
Information Technology and Management Science

1

ISSN 2255-9094 (online)
ISSN 2255-9086 (print)

December 2019, vol. 22, pp. 1–8

doi: 10.7250/itms-2019-0001
https://itms-journals.rtu.lv

©2019 Vadim Romanuke.

This is an open access article licensed under the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0).

A Heuristic’s Job Order Gain in Pyramidal

Preemptive Job Scheduling Problems

for Total Weighted Completion Time Minimization

Vadim Romanuke

Polish Naval Academy, Gdynia, Poland

Abstract – A possibility of speeding up the job scheduling by a

heuristic based on the shortest processing period approach is studied

in the paper. The scheduling problem is such that the job volume

and job priority weight are increasing as the job release date

increases. Job preemptions are allowed. Within this model, the input

for the heuristic is formed by either ascending or descending job

order. Therefore, an estimator of relative difference in duration of

finding an approximate schedule by these job orders is designed. It

is ascertained that the job order results in different time of

computations when scheduling at least a few hundred jobs. The

ascending-order solving becomes on average by 1 % to 2.5 % faster

when job volumes increase steeply. As the steepness of job volumes

decreases, this gain vanishes and, eventually, the descending-order

solving becomes on average faster by up to 4 %. The gain trends of

both job orders slowly increase as the number of jobs increases.

Keywords – Heuristic, job order, job parts, job scheduling,

preemption, total weighted completion time minimization.

I. INTRODUCTION TO PYRAMIDAL PREEMPTIVE JOB

SCHEDULING PROBLEMS

Optimal scheduling is a very important means to efficiently

executing multistage processes of manufacturing, assembling,

building, rendering, dispatching, etc. Scheduling problems are

addressed by the scheduling theory, which provides effective

approaches to finding both exactly and approximately optimal

schedules [1], [2]. An optimal schedule allows executing the

process in the minimal total weighted completion time (TWCT).

Job scheduling problems (JSPs), where the schedule is

commonly considered without idle time intervals, are segregated

in two classes, one of which allows a job to preempt, and another

one does not support any preemptions [1], [3]. Preemptive JSPs

(PJSPs) are also segregated in a few subclasses. One of them

constitutes PJSPs, wherein the job volume and job priority weight

are increasing as the job release date increases [4], [5]. These

ones could be called pyramidal PJSPs (PPJSPs) whose

complexity and costs grow as the process progresses [2], [3]. The

PPJSP is a model of multi-sectional mounting, which is still

possible by assembling “later” sections before “earlier” (i.e.,

simpler and cheaper) ones owing to supported preemptions.

II. RELATED WORKS AND MOTIVATION

Most JSPs are solved by using heuristics because exact

schedules are found intractably slow [6], [7]. When a JSP is

given by job parts (or processing periods), release dates, and

priority weights, without due dates or other constraining

variables or parameters, it is effectively solved by the shortest

processing period approach (SPPA) [5], [8]. This is a heuristic

trying to minimize TWCT by executing the most expensive job

first if it has the fewest parts to do [9]. When PJSPs are not

pyramidal but all the jobs instead have the same volume [10],

the heuristic finds an approximate schedule faster if the release

dates are given in descending order (along with non-increasing

priority weights) [5]. Namely, the descending job order input

(DJOI) has a 1 % relative advantage in scheduling more than

200 jobs for such non-pyramidal PJSPs. With increasing the

number of jobs off 1000, this advantage has a slight tendency

to increase. Eventually, the advantage can achieve up to 22 %.

Therefore, it is obvious that a maximally possible computation

time gain [5], [11] is obtained in scheduling longer series of

bigger-sized non-pyramidal PJSPs. The question is whether a

similar gain could be obtained in solving PPJSPs.

III. THE GOAL AND TASKS

As approximately solving PPJSPs by the heuristic may be

sped up, the goal is to ascertain whether the order of inputting

the job release dates results in different time of computations

for such JSPs. For achieving this goal, the following eight tasks

are to be fulfilled:

1. To define a simplified model of PPJSPs, which will be

used for computer simulations.

2. Within the defined model, to define PPJSPs by the

ascending job order input (AJOI) and PPJSPs by DJOI, which

must be clearly distinguished.

3. To state items of the heuristic based on the SPPA.

4. To design an estimator of relative difference in duration of

solving PPJSPs by AJOI and DJOI.

5. To design a generator of random series of PPJSPs by both

AJOI and DJOI.

6. To estimate the computation time of solving PPJSPs by

both AJOI and DJOI using the SPPA.

7. To discuss whether the difference between the

computation time of AJOI and that of DJOI is significant. The

significant difference between the computation time of AJOI

and that of DJOI would imply a significance of the heuristic’s

job order gain (either by AJOI or DJOI).

8. If the heuristic’s job order gain appears to be significant,

then to give larger examples, which could emphasise the

significance for the real practice (by PPJSPs of the real-time

scale).

http://creativecommons.org/licenses/by/4.0

Information Technology and Management Science

 ___ 2019/22

2

IV. DEFINITION OF THE PPJSP

Let N be a number of jobs to be scheduled, where

 \ 1N . Job n is divided into nH equal parts, where, in

general, nH  . For a slight simplification, the job part is

counted as a unit. Thus, job n has a processing period of nH

units, 1,n N= : vector

  
1

N

n N
H P


=  H (1)

contains all the volumes of those N jobs, where P is a special

constraint imposed on the set of job parts.
Besides, job n has a release date nr (measured similarly to

the job parts) and a priority weight nw , 1,n N= . Without

losing generality, they are also set at integer values:

  
1

N

n N
r Y


=  R , (2)

  
1

N

n N
w Z


=  W , (3)

where Y and Z are special constraints imposed on the sets of

job release dates and respective priority weights. Constraint Y

is obligatory for job release dates inasmuch as they should be

arranged into vector (2) so that no idle intervals would be

produced, and at least one element in R should be equal to 1.

The class of PPJSPs is marked out by constraints P , Y ,

Z . These are the subsets, which have the following property:

1 2n nH H and

1 2n nw w for
1 2n nr r by 1 2n n , (4)

wherein

  1 1, 1n E N   − such that
1 1 1n nH H += by 1E N − (5)

is a partial case. Property (4), however, can hold without (5),

when E = . Then such PPJSPs may be referred to as strictly

PPJSPs. Another slight simplification in considering PPJSPs

comes with a strict homogeneous monotonicity (SHM) in

vectors (2) and (3), wherein either condition

 nr n= and nw n= 1,n N = (6)

or

 1nr N n= − + and 1nw N n= − + 1,n N = (7)

holds. The direction of monotonicity (either increasing or

decreasing) determines the job order input.

V. AJOI AND DJOI

Whichever subset E is, PPJSPs by AJOI are those that have

condition (6). Consequently, PPJSPs by DJOI are those that

have condition (7). Obviously, if this is AJOI by (6), then the

volumes of those N jobs in vector (1) are non-decreasing.

Inversely, the volumes in vector (1) are non-increasing for DJOI

by (7). Strictly PPJSPs, for which E = , will have increasing

and decreasing job volumes for AJOI and DJOI, respectively.

VI. THE HEURISTIC BASED ON THE SPPA

The total length of the schedule measured in definite time

units is

1

N

n

n

T H

=

= . (8)

The schedule is a set  
1t T

s


=S of job numbers/tags, which are

to be executed, along the increasing T time units, where

  1,ts N for every 1,t T= . (9)

Set S defines N moments at which each job is completed (the

last part of the job is executed). Let job n be completed after

moment ()n , which is ()  1,n T  and the nH -th part is

executed at that moment. The goal is to compose such a

schedule of those N jobs that it would give the minimal

TWCT, which is

()

()min

1

min

N

n
n

n

w n


=

 =  . (10)

The heuristic based on the SPPA often allows finding schedules

giving an exactly minimal TWCT whose value by (10) in the

case of PPJSPs can be re-written as

()
()

AJOI

min AJOI

1

min

N

n
n

n n


=

 =  =

()

() ()
DJOI

DJOI

1

min 1

N

n
n

N n n


=

= − +  , (11)

where ()AJOI n and ()DJOI n are the moments at which job n

is completed by a schedule after AJOI and DJOI, respectively.

Denote an approximate schedule, given by the heuristic

based on the SPPA, by

  
1t T

s


=S with  1,ts N for every 1,t T= . (12)

This heuristic uses a vector of the remaining processing periods

(RPPs), which at the start is just equal to vector (1):

  
1n N

q


= =Q H . (13)

As time t progresses for a one time unit, one of those RPPs

decreases, and thus vector (13) is changed by successive

decrements. For every 1,t T= a set of available jobs

 ()     1, : and 0 1,i iA t i N r t q N=    (14)

Information Technology and Management Science

 ___ 2019/22

3

is determined, whence a set of weight-to-RPP ratios

 ()
()

i

i i A t

w
t

q


 
 =  

 
 for every 1,t T= (15)

is obtained. The maximal ratio is achieved at subset

 ()
()

()* argmax i

i A t
i

w
A t A t

q

 
=  

 
 for every 1,t T= . (16)

If

 ()* 1A t = (17)

then the decrement in vector (13) of RPPs is executed:

 *

ts i= by * *

(obs)

i i
q q= and * *

(obs) 1
i i

q q= − . (18)

Otherwise, if (17) is false then

 ()* 1A t  (19)

and a set

 ()
()

() ()*
* *

** *arg max
ii A t

A t w A t A t


=   (20)

is found, where

 ()   () ()  ** ** *

1
1,

L

l
l

A t i A t A t N
=

=    . (21)

Then the decrement in vector (13) of RPPs is executed using

the first element of set (21):

 **

1ts i= by ** **
1 1

(obs)

i i
q q= and ** **

1 1

(obs) 1
i i

q q= − . (22)

An approximate TWCT is calculated successively for every

1,n N= using the moments ()  1,n T  at which job n is

completed. Finally,

 () min

1

N

n

n

w n

=

 =   (23)

is an approximately minimal TWCT that corresponds to the

quasi-optimal job schedule (12).

VII. AN ESTIMATOR OF SOLVING DURATION DIFFERENCE

The duration of solving a PPJSP (i.e., its computation time)

depends on the number of jobs and the set constraining the

vector of job volumes. For definite N and P , let us denote

averaged times of obtaining the heuristic’s schedule by AJOI

and DJOI, respectively, by ()AJOI ,N P and ()DJOI ,N P .

Inasmuch as the heuristic is a rapid solving, an estimation of

difference between ()AJOI ,N P and ()DJOI ,N P is better to

receive as a percentage. Thus, an estimator is

 ()
() ()

()
AJOI DJOI

DJOI

, ,
, 100

,

N P N P
N P

N P

 −
 = 


. (24)

Obviously, a computation time gain with DJOI exists when

estimator (24) is positive. If it is negative, then AJOI gives a

computation time gain.

VIII. A GENERATOR OF PPJSPS BY AJOI AND DJOI

For generating random series of PPJSPs by AJOI and DJOI,

constraint P should be modelled only. Thus, a stride

N

s
d

 
=  

 
 by  \ 1d and d N (25)

is taken, where function ()  returns the integer part of

number  [4], [5], [7], and job volumes

 jH k= for 1,
N

k
s

 
=  

 
 ()1 1 ,j s k sk = + − (26)

by

maxj jH H=

max 1,j j N = + when
max

N
j s N

s

 
=   

 
 (27)

are generated. Then estimator (24) is refined by labelling P as

dP .

The smaller stride (25) is, the steeper the change of the job

volumes becomes. For instance, the smallest stride (1s =)

given by 1d N= − , produces the SHM in vector (1), wherein

either condition

 nH n= 1,n N = (28)

or

 1nH N n= − + 1,n N = (29)

holds. Let such a PPJSP be called a (1,)N -PPJSP. Figure 1

shows a result of the computation time estimation for this case,

where AJOI has a 1 % to 2 % relative advantage in scheduling

more than 400 jobs (computational artefacts are ignored). In a

way, this nonetheless contrasts with the above-mentioned 1 %

relative advantage of DJOI (in scheduling more than 200 jobs

for non-pyramidal PJSPs). Moreover, if to look closely in the

zoom-in graphs in Fig. 1, the advantage of AJOI seems to be

increasing as the number of jobs increases. An explanation of

such an effect may concern specificities of memory operations

while the heuristic’s items (13)–(22) are executed. They are less

comprehensible for a lesser number of jobs, whereas the relative

advantage of AJOI by estimator (24) exceeds 2.5 % in solving

the (1, 3500) -PPJSP.

Information Technology and Management Science

 ___ 2019/22

4

Fig. 1. Estimator (24) for the case of SHM in vector (1) by (28) and (29), where

the horizontal zero level is put on. The averaging is executed over 100 PPJSPs

generated for both AJOI and DJOI at every number of jobs starting from 2
through 1000. In the two additional graphs, put on as zoom-ins, computational

artefacts are ignored. If to look closely, the relative advantage of AJOI seems

to be slowly increasing as the number of jobs increases.

Nevertheless, the way in which job volumes increase in the

(1,)N -PPJSP is too steep. Other PPJSPs generated by smaller

d are also pretty “steep”. For smoothing this steepness, let an

additional parameter be introduced into rule (26), which now

becomes

smoothjH k k= + by smoothk 

 for 1,
N

k
s

 
=  

 
 ()1 1 ,j s k sk = + − . (30)

Rule (30) will be used for generating “smoother” PPJSPs (by

increasing smoothk). They, however, will consist of “harder” jobs

whose parts are increased exactly by smoothk , which is the

additional parameter along with stride (25).

IX. ANALYSIS OF THE OBTAINED RESULTS

AND DECISION ON THE HEURISTIC’S JOB ORDER GAIN

The “smoothest” PPJSP is generated by 2d = . Therefore, it

matters to see how estimator (24) changes when the PPJSP

changes from the “smoothest” to “steeper” one. Let 2, 9d =

for this (Fig. 2). Here, the average estimator (AE) is (Fig. 3)

 () ()
9

2...9

2

1
, ,

8
d

d

N P N P

=

 =  . (31)

Although AE (31) does not really show where a job order gain

could be obtained, zoom-ins on the 8 graphs of Fig. 2 shown in

Fig. 4 allow making some conclusions. Indeed, DJOI has a

slight advantage in solving the “smoothest” PPJSP. Then, as the

steepness of job volumes increases, this advantage vanishes

and, eventually, solving with AJOI becomes slightly faster (this

is well seen in Fig. 4 for 8d = and 9d =). For a notice, the

steepness of job volumes herein is shown in Fig. 5.

Fig. 2. Estimators (24) over 100 PPJSPs, where artefacts are not cut. Artefacts

are essential for a fewer hundreds of jobs due to shorter computation time.

Fig. 3. AE (31) over graphs in Fig. 2. The additional graph ignores artefacts.

10 100 200 300 400 500 600 700 800 900 1000

-5

0

5

10

15

20

25

30

300 400 500 600 700 800 900 1000

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1()2...9,N P

N

10 100 200 300 400 500 600 700 800 900 1000

0

50

100

10 100 200 300 400 500 600 700 800 900 1000

-20

0

20

40

10 100 200 300 400 500 600 700 800 900 1000

-20

0

20

40

10 100 200 300 400 500 600 700 800 900 1000

0

20

40

60

10 100 200 300 400 500 600 700 800 900 1000

-20

0

20

40

60

10 100 200 300 400 500 600 700 800 900 1000

0

20

40

60

80

10 100 200 300 400 500 600 700 800 900 1000

-5

0

5

10

10 100 200 300 400 500 600 700 800 900 1000

0

20

40

()5,N P

()6,N P

()8,N P

()2,N P

()4,N P

()7,N P

()9,N P

()3,N P

2 100 200 300 400 500 600 700 800 900 1000

0

20

40

60

80

100

120

140

160

2 100 200 300 400 500 600 700 800 900 1000
-5

0

5

10

300 400 500 600 700 800 900 1000

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

()1, NN P −

N

Information Technology and Management Science

 ___ 2019/22

5

Fig. 4. The zoom-ins on the 8 graphs of Fig. 2 by cutting their artefacts off.

Fig. 5. An example of the steepness of job volumes in PPJSPs with 50 jobs by

2,9d = (Fig. 2 and Fig. 4). Note that neither AJOI nor DJOI can be seen here.

Figure 6 confirms that “steeper” PPJSPs (by 20, 25d =) are

solved faster by AJOI. The AE (Fig. 7)

 () ()
25

20...25

20

1
, ,

6
d

d

N P N P

=

 =  (32)

shows that AJOI has roughly a 1 % advantage here. The zoom-

ins on the 6 graphs of Fig. 6 shown in Fig. 8 confirm this

conclusion but only for scheduling no less than 500 jobs.
Finally, let us generate “smoother” PPJSPs by (30) for

smooth 1, 4k = . Let us denote estimator (24) by ()2 smooth, ;N P k

and

 () ()
smooth

4

2 2 smooth

1

1
, ;{1...4} , ;

4
k

N P N P k

=

 =  (33)

is AE herein. Such PPJSPs are solved faster by DJOI (Fig. 9)

whose gain is 2 % for scheduling 300 jobs and more (Fig. 10).

Fig. 6. Estimators (24) over 100 “steeper” PPJSPs, wherein jobs are of greater
volumes than job volumes in Fig. 5, with uncut artefacts. Artefacts are lesser
compared to those ones in Fig. 2 because here the computation time is longer.

50 100 200 300 400 500 600 700 800 900 1000

0

5

10

50 100 200 300 400 500 600 700 800 900 1000

-5

0

5

10

50 100 200 300 400 500 600 700 800 900 1000

-10

-5

0

5

50 100 200 300 400 500 600 700 800 900 1000

-5

0

5

10

15

50 100 200 300 400 500 600 700 800 900 1000

0

50

100

50 100 200 300 400 500 600 700 800 900 1000

-6

-4

-2

0

2

4

()23,N P

()24,N P

()20,N P

()22,N P

()25,N P

()21,N P

d
10

20

30

40

50

2 3 4 5 6 7 8 9

1

2

3

4

5

6

7

8

9

10

n

nH

200 300 400 500 600 700 800 900 1000

-2

0

2

200 300 400 500 600 700 800 900 1000

-2

0

2

200 300 400 500 600 700 800 900 1000

-2

0

2

200 300 400 500 600 700 800 900 1000

-2

0

2

200 300 400 500 600 700 800 900 1000

-2

0

2

200 300 400 500 600 700 800 900 1000

-2

0

2

200 300 400 500 600 700 800 900 1000

-2

0

2

200 300 400 500 600 700 800 900 1000

-2

0

2

()5,N P

()6,N P

()8,N P

()2,N P

()4,N P

()7,N P

()9,N P

()3,N P

Information Technology and Management Science

 ___ 2019/22

6

Fig. 7. AE (32) over graphs in Fig. 6. The additional graph ignores artefacts.

Fig. 8. The zoom-ins on the 6 graphs of Fig. 6 by cutting their artefacts off.
Despite fluctuations, an offset below the horizontal zero level is clearly seen.

Fig. 9. The DJOI gain (with uncut artefacts) in scheduling “smoother” PPJSPs,
wherein jobs of the “smoothest” PPJSPs are of 5 and 6 parts, whereas PPJSPs
generated by the smallest additional parameter in (30) are of 2 and 3 parts.

Fig. 10. AE (33) over graphs in Fig. 9. The relatively huge artefact is cut in the
additional graph. An increase of the AE is seen in the additional graph.

200 300 400 500 600 700 800 900 1000

0

5

10

15

20

25

30

35

40

N

()2, ;{1...4}N P

200 300 400 500 600 700 800 900 1000

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

200 300 400 500 600 700 800 900 1000

-15

-10

-5

0

5

10

15

20

200 300 400 500 600 700 800 900 1000

-5

0

5

10

200 300 400 500 600 700 800 900 1000

-4

-2

0

2

4

6

8

10

200 300 400 500 600 700 800 900 1000

0

20

40

60

80

100

120

140

160

()2, ; 4N P

()2, ; 3N P

()2, ; 2N P

()2, ;1N P

200 300 400 500 600 700 800 900 1000

-2

0

2

200 300 400 500 600 700 800 900 1000

-2

0

2

200 300 400 500 600 700 800 900 1000

-2

0

2

200 300 400 500 600 700 800 900 1000

-2

0

2

200 300 400 500 600 700 800 900 1000

-2

0

2

200 300 400 500 600 700 800 900 1000

-2

0

2

()23,N P

()24,N P

()20,N P

()22,N P

()25,N P

()21,N P

50 100 200 300 400 500 600 700 800 900 1000

-8

-6

-4

-2

0

2

4

6

8

10

12

14

16

()20...25,N P

N

100 200 300 400 500 600 700 800 900 1000

-1.5

-1

-0.5

0

0.5

1

1.5

Information Technology and Management Science

 ___ 2019/22

7

The zoom-ins on the 4 graphs of Fig. 9 shown in Fig. 11 allow

asserting that this gain will continue increasing as the number

of jobs increases. In scheduling more than 1000 jobs, DJOI is

almost 3 % faster than AJOI (see both Fig. 10 and Fig. 11).

However, the increase is not expected to be boundless.

An asymptote of the increase trend in Fig. 10 does plausibly

exist as well as asymptotes of the decrease trends in Fig. 1 and

Fig. 7 do.

Fig. 11. The zoom-ins on the 4 graphs of Fig. 9 without their minor artefacts.
The slight increase of the DJOI gain is clearly seen (the abrupt increase for

smooth 2k = is an artefact of the increase trend itself). It is also seen that solving

such PPJSPs for 1000 jobs and more is sped up by almost 3 % with DJOI.

After all, the obtained results certainly confirm that the SPPA

heuristic has a definite job order gain, i.e. an approximate

schedule can be found faster by using either AJOI or DJOI that

depends on how steep job volumes increase in the PPJSP.

Indeed, the difference between the computation time of AJOI

and that of DJOI can achieve up to 3 %, whose significance is

discussed below.

X. DISCUSSION

Obviously, a difference between the computation time of

AJOI and that of DJOI becomes significant if scheduling along

the real-time scale has a positive impact on the total system

performance. If to consider just a PPJSP with even a few

thousand jobs, the difference (if any) being roughly a small

fraction of a second may seem negligible. Nevertheless, solving

a long series of PPJSPs turns the difference into seconds,

minutes, and even hours, which are ever crucial for the real-

time industrial performance. Moreover, if PPJSPs are solved for

organising computational processes, then speeding up by even

a small fraction of a second is very important and struggled for.

Therefore, notwithstanding the relatively small percentage, the

SPPA heuristic’s job order gain (either by AJOI or DJOI) in

solving PPJSPs is significant.

For emphasising the significance for the real practice, let a

larger PPJSP be solved. The PPJSP consists of 60000 jobs,

wherein every 20000 of them are divided into 4, 5, and 6 equal

parts. It is a “smooth” PPJSP rather than “steep”. Using a single

CPU core, without parallelizing, the computation time of DJOI

here is 147 seconds, whereas solving with AJOI takes 151

seconds. Thus, DJOI has a 2.79 % relative advantage.

Therefore, a series of 1000 such PPJSPs will be solved in about

400 seconds faster by DJOI. It is clear that solving longer series

of such PPJSPs and similar JSPs overall saves hours!

As it has been already ascertained, such an advantage
decreases as the PPJSP gets “steeper”. In spite of the decrease
of estimator (24), the difference between the computation time
of AJOI and that of DJOI does not necessarily have a distinct
decreasing feature. For instance, in solving a PPJSP consisting

of 75600 jobs, wherein every 75600 s of them (2, 10s =) are

divided into 3 k+ equal parts (1,k s=), estimator (24) re-

denoted by ()(;3)75600, s kP + showing the DJOI advantage

decreases (Fig. 12), but its numerator denoted by

()(;3)75600, s kP + does not seem decreasing (Fig. 13).

Fig. 12. A set of 10 estimators and its average (the thicker line with circles)
showing how the DJOI advantage decreases in solving the PPJSP as the
steepness of job volumes increases. At 2s = every 37800 jobs are divided into

4 and 5 equal parts; at 3s = every 25200 jobs are divided into 4, 5, 6 equal

parts; at 10s = every 7560 jobs are divided into 4, 5, 6, ..., 12, 13 equal parts.

2 3 4 5 6 7 8 9 10
1

1.5

2

2.5

3

3.5

4

4.5

s

()(;3)75600, s kP +

300 400 500 600 700 800 900 1000

-1

0

1

2

3

4

300 400 500 600 700 800 900 1000

-1

0

1

2

3

4

300 400 500 600 700 800 900 1000

-1

0

1

2

3

4

300 400 500 600 700 800 900 1000

-1

0

1

2

3

4
()2, ; 4N P

()2, ; 3N P

()2, ; 2N P

()2, ;1N P

Information Technology and Management Science

 ___ 2019/22

8

Fig. 13. The difference between the computation time in seconds of AJOI and
that of DJOI for the set of 10 estimators in Fig. 12 (the average is a thicker line

with circles). While the decreasing of the DJOI relative advantage is quite

certain, the “steeper” PPJSPs herein are still solved by 6 seconds faster with DJOI.

The process of scheduling considered here is implicitly

executed on a single machine [12]. Executing it on multiple

machines speeds up finding an approximate schedule. In this

case, the order of inputting the job release dates is naturally

believed to result in different time of computations as well.

However, scheduling on multiple machines does not imply

straightforward parallelization like that using GPUs or CPU

cores. Hence, it is not clear whether the computation time gain

obtained by AJOI and DJOI for PPJSPs considered above will

be repeated in the case of scheduling (by the SPPA heuristic)

on multiple machines.

XI. CONCLUSION

It has been ascertained that, in solving PPJSPs by the SPPA

heuristic, the order of inputting the job release dates (or priority

weights) results in different time of computations when

scheduling at least a few hundred jobs. If job volumes increase

steeply, solving with AJOI becomes efficient. The

(1,)N -PPJSP, for example, is solved with AJOI by 1 % to 2.5 %

faster. As the steepness of job volumes decreases, the AJOI gain

vanishes and, eventually, solving with DJOI becomes faster by

up to 4 %. The gain trends of both AJOI and DJOI slowly

increase as the number of jobs increases. Nevertheless, the

described heuristic’s job order gain does not necessarily happen

in solving a single PPJSP, especially if the PPJSP consists of a

few tens of jobs divided in a few parts each. Hence, the

computation time gain by either AJOI or DJOI is obtained on

average, although a computational artefact is a low-probability

event. The gain significance grows for more voluminous

PPJSPs. This is quite serviceable for organising computational

processes, where any delays are undesirable.

ACKNOWLEDGMENT

The research has technically been supported by the Faculty

of Navigation and Naval Weapons at the Polish Naval

Academy, Gdynia, Poland.

REFERENCES

[1] M. L. Pinedo, Scheduling: Theory, Algorithms, and Systems. Springer

International Publishing, 2016.
 https://doi.org/10.1007/978-3-319-26580-3

[2] P. Brucker, Scheduling Algorithms. Springer-Verlag Berlin Heidelberg,

2007. https://doi.org/10.1007/978-3-540-69516-5
[3] M. L. Pinedo, Planning and Scheduling in Manufacturing and Services.

Springer-Verlag New York, 2009.

 https://doi.org/10.1007/978-1-4419-0910-7
[4] V. V. Romanuke, “The exact minimization of total weighted completion

time in the preemptive scheduling problem by subsequent length-equal

job importance growth,” Bulletin of V. Karazin Kharkiv National
University. Mathematical Modelling. Information Technology. Automated

Control Systems, iss. 40, pp. 60–66, 2018.

[5] V. V. Romanuke, “A faster way to approximately schedule equally
divided jobs with preemptions on a single machine by subsequent job

importance growth,” Bulletin of V. Karazin Kharkiv National University.

Mathematical Modelling. Information Technology. Automated Control
Systems, iss. 41, pp. 80–87, 2019.

[6] W.-Y. Ku and J. C. Beck, “Mixed Integer Programming models for job

shop scheduling: A computational analysis,” Computers & Operations
Research, vol. 73, pp. 165–173, 2016.

 https://doi.org/10.1016/j.cor.2016.04.006

[7] V. V. Romanuke, “Accuracy of a heuristic for total weighted completion
time minimization in preemptive single machine scheduling problem by

no idle time intervals,” KPI Science News, no. 3, pp. 52–62, 2019.

 https://doi.org/10.20535/kpi-sn.2019.3.164804
[8] H. Belouadah, M. E. Posner, and C. N. Potts, “Scheduling with release

dates on a single machine to minimize total weighted completion time,”

Discrete Applied Mathematics, vol. 36, no. 3, pp. 213–231, 1992.
 https://doi.org/10.1016/0166-218X(92)90255-9

[9] S. Ul Sabha, “A novel and efficient round robin algorithm with intelligent

time slice and shortest remaining time first,” Materials Today:
Proceedings, vol. 5, no. 5, part 2, pp. 12009–12015, 2018.

 https://doi.org/10.1016/j.matpr.2018.02.175

[10] H. Wei and J. Yuan, “Two-machine flow-shop scheduling with
equal processing time on the second machine for minimizing total

weighted completion time,” Operations Research Letters, vol. 47, no. 1,

pp. 41–46, 2019. https://doi.org/10.1016/j.orl.2018.12.002
[11] B. Wang, Y. Song, J. Cao, X. Cui, and L. Zhang, “Improving task

scheduling with parallelism awareness in heterogeneous computational

environments,” Future Generation Computer Systems, vol. 94,
pp. 419–429, 2019. https://doi.org/10.1016/j.future.2018.11.012

[12] M. Nattaf, S. Dauzère-Pérès, C. Yugma, and C.-H. Wu, “Parallel machine

scheduling with time constraints on machine qualifications,” Computers
& Operations Research, vol. 107, pp. 61–76, 2019.

 https://doi.org/10.1016/j.cor.2019.03.004

Vadim Romanuke graduated from the Technological University of Podillya
(Ukraine) in 2001. In 2006, he received the Degree of Candidate of Technical

Sciences in Mathematical Modelling and Computational Methods. The
Candidate Dissertation suggested a way of increasing interference noise

immunity of data transferred over radio systems. The degree of Doctor of

Technical Sciences in Mathematical Modelling and Computational Methods
was received in 2014. The Doctor-of-Science Dissertation solved a problem of

increasing efficiency of identification of models for multistage technical control

and run-in under multivariate uncertainties of their parameters and
relationships. In 2016, he received the status of Full Professor.

He is a Professor of the Faculty of Navigation and Naval Weapons at the Polish

Naval Academy. His current research interests concern decision making, game
theory, statistical approximation, and control engineering based on statistical

correspondence. He is the author of 347 scientific articles, one monograph, one

tutorial, three methodical guidelines in Functional Analysis, Development of
Master Theses in Mathematical and Computer Modelling, Conflict-Controlled

Systems. Before January 2018, Vadim Romanuke was the scientific supervisor

of a Ukrainian budget grant work concerning minimization of water heat
transfer and consumption. He also leads a branch of fitting statistical

approximators at the Centre of Parallel Computations in Khmelnitskiy, Ukraine.

Address for correspondence: 69 Śmidowicza Str., Gdynia, Poland, 81-127.
E-mail: romanukevadimv@gmail.com

ORCID iD: https://orcid.org/0000-0003-3543-3087

s

2 3 4 5 6 7 8 9 10
4

5

6

7

8

9

10

()(;3)75600, s kP +

https://doi.org/10.1007/978-3-319-26580-3
https://doi.org/10.1007/978-3-540-69516-5
https://doi.org/10.1007/978-1-4419-0910-7
https://doi.org/10.1016/j.cor.2016.04.006
https://doi.org/10.20535/kpi-sn.2019.3.164804
https://doi.org/10.1016/0166-218X(92)90255-9
https://doi.org/10.1016/j.matpr.2018.02.175
https://doi.org/10.1016/j.orl.2018.12.002
https://doi.org/10.1016/j.future.2018.11.012
https://doi.org/10.1016/j.cor.2019.03.004
mailto:romanukevadimv@gmail.com
https://orcid.org/0000-0003-3543-3087

