [5], [8]. This is a heuristic 

trying to minimize TWCT by executing the most expensive job 

first if it has the fewest parts to do [9]. When PJSPs are not 

pyramidal but all the jobs instead have the same volume [10], 

the heuristic finds an approximate schedule faster if the release 

dates are given in descending order (along with non-increasing 

priority weights) [5]. Namely, the descending job order input 

(DJOI) has a 1 % relative advantage in scheduling more than 

200 jobs for such non-pyramidal PJSPs. With increasing the 

number of jobs off 1000, this advantage has a slight tendency 

to increase. Eventually, the advantage can achieve up to 22 %. 

Therefore, it is obvious that a maximally possible computation 

time gain [5], [11] is obtained in scheduling longer series of 

bigger-sized non-pyramidal PJSPs. The question is whether a 

similar gain could be obtained in solving PPJSPs. 

III.  THE GOAL AND TASKS 

As approximately solving PPJSPs by the heuristic may be 

sped up, the goal is to ascertain whether the order of inputting 

the job release dates results in different time of computations 

for such JSPs. For achieving this goal, the following eight tasks 

are to be fulfilled: 

1. To define a simplified model of PPJSPs, which will be 

used for computer simulations. 

2. Within the defined model, to define PPJSPs by the 

ascending job order input (AJOI) and PPJSPs by DJOI, which 

must be clearly distinguished. 

3. To state items of the heuristic based on the SPPA. 

4. To design an estimator of relative difference in duration of 

solving PPJSPs by AJOI and DJOI. 

5. To design a generator of random series of PPJSPs by both 

AJOI and DJOI. 

6. To estimate the computation time of solving PPJSPs by 

both AJOI and DJOI using the SPPA. 

7. To discuss whether the difference between the 

computation time of AJOI and that of DJOI is significant. The 

significant difference between the computation time of AJOI 

and that of DJOI would imply a significance of the heuristic’s 

job order gain (either by AJOI or DJOI). 

8. If the heuristic’s job order gain appears to be significant, 

then to give larger examples, which could emphasise the 

significance for the real practice (by PPJSPs of the real-time 

scale). 

http://creativecommons.org/licenses/by/4.0
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IV.  DEFINITION OF THE PPJSP 

Let N  be a number of jobs to be scheduled, where 

 \ 1N . Job n  is divided into nH  equal parts, where, in 

general, nH  . For a slight simplification, the job part is 

counted as a unit. Thus, job n  has a processing period of nH  

units, 1,n N= : vector 

  
1

N

n N
H P


=  H  (1) 

contains all the volumes of those N  jobs, where P  is a special 

constraint imposed on the set of job parts. 
Besides, job n  has a release date nr  (measured similarly to 

the job parts) and a priority weight nw , 1,n N= . Without 

losing generality, they are also set at integer values: 

  
1

N

n N
r Y


=  R , (2) 

  
1

N

n N
w Z


=  W , (3) 

where Y  and Z  are special constraints imposed on the sets of 

job release dates and respective priority weights. Constraint Y  

is obligatory for job release dates inasmuch as they should be 

arranged into vector (2) so that no idle intervals would be 

produced, and at least one element in R  should be equal to 1. 

The class of PPJSPs is marked out by constraints P , Y ,  

Z . These are the subsets, which have the following property: 

 
1 2n nH H   and  

1 2n nw w   for  
1 2n nr r   by  1 2n n , (4) 

wherein  

   1 1, 1n E N   −  such that 
1 1 1n nH H +=  by 1E N −  (5) 

is a partial case. Property (4), however, can hold without (5), 

when E = . Then such PPJSPs may be referred to as strictly 

PPJSPs. Another slight simplification in considering PPJSPs 

comes with a strict homogeneous monotonicity (SHM) in 

vectors (2) and (3), wherein either condition 

 nr n=   and  nw n=   1,n N =  (6) 

or  

 1nr N n= − +   and  1nw N n= − +   1,n N =  (7) 

holds. The direction of monotonicity (either increasing or 

decreasing) determines the job order input. 

V.  AJOI AND DJOI 

Whichever subset E  is, PPJSPs by AJOI are those that have 

condition (6). Consequently, PPJSPs by DJOI are those that 

have condition (7). Obviously, if this is AJOI by (6), then the 

volumes of those N  jobs in vector (1) are non-decreasing. 

Inversely, the volumes in vector (1) are non-increasing for DJOI 

by (7). Strictly PPJSPs, for which E = , will have increasing 

and decreasing job volumes for AJOI and DJOI, respectively.  

VI.  THE HEURISTIC BASED ON THE SPPA 

The total length of the schedule measured in definite time 

units is 

 

1

N

n

n

T H

=

= . (8) 

The schedule is a set  
1t T

s


=S  of job numbers/tags, which are 

to be executed, along the increasing T  time units, where  

  1,ts N   for every  1,t T= . (9) 

Set S  defines N  moments at which each job is completed (the 

last part of the job is executed). Let job n  be completed after 

moment ( )n , which is ( )  1,n T   and the nH -th part is 

executed at that moment. The goal is to compose such a 

schedule of those N  jobs that it would give the minimal 

TWCT, which is 

 
( )

( )min

1

min

N

n
n

n

w n


=

 =  . (10) 

The heuristic based on the SPPA often allows finding schedules 

giving an exactly minimal TWCT whose value by (10) in the 

case of PPJSPs can be re-written as 

( )
( )

AJOI

min AJOI

1

min

N

n
n

n n


=

 =  =  

 
( )

( ) ( )
DJOI

DJOI

1

min 1

N

n
n

N n n


=

= − +  , (11) 

where ( )AJOI n  and ( )DJOI n  are the moments at which job n  

is completed by a schedule after AJOI and DJOI, respectively. 

Denote an approximate schedule, given by the heuristic 

based on the SPPA, by  

  
1t T

s


=S   with   1,ts N   for every  1,t T= . (12) 

This heuristic uses a vector of the remaining processing periods 

(RPPs), which at the start is just equal to vector (1): 

  
1n N

q


= =Q H . (13) 

As time t  progresses for a one time unit, one of those RPPs 

decreases, and thus vector (13) is changed by successive 

decrements. For every 1,t T=  a set of available jobs  

 ( )     1, : and 0 1,i iA t i N r t q N=     (14) 
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is determined, whence a set of weight-to-RPP ratios  

 ( )
( )

i

i i A t

w
t

q


 
 =  

 
  for every  1,t T=  (15) 

is obtained. The maximal ratio is achieved at subset 

 ( )
( )

( )* argmax i

i A t
i

w
A t A t

q

 
=  

 
  for every  1,t T= . (16) 

If  

 ( )* 1A t =  (17) 

then the decrement in vector (13) of RPPs is executed: 

 *

ts i=   by  * *

(obs)

i i
q q=   and  * *

(obs) 1
i i

q q= − . (18) 

Otherwise, if (17) is false then 

 ( )* 1A t   (19) 

and a set 

 ( )
( )

( ) ( )*
* *

** *arg max
ii A t

A t w A t A t


=    (20) 

is found, where 

 ( )   ( ) ( )  ** ** *

1
1,

L

l
l

A t i A t A t N
=

=    . (21) 

Then the decrement in vector (13) of RPPs is executed using 

the first element of set (21): 

 **

1ts i=   by  ** **
1 1

(obs)

i i
q q=   and  ** **

1 1

(obs) 1
i i

q q= − . (22) 

An approximate TWCT is calculated successively for every 

1,n N=  using the moments ( )  1,n T   at which job n  is 

completed. Finally, 

 ( ) min

1

N

n

n

w n

=

 =    (23) 

is an approximately minimal TWCT that corresponds to the 

quasi-optimal job schedule (12). 

VII.  AN ESTIMATOR OF SOLVING DURATION DIFFERENCE 

The duration of solving a PPJSP (i.e., its computation time) 

depends on the number of jobs and the set constraining the 

vector of job volumes. For definite N  and P , let us denote 

averaged times of obtaining the heuristic’s schedule by AJOI 

and DJOI, respectively, by ( )AJOI ,N P  and ( )DJOI ,N P . 

Inasmuch as the heuristic is a rapid solving, an estimation of 

difference between ( )AJOI ,N P  and ( )DJOI ,N P  is better to 

receive as a percentage. Thus, an estimator is 

 ( )
( ) ( )

( )
AJOI DJOI

DJOI

, ,
, 100

,

N P N P
N P

N P

 −
 = 


. (24) 

Obviously, a computation time gain with DJOI exists when 

estimator (24) is positive. If it is negative, then AJOI gives a 

computation time gain. 

VIII.  A GENERATOR OF PPJSPS BY AJOI AND DJOI 

For generating random series of PPJSPs by AJOI and DJOI, 

constraint P  should be modelled only. Thus, a stride 

 
N

s
d

 
=  

 
  by   \ 1d   and  d N  (25) 

is taken, where function ( )   returns the integer part of 

number   [4], [5], [7], and job volumes 

 jH k=   for  1,
N

k
s

 
=  

 
  ( )1 1 ,j s k sk = + −  (26) 

by 

 
maxj jH H=  

max 1,j j N = +   when  
max

N
j s N

s

 
=   

 
 (27) 

are generated. Then estimator (24) is refined by labelling P  as 

dP . 

The smaller stride (25) is, the steeper the change of the job 

volumes becomes. For instance, the smallest stride ( 1s = ) 

given by 1d N= − , produces the SHM in vector (1), wherein 

either condition 

 nH n=   1,n N =  (28) 

or  

 1nH N n= − +   1,n N =  (29) 

holds. Let such a PPJSP be called a (1, )N -PPJSP. Figure 1 

shows a result of the computation time estimation for this case, 

where AJOI has a 1 % to 2 % relative advantage in scheduling 

more than 400 jobs (computational artefacts are ignored). In a 

way, this nonetheless contrasts with the above-mentioned 1 % 

relative advantage of DJOI (in scheduling more than 200 jobs 

for non-pyramidal PJSPs). Moreover, if to look closely in the 

zoom-in graphs in Fig. 1, the advantage of AJOI seems to be 

increasing as the number of jobs increases. An explanation of 

such an effect may concern specificities of memory operations 

while the heuristic’s items (13)–(22) are executed. They are less 

comprehensible for a lesser number of jobs, whereas the relative 

advantage of AJOI by estimator (24) exceeds 2.5 % in solving 

the (1, 3500) -PPJSP. 
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Fig. 1. Estimator (24) for the case of SHM in vector (1) by (28) and (29), where 

the horizontal zero level is put on. The averaging is executed over 100 PPJSPs 

generated for both AJOI and DJOI at every number of jobs starting from 2 
through 1000. In the two additional graphs, put on as zoom-ins, computational 

artefacts are ignored. If to look closely, the relative advantage of AJOI seems 

to be slowly increasing as the number of jobs increases. 

 

Nevertheless, the way in which job volumes increase in the 

(1, )N -PPJSP is too steep. Other PPJSPs generated by smaller 

d  are also pretty “steep”. For smoothing this steepness, let an 

additional parameter be introduced into rule (26), which now 

becomes 

smoothjH k k= +   by  smoothk     

 for  1,
N

k
s

 
=  

 
  ( )1 1 ,j s k sk = + − . (30) 

Rule (30) will be used for generating “smoother” PPJSPs (by 

increasing smoothk ). They, however, will consist of “harder” jobs 

whose parts are increased exactly by smoothk , which is the 

additional parameter along with stride (25). 

IX.  ANALYSIS OF THE OBTAINED RESULTS  

AND DECISION ON THE HEURISTIC’S JOB ORDER GAIN 

The “smoothest” PPJSP is generated by 2d = . Therefore, it 

matters to see how estimator (24) changes when the PPJSP 

changes from the “smoothest” to “steeper” one. Let 2, 9d =  

for this (Fig. 2). Here, the average estimator (AE) is (Fig. 3) 

 ( ) ( )
9

2...9

2

1
, ,

8
d

d

N P N P

=

 =  . (31) 

Although AE (31) does not really show where a job order gain 

could be obtained, zoom-ins on the 8 graphs of Fig. 2 shown in 

Fig. 4 allow making some conclusions. Indeed, DJOI has a 

slight advantage in solving the “smoothest” PPJSP. Then, as the 

steepness of job volumes increases, this advantage vanishes 

and, eventually, solving with AJOI becomes slightly faster (this 

is well seen in Fig. 4 for 8d =  and 9d = ). For a notice, the 

steepness of job volumes herein is shown in Fig. 5. 

 

Fig. 2. Estimators (24) over 100 PPJSPs, where artefacts are not cut. Artefacts 

are essential for a fewer hundreds of jobs due to shorter computation time. 

 

Fig. 3. AE (31) over graphs in Fig. 2. The additional graph ignores artefacts. 
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Fig. 4. The zoom-ins on the 8 graphs of Fig. 2 by cutting their artefacts off. 

 

Fig. 5. An example of the steepness of job volumes in PPJSPs with 50 jobs by 

2,9d =  (Fig. 2 and Fig. 4). Note that neither AJOI nor DJOI can be seen here. 

Figure 6 confirms that “steeper” PPJSPs (by 20, 25d = ) are 

solved faster by AJOI. The AE (Fig. 7) 

 ( ) ( )
25

20...25

20

1
, ,

6
d

d

N P N P

=

 =   (32) 

shows that AJOI has roughly a 1 % advantage here. The zoom-

ins on the 6 graphs of Fig. 6 shown in Fig. 8 confirm this 

conclusion but only for scheduling no less than 500 jobs. 
Finally, let us generate “smoother” PPJSPs by (30) for 

smooth 1, 4k = . Let us denote estimator (24) by ( )2 smooth, ;N P k  

and 

 ( ) ( )
smooth

4

2 2 smooth

1

1
, ;{1...4} , ;

4
k

N P N P k

=

 =   (33) 

is AE herein. Such PPJSPs are solved faster by DJOI (Fig. 9) 

whose gain is 2 % for scheduling 300 jobs and more (Fig. 10). 
 

 

Fig. 6. Estimators (24) over 100 “steeper” PPJSPs, wherein jobs are of greater 
volumes than job volumes in Fig. 5, with uncut artefacts. Artefacts are lesser 
compared to those ones in Fig. 2 because here the computation time is longer. 
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Fig. 7. AE (32) over graphs in Fig. 6. The additional graph ignores artefacts. 

 

Fig. 8. The zoom-ins on the 6 graphs of Fig. 6 by cutting their artefacts off. 
Despite fluctuations, an offset below the horizontal zero level is clearly seen. 

 

Fig. 9. The DJOI gain (with uncut artefacts) in scheduling “smoother” PPJSPs, 
wherein jobs of the “smoothest” PPJSPs are of 5 and 6 parts, whereas PPJSPs 
generated by the smallest additional parameter in (30) are of 2 and 3 parts. 

 

Fig. 10. AE (33) over graphs in Fig. 9. The relatively huge artefact is cut in the 
additional graph. An increase of the AE is seen in the additional graph. 

200 300 400 500 600 700 800 900 1000

0

5

10

15

20

25

30

35

40

N

( )2, ;{1...4}N P

200 300 400 500 600 700 800 900 1000

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

200 300 400 500 600 700 800 900 1000

-15

-10

-5

0

5

10

15

20

200 300 400 500 600 700 800 900 1000

-5

0

5

10

200 300 400 500 600 700 800 900 1000

-4

-2

0

2

4

6

8

10

200 300 400 500 600 700 800 900 1000

0

20

40

60

80

100

120

140

160

( )2, ; 4N P

( )2, ; 3N P

( )2, ; 2N P

( )2, ;1N P

200 300 400 500 600 700 800 900 1000

-2

0

2

200 300 400 500 600 700 800 900 1000

-2

0

2

200 300 400 500 600 700 800 900 1000

-2

0

2

200 300 400 500 600 700 800 900 1000

-2

0

2

200 300 400 500 600 700 800 900 1000

-2

0

2

200 300 400 500 600 700 800 900 1000

-2

0

2

( )23,N P

( )24,N P

( )20,N P

( )22,N P

( )25,N P

( )21,N P

50 100 200 300 400 500 600 700 800 900 1000

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

( )20...25,N P

N

100 200 300 400 500 600 700 800 900 1000

-1.5

-1

-0.5

0

0.5

1

1.5



Information Technology and Management Science 

 _______________________________________________________________________________________________  2019/22 

 

7 

The zoom-ins on the 4 graphs of Fig. 9 shown in Fig. 11 allow 

asserting that this gain will continue increasing as the number 

of jobs increases. In scheduling more than 1000 jobs, DJOI is 

almost 3 % faster than AJOI (see both Fig. 10 and Fig. 11). 

However, the increase is not expected to be boundless.  

An asymptote of the increase trend in Fig. 10 does plausibly 

exist as well as asymptotes of the decrease trends in Fig. 1 and 

Fig. 7 do. 

 

Fig. 11. The zoom-ins on the 4 graphs of Fig. 9 without their minor artefacts. 
The slight increase of the DJOI gain is clearly seen (the abrupt increase for 

smooth 2k =  is an artefact of the increase trend itself). It is also seen that solving 

such PPJSPs for 1000 jobs and more is sped up by almost 3 % with DJOI. 

 

After all, the obtained results certainly confirm that the SPPA 

heuristic has a definite job order gain, i.e. an approximate 

schedule can be found faster by using either AJOI or DJOI that 

depends on how steep job volumes increase in the PPJSP. 

Indeed, the difference between the computation time of AJOI 

and that of DJOI can achieve up to 3 %, whose significance is 

discussed below. 

X.  DISCUSSION 

Obviously, a difference between the computation time of 

AJOI and that of DJOI becomes significant if scheduling along 

the real-time scale has a positive impact on the total system 

performance. If to consider just a PPJSP with even a few 

thousand jobs, the difference (if any) being roughly a small 

fraction of a second may seem negligible. Nevertheless, solving 

a long series of PPJSPs turns the difference into seconds, 

minutes, and even hours, which are ever crucial for the real-

time industrial performance. Moreover, if PPJSPs are solved for 

organising computational processes, then speeding up by even 

a small fraction of a second is very important and struggled for. 

Therefore, notwithstanding the relatively small percentage, the 

SPPA heuristic’s job order gain (either by AJOI or DJOI) in 

solving PPJSPs is significant. 

For emphasising the significance for the real practice, let a 

larger PPJSP be solved. The PPJSP consists of 60000 jobs, 

wherein every 20000 of them are divided into 4, 5, and 6 equal 

parts. It is a “smooth” PPJSP rather than “steep”. Using a single 

CPU core, without parallelizing, the computation time of DJOI 

here is 147 seconds, whereas solving with AJOI takes 151 

seconds. Thus, DJOI has a 2.79 % relative advantage. 

Therefore, a series of 1000 such PPJSPs will be solved in about 

400 seconds faster by DJOI. It is clear that solving longer series 

of such PPJSPs and similar JSPs overall saves hours! 

As it has been already ascertained, such an advantage 
decreases as the PPJSP gets “steeper”. In spite of the decrease 
of estimator (24), the difference between the computation time 
of AJOI and that of DJOI does not necessarily have a distinct 
decreasing feature. For instance, in solving a PPJSP consisting 

of 75600 jobs, wherein every 75600 s  of them ( 2, 10s = ) are 

divided into 3 k+  equal parts ( 1,k s= ), estimator (24) re-

denoted by ( )( ;3 )75600, s kP +  showing the DJOI advantage 

decreases (Fig. 12), but its numerator denoted by 

( )( ;3 )75600, s kP +  does not seem decreasing (Fig. 13). 

 

Fig. 12. A set of 10 estimators and its average (the thicker line with circles) 
showing how the DJOI advantage decreases in solving the PPJSP as the 
steepness of job volumes increases. At 2s =  every 37800 jobs are divided into 

4 and 5 equal parts; at 3s =  every 25200 jobs are divided into 4, 5, 6 equal 

parts; at 10s =  every 7560 jobs are divided into 4, 5, 6, ..., 12, 13 equal parts. 
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Fig. 13. The difference between the computation time in seconds of AJOI and 
that of DJOI for the set of 10 estimators in Fig. 12 (the average is a thicker line 

with circles). While the decreasing of the DJOI relative advantage is quite 

certain, the “steeper” PPJSPs herein are still solved by 6 seconds faster with DJOI. 

 

The process of scheduling considered here is implicitly 

executed on a single machine [12]. Executing it on multiple 

machines speeds up finding an approximate schedule. In this 

case, the order of inputting the job release dates is naturally 

believed to result in different time of computations as well. 

However, scheduling on multiple machines does not imply 

straightforward parallelization like that using GPUs or CPU 

cores. Hence, it is not clear whether the computation time gain 

obtained by AJOI and DJOI for PPJSPs considered above will 

be repeated in the case of scheduling (by the SPPA heuristic) 

on multiple machines. 

XI.  CONCLUSION 

It has been ascertained that, in solving PPJSPs by the SPPA 

heuristic, the order of inputting the job release dates (or priority 

weights) results in different time of computations when 

scheduling at least a few hundred jobs. If job volumes increase 

steeply, solving with AJOI becomes efficient. The  

(1, )N -PPJSP, for example, is solved with AJOI by 1 % to 2.5 % 

faster. As the steepness of job volumes decreases, the AJOI gain 

vanishes and, eventually, solving with DJOI becomes faster by 

up to 4 %. The gain trends of both AJOI and DJOI slowly 

increase as the number of jobs increases. Nevertheless, the 

described heuristic’s job order gain does not necessarily happen 

in solving a single PPJSP, especially if the PPJSP consists of a 

few tens of jobs divided in a few parts each. Hence, the 

computation time gain by either AJOI or DJOI is obtained on 

average, although a computational artefact is a low-probability 

event. The gain significance grows for more voluminous 

PPJSPs. This is quite serviceable for organising computational 

processes, where any delays are undesirable. 
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