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Abstract—This paper presents a unified method for estimating 

latencies in a parallel redundant network with losses. The 

proposed method is based on mathematical statistics and, in the 

opinion of the authors, is more instructive in small networks than 

typical estimations that are based on the Markov chain model, 

which is recommended by ITU. The method requires known CDFs 

of latencies of parallel networks, as well as their packet loss rates. 

The CDFs can be built from experimental data or can be 

approximated in accordance to assumed distribution function. 

The method eliminates the need to calculate the transition 

probabilities that are required in the Markov chain. Also, the 

method can be used for various number of parallel networks. 

However, the method is applicable only for independent networks 

Keywords—redundancy; network latency; parallel redundancy 

protocol 

I.  INTRODUCTION 

The use of parallel redundancy is widely used in safety- and 
time-critical control data transmission networks to increase 
overall availability, as well as to reduce latencies in the 
redundant data transfer service. Such networks use N+1 link 
protection, typically limited to 1+1 (parallel redundancy of two 
networks). Typically, the homogeneous Markov chain model is 
used to estimate the performance of a redundant network. This 
model is described in [1]. It allows to take into account various 
additional factors, such as the repairs of various elements and 
sub-systems of a network. This model utilization is complicated 
and pay off itself in large trusted networks. 

For today, there is a tendency to increase interest in the 
implementation of parallel redundancy in small networks, 
especially through two wired Ethernet or two wireless channels. 
In such small projects, the authors usually do not utilize 
formidable method described in the ITU recommendation  [1].  

Instead of the recommendations mentioned above, in small 
networks the parameters of the resulting redundant network 
solution typically are estimated in different ways. In [2] the 
authors apply the Markov chain model to predict the availability 
of the proposed network solution. However, in that research, the 
Round Trip Time (RTT) as well as the Jitter of the resultant 
redundant network are measured directly during the 
experimental verification of the results. In most other projects, 
the parameters (such as RTT, Jitter, IPDV) as well as the 
availability and packet loss of the proposed redundant solution 
are estimated using various simulation applications. For 

example, in [3], [4] the authors use OPNET simulation tool to 
predict all the above mentioned parameters. Attempt to 
anticipate the results of various types of wireless equipment are 
presented in [5]. These are also estimated using a simulation 
tool, called OMNet++ . 

In this paper, we present an approach to estimating latencies 
(or RTT) as well as IPDV (IP packet Delay Variation) of a 
redundant network. This method can be used for a redundant 
solution that consists of n parallel networks. The method 
requires known CDFs of latencies (or RTTs) for all networks 
that will operate in parallel. The CDFs can be built from the 
experimentally obtained RTT values or can be approximated in 
accordance to predefined distribution function. Since the 
calculations are proposed for non-trusted networks, the impact 
of packet loss also is considered. This method can be a good 
solution if it is necessary to estimate the latencies of a resulting 
redundant solution when latencies and packet loss rates of 
networks can be easily measured experimentally, while 
probabilities of transitions of Markow chain are not known. .  

II. MATHEMATICAL MODEL 

In the general case, a parallel redundant network can be built 
from n networks. To build a robust redundant system, all 
networks should to be independent. This means that their delay 
values will also be independent. 

Let’s define the latency values of each network as Ti, where 
i=1,2,…,n is the network number. Since the networks are 
independent, the values of Ti will also be independent. Further, 
each Ti can be defined as an independent random variable with 
a continuous probability function FTi(ti). The type of probability 
function depend on type of network. The probability function 
also can be built from the experimental data. 

We should also take into account that some packets may be 
lost (undelivered). Lost packets have a latency equal to infinity. 
Let’s define the packet loss as qi, where i=1,2,…,n is a network 
number. Since it is assumed that independent networks are used, 
packet loss qi will also be independent.  

Further, let’s denote conditional random variable Ti
*, where 

i=1,2,…,n is the network number. The conditional random 
variables Ti

* are equal to Ti when Ti ≤ ∞ (packet was delivered) 
or equal to infinity ∞ if packet is lost. Therefore, Ti

*  are 
independent random variables with corresponding specific 
random continuous distribution functions, which with 
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probability (1-qi) are equal to FTi(ti) if packet was delivered or 
equal to infinity ∞ if packet is lost. 

Since only the first arriving packet is processed in a parallel 
redundant network and all subsequent ones are discarded, the 
resulting random variable Z of the parallel redundant network 
can be expressed as a minimum of independent random 
variables (assuming zero packet loss): 

𝑍 = min(𝑇1, … , 𝑇𝑛) (1) 

Therefore, the distribution function of Z (assuming zero 
packet loss) will be expressed as: 

𝑭𝒁(𝒛) = 𝑷(𝒁 ≤ 𝒛) = 𝟏 −∏𝑷(𝑻𝒊) > 𝒛

𝒏

𝟏

= 

(2) 

= 𝟏 −∏(𝟏 − 𝑭𝑻𝒊(𝒛))

𝒏

𝟏

 

This is a standard approach of finding the minimum of n 
random variables. 

Now it is necessary to take into account that some packets 
may be lost. The packet loss rate is defined as  qi. Let’s denote 
Ti

* as a conditional random variable of Ti, when Ti < ∞ (packet 
has not been lost). Then it is also necessary to define Z* as a 
conditional random variable of Z, when Z < ∞ (at least one 
packet from all networks has been delivered). Then the 
conditional distribution function of a parallel redundant system 
with n parallel networks and packet loss rate qi can be defined 
as: 

𝑍∗ = 𝑚𝑖𝑛(𝑇1
∗ ,… , 𝑇𝑛

∗
) (3) 

And the distribution function of conditional random variable  Z* 
(when at least one packet of a parallel redundant system was  
delivered) will be expressed as follow: 

𝑭𝒁∗(𝒛) = 𝑷(𝒁∗ ≤ 𝒛) = 𝟏 −∏𝑷(𝑻𝒊
∗) > 𝒛

𝒏

𝟏

= 

(4) 

= 𝟏 −∏{𝑷(𝑻𝒊
∗ > 𝒛)𝑷(𝑻𝒊

∗ < ∞) + 𝑷(𝑻𝒊
∗ = ∞)}

𝒏

𝟏

= 

= 𝟏 −∏{𝑷(𝑻𝒊
∗ > 𝒛) ∙ (𝟏 − 𝒒𝒊) + 𝒒𝒊}

𝒏

𝟏

= 

= 𝟏 −∏{(𝟏 − 𝑭𝑻𝒊(𝒛)) ∙ (𝟏 − 𝒒𝒊) + 𝒒𝒊}

𝒏

𝟏

 

Now, by taking into account the packet loss rate qi of each 
network, let’s denote Z as a conditional random variable under 
the condition that Z* < ∞ (at least one packet from the redundant 
system has been delivered). Obviously, the event Z<∞ takes 
place if event Z* < ∞ takes place, so distribution function of Z 
can be expressed by equation: 

𝐹𝑍(𝑧) = 𝑃{𝑍 < 𝑧|𝑍∗ < 𝑧} =
𝑃(𝑍∗ < 𝑧)

1 − ∏ 𝑞𝑖
𝑛
𝑖=1

 (5) 

III. A NUMERICAL EXAMPLE OF A PARALLEL REDUNDANT 

NETWORK CONSISTING OF N=2 NETWORKS 

The first network will have T1 latency values with a 
continuous probability function FT1(t1) and packet loss rage q1. 
The second network will have T2 latency values with a 
continuous probability function FT2(t2) and packet loss rage q2 
respectively. 

Now it is necessary to solve the equation (5) for n=2 
networks: 

𝑭𝒁(𝒛) =
𝟏 − ∏ {(𝟏 − 𝑭𝑻𝒊(𝒛)) ∙ (𝟏 − 𝒒𝒊) + 𝒒𝒊}

𝒏
𝟏

𝟏 − ∏ 𝒒𝒊
𝒏
𝒊=𝟏

= 

(6) 

=
𝟏 − ((𝟏 − 𝑭𝟏(𝒛)) ∙ (𝟏 − 𝒒𝟏) + 𝒒𝟏) ((𝟏 − 𝑭𝟐(𝒛)) ∙ (𝟏 − 𝒒𝟐) + 𝒒𝟐)

(𝟏 − 𝒒𝟏𝒒𝟐)
 

Next, the latency values T1 and T2 of both networks must be 
experimentally obtained. First, these results will be used to 
estimate the q1 and q2 packet loss rates. It should be noted that 
in order to estimate the rate of packet loss, at least four packets 
losses should to be observed [6].  Further, CDFs of FT1(t1) and 
FT2(t2) should be created. The first way to do this is to use the 
available experimental data of T1 and T2 values. In addition, 
CDF of latency in IP networks can also be approximated via 
various types of distribution laws. In Ethernet networks, 
latencies are typically approximated via the gamma distribution 
function [7], [8]. In some special cases, for example, in heavy-
loaded Ethernet networks, the distribution of latencies tends to a 
normal distribution function [9]. 

In the first example, let’s assume that we have two identical 
Ethernet networks that are independent of each other. Let’s 
suppose that their CDFs of latencies are also identical, as well as 
the packet lost rate of both networks are is equal to zero. In this 
example, we will assume that the latencies of these networks 
obeys gamma distribution. The following illustration shows 
CDFs of the latencies of the first and second networks, as well 
as the latency CDF of the redundant network. 

In this example, the average delay of both networks #1 and 
#2 is 90 ms, while the average delay of the redundant network 
will be 80.9 ms (10% improvement). 

 

Fig. 1. Letency of redundant network, asssuming identical networks and zero 

packet loss in both networks 
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 The resulting CDF can also be used to estimate IPDV (IP 
packet Delay Variation). The IPDV is widely used in tasks for 
estimating de-jittering buffer size. IPDV is defined by ITU [10] 
as the Upper bound on the 1-103 quantile of IPTD minus the 
minimum IPTD (IPTD is defined by ITU as IP packet Transfer 
one-way Delay [10]). The problem is that Fz(z) is the continuous 
probability function, that is, there is no minimum. In this 
example, we define the minimum value of IPTD as a 0.0014 

quantile. In the #1 and #2 networks we have 0.014_netw= 49 ms, 

0.999_netw= 150 ms, hence the IPDVnetwork=101 ms. In the 

proposed redundant system we will have: 0.014_redundant= 47 ms, 

0.999_redundant= 123 ms, hence the IPDVredundant=76 ms, so the 
expected improvement in IPDV is 25%. 

The impact of packet loss of one network on the expected 
performance of a redundant network is shown in Fig.2. In this 
example, two independent identical Ethernet paths with the 
same CDFs are used. The first network has different packet loss 
rate values, while the second one has zero packet loss. 

  

Fig. 2. Letency of redundant network, asssuming identical networks and 

different packet loss in the first network 

TABLE I.  REDUNDANT NETWORK LATENCY VS PACKET LOSS OF THE 

1ST
 NETWORK 

Packet Loss of 

the Network #1 

Average Values of Latencies, ms 

Network #1 Network #2 Redundant 

0 % 90,00085 90,00085 80,90244 

5 % 90,00085 90,00085 81,35736 

10 % 90,00085 90,00085 81,81228 

20 % 90,00085 90,00085 82,72212 

50 % 90,00085 90,00085 85,45164 

90 % 90,00085 90,00085 89,09100 

100 % 90,00085 90,00085 90,00085 

 

As can be seen, with the increase in packet loss in the 
Network#1, its impact on the performance of the redundant 
network becomes reduced. Finally, with the packet loss of 90%  
in the first network, the performance of the redundant network 
becomes almost equal to the performance of the Network#2. 
This in itself proves the proposed equation (5). The following 
table shows the expected latencies of the redundant network, 
depending on the packet loss of the first network. 

The effect of the packet loss rate of both networks on the 
proposed performance of the redundant network is shown in 
Fig.3. In this example, two independent identical Ethernet paths 
with the same CDFs are used. The packet loss rate of each 
network is shown in the legend of the illustration. The numerical 
values of the expected latencies of the redundant network 
depending on the packet loss of the first and second networks 
are shown in the Table 2. 

  

Fig. 3. Letency of redundant network, asssuming identical networks and 

different packet loss in the first network 

TABLE II.  REDUNDANT NETWORK LATENCY VS PACKET LOSS OF THE 

1ST
 AND 2ND

 NETWORKS 

Packet Loss: 

Network #1 / #2 

Average Values of Latencies, ms 

Network #1 Network #2 Redundant 

0% / 0% 90,00085 90,00085 80,90244 

5% / 5% 90,00085 90,00085 81,76895 

10% / 5% 90,00085 90,00085 82,1826 

10% / 10% 90,00085 90,00085 82,55669 

 

The impact of a different networks utilization is shown in 
Fig.4. In this example two Ethernet paths are used. Let’s assume 
that the latencies of both Ethernet networks obey the gamma 
distribution. The first network is the same for all experiment, 
whereas the second one has different parameters. The 
parameters of gamma distributions are shown in Table 3. In this 
example, it is assumed that both networks have zero packet loss 
rate. 
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Fig. 4. Letency of redundant network, asssuming different networks and zero 

packet loss in both networks 

TABLE III. REDUNDANT NETWORK LATENCY VS PACKET LOSS OF THE 

1ST
AND 2ND

 NETWORKS 

#1 [alpha], [beta] / 

#2 [alpha], [beta] 

Average Values of Latencies, ms 

Network #1 Network #2 Redundant 

30, 3.005 / 30, 3.005 90,00085 90,00085 80,90244 

30, 3.005 / 34, 2.968 90,00085 100,01241 85,08475 

30, 3.005 / 40, 2.900 90,00085 109,61877 88,29479 

IV. CONCLUSIONS

The goal of this paper is to provide the method of estimating 
latencies (or RTTs) of the redundant network from known 
latencies and packet loss rates. The authors suppose that this 
method is more instructive for small redundant networks than 
typical calculations that are based on the Markov chain model, 
recommended by ITU. The proposed method require known 
latency (or RTT) CDFs as well as the packet loss rate of all 

parallel networks. The CDFs can be obtained from experimental 
data, or experimental data can be approximated according to a 
known distribution law (in our examples, we use gamma 
distribution as the most suitable for switched Ethernet). The 
method assumes that all parallel networks are independent to 
each other (otherwise the result will be more optimistic than it 
should be). The method is applicable to various number of 
parallel networks, whereas the examples are shown for two 
parallel networks only. 
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