
Applied Computer Systems
ISSN 2255-8691 (online)
ISSN 2255-8683 (print)
May 2021, vol. 26, no. 1, pp. 38–43
https://doi.org/10.2478/acss-2021-0005
https://content.sciendo.com

38

©2021 Oksana Ņikiforova, Kristaps Babris, Linda Madelāne.
This is an open access article licensed under the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), in the manner agreed with Sciendo.

Expert Survey on Current Trends in Agile,
Disciplined and Hybrid Practices for Software

Development
Oksana Ņikiforova1, Kristaps Babris2*, Linda Madelāne3

1–3 Riga Technical University, Riga, Latvia

Abstract – Every software development company makes
software development based on a specific approach. There are a
number of approaches to software development, both disciplined
and agile. Each approach includes a set of different activities.
Sometimes, the specific nature of a company’s work requires a
specific approach, but the need to make work more efficient, faster
and better requires implementing activities of other approaches.
Then hybrid software development approaches come in. The
paper presents an expert survey to examine the most important
software development activities, the combinations of development
approaches that are used in software development processes and
the way of upgrading existing approaches. The evaluated activities
of software development process are classified according to their
nature – whether they correspond with a team, organisation,
documentation, development, and testing. The conclusions are also
made on the practices that are required most – disciplined, Agile
or hybrid.

Keywords – Agile software development, disciplined software

development, hybrid software development.

I. INTRODUCTION
Every customer wants to get the product they ordered as

quickly as possible and at the lowest cost. The professional goal
of every software developer and each development team is to
provide the highest possible value to employers and customers.
Software development, like many other processes, has certain
types of development or approaches, which have defined stages
and basic principles. There are several approaches to software
development, and when undertaking the development of a
project, it is necessary to understand which approach to choose
for its implementation, so that it is done as efficiently as
possible and both parties - the customer and the supplier - are
satisfied. Often in companies, teams work using one approach
to develop different projects.

Software development approaches are mainly divided into
two parts – traditional or disciplined software development
approaches and agile software development approaches [1]. In
this paper, the term “disciplined software development
approaches” will be used. Discipline in this case is considered
to be the observance of certain procedures, regulations, rules.
This definition best explains the nature of disciplined software

* Corresponding author’s e-mail: kristaps.babris@rtu.lv

development approaches, as they involve the following specific
development steps and stages [2].

Although disciplined software development approaches are
widely used, in today’s business environment [3], the customer
wants to follow the project development and receive their order
as soon as possible, so agile software development approaches
are becoming more common.

Agile software development approaches have become very
popular over time and are increasingly used in software
development [2], [3], but there are companies whose job
specifics do not allow them to completely abandon disciplined
development approaches [4]. There are situations when one
software development approach cannot meet all project
development needs, so the approaches are adapted to the needs
of each project and hybrids of different approaches are created
[5], which can take the form of adopting some practices or a
complete merging of approaches [1].

The aim of the present study is to examine software
development practices that are most important in software
development and the existing combinations of software
development approaches that are used in various software
development companies, and to offer possible additions to the
existing approaches. In order to achieve the aim of the study,
the following tasks have been set:

1) to summarise the considered software development
approach practices that are performed in the
development process;

2) to create an expert survey on the practices that are used
in the software development process;

3) to collect data on key practices and conclude which
practices need to complement the existing approaches.

The paper is structured as follows. The next section givs a
brief overview of the related research. The third section sets a
list of activities to be evaluated and gives a description of expert
survey method applied. The fourth section discusses the
analysis of the survey data. Finally, the last section concludes
on the results and states some areas for further research.

https://doi.org/10.2478/acss-2021-0005
http://creativecommons.org/licenses/by/4.0
mailto:kristaps.babris@rtu.lv

Applied Computer Systems
___2021/26

39

II. RELATED WORK / LITERATUR REVIEW
So far, various studies have been reported to select a software

development method and approaches. For example, research that
recommends a development method with higher aptitude
compared with past projects has been conducted in [6], [7].

There is a method to compare past and new projects and to
select a development method suitable for the new project. For
example, research has been conducted to select a development
method of a new project by analysing past projects in terms of
agile development and a project characteristics [7]. A technique
for selecting a development method using the survey result on
project agility [8] has been reported in [9].

Although the experience and practices used may differ from
team to team and from project to project, it is useful to get to
know and evaluate the views and experiences of industry experts
in the context of project management and software development
methodologies [10].

Most companies have not been able to fully adapt agile
software development and implement it in their projects as a
universal and sole approach [11]. This is probably why many
researchers argue that the best way to manage a project is through
hybrid methods [12].

Analysing the survey, we can observe that most of the
surveyed companies in their projects used a combination of
traditional and agile methods – hybrid methods. It can be
concluded that despite the advantages of the agile development
approach, they are far from the only and universal solution [13].

In various specific cases, traditional process elements continue
to be used in agile development scaling approaches. For example,
the waterfall model, which has been frequently criticized, is still
in use [13].

The past decade has seen significant changes in the software
development process, mainly due to the increased focus on user-
centered design as well as automation, which in turn opens up
opportunities for continuous improvement in this area [4].

III. DEFINITION OF LIST OF ACTIVITIES AND DESCRIPTION OF
SURVEY METHOD

In order to compile practices and create a common list,
practices have been mapped. i.e., practices that are named
differently in different methodologies but are essentially focused
on the same result have been redefined, and thus some of the
practices have not been included in the common list. A summary
of the practices used below is shown in Table I. The practice of
“creating a list of requirements for the system and its
functionality” has been removed from the compilation, as it in a
way duplicates “creating a to-do list for the product”. The
practice of “delivery of the function within 2–10 days” has also
been removed, as it has been included in the practice of
“demonstrating the system to the product customer as soon as
possible”. There is also practice that a sprint review meeting takes
place at the end of a sprint and that any programmer has the right
to change the code in any part of it. The activities summarised in
Table I are used as a basis for the development of the expert
survey.

TABLE I
COMPILED PRACTICES

No Software development practice
1 Managers, product customers and developers are equal members of

the same team in one room
2 The team is self-organised and able to find a suitable solution to solve

a certain task as efficiently as possible
3 The work is organised in iterations
4 Development is divided into phases and after completing one phase

it is not possible to return to any of the previous steps
5 Development is divided into phases, after the completion of the phase

it is possible to return to one of the previous phases and make
changes, which can be continued in the next phases

6 System development is divided into function development
7 Development of a system prototype before the analysis, design and

coding phases
8 Daily meetings
9 Staff rotation (pair programming)
10 Two or more weeks in which additional hours to be worked

(maximum 40 hours per week) are not allowed
11 A product backlog has been created, which includes all the

requirements from the product customer
12 The requirements are prioritised and the effort required to implement

them is estimated
13 During each new iteration, the project team reviews the updated to-

do list, determining the scope of tasks for the next iteration
14 First, a system contour is created, to which functions are gradually

added
15 The team chooses the tasks to be performed and the type of

implementation depending on the business priority and technical
capabilities

16 When a new task appears, it is recorded in the user’s story card, which
contains all the requirements of the system expressed by the customer

17 Communication via code (using comments in code) is established
18 Every day, a piece of code created on that day is integrated into the

system
19 Integration can only be performed by one programmer at a time, who

uses a single, unique physical object for this purpose
20 The customer of the product is always among the developers and is

able to explain the details of the current task
21 Prototype is enriched based on the evaluation of the customer’s

existing prototype version
22 Emphasis is placed on minimising errors at the early stages of

development
23 For each new functionality, a test is written first and then the

functionality code itself
24 Unit tests are written before writing the unit code itself
25 The technology is tested in the form of a test
26 The system to be developed is demonstrated to the customer of the

product as soon as possible and, based on feedback, the necessary
changes are made

27 The development process is strictly documented
28 Written documentation is replaced by communication among people

Applied Computer Systems
___2021/26

40

Based on the compilation of software development practices,
an expert survey has been conducted. Delphi method usually
consists of several iterations as it can be used to reach consensus
among experts [14]. However, if the aim of the expert survey is
not to achieve complete harmonisation of the experts’ opinions,
but to find out the current situation, then several iterations are not
necessary [15]. In this study, the survey has been conducted in
one iteration.

At the beginning of the survey, experts have been given the
opportunity to indicate the company for which the expert works,
as well as the role played in the software development process.
The expert has been asked to indicate the company in order to
obtain as much diversity as possible, assuming that the opinions
of experts working for the same company could coincide.
However, this issue has been left as an optional part, given the
expert’s possible desire for anonymity. Experts should also
indicate their role in gathering the views of all roles, as the
survey covers different phases of software development.

In the survey, experts have evaluated 28 software
development practices divided into sections – team, work
organisation, development, testing and documentation. Each
software development practice should be rated according to a
scale based on the ratings offered in Table II and tested in the
survey.

TABLE II
RATING SCALE OF SOFTWARE DEVELOPMENT APPROACH

Rating Description
0 Not performed in any project
1 Performed rarely
2–3 Done sometimes
4–5 Activity can be done but it is not so important
6–7 A fairly important activity that may not be

performed in some circumstances
8–9 Important activity that is rarely omitted
10 Performed in each project. Unable to skip this

activity

After that, ranks Ri,j have been calculated according to the

place the activity takes in the expert’s opinion. Ratings given
by each expert have been ranked from highest to lowest and 𝑅𝑅𝑖𝑖𝑖𝑖
is the resulting rank of the j-th practice coming from the i-th
expert.

Value of importance Gj of activity j has been calculated using
[15], [16]:

𝐺𝐺𝑗𝑗 = � 𝑅𝑅𝑖𝑖𝑖𝑖
𝑚𝑚

𝑖𝑖=1
.

Mean value of importance has been calculated as follows:

𝐺̅𝐺 =
1
𝑛𝑛
� 𝐺𝐺𝑗𝑗

𝑛𝑛

𝑗𝑗=1
.

Deviation of activity j from mean dj has been calculated as
follows:

𝑑𝑑𝑗𝑗 = �𝐺𝐺𝑗𝑗 − 𝐺̅𝐺�.

Sum of square deviations has been calculated as follows:

𝐺𝐺 = � 𝑑𝑑𝑗𝑗2
𝑛𝑛

𝑗𝑗=1
.

A number of equal ratings ti by expert have been used to
calculate parameter Ti as follows:

𝑇𝑇𝑖𝑖 = (𝑡𝑡𝑖𝑖3 − 𝑡𝑡𝑖𝑖).

For every question, the group coefficient of coherence K has
been calculated:

𝐾𝐾 =
12𝐺𝐺

𝑚𝑚2(𝑛𝑛3 − 𝑛𝑛) −𝑚𝑚∑ 𝑇𝑇𝑖𝑖𝑚𝑚
𝑖𝑖=1

.

Expected range for coefficient K is between 0 and 1, meaning
the closer K is to 1, the higher the level of coherence among
experts [15], [16]. If the value of coefficient is close to zero,
additional experiments should be conducted as the level of
coherence among experts has not been achieved [17].

Sorting the practices according to their importance, they have
assigned places from 1 to 28. Based on the obtained place, the
importance of the practices has been calculated in the ideal case,
if all experts have given it the respective place. The calculations
have been performed by multiplying the place of practice by its
importance with the number of experts, which in this case is 15.
When the values of practice importance in the case of ideal
expert agreement are obtained, the deviation of real practice
importance from the ideal case is calculated by module.

IV. RESULTS OF EVALUATION
The expert survey has been distributed among experts of

appropriate competence. The expert survey has resulted in 25
responses from at least 11 companies. 15 experts from 10
companies have been selected to apply the Delphi method. 9
experts have noted their role as a developer, 2 as a tester, 2 as a
project manager, 1 as a system analyst and 1 as a department
manager.

The level of coherence K of the selected experts has been
calculated and a value of 0.46 has been obtained, which in these
41 cases is considered sufficient to use the results obtained in
the survey in further research and not to repeat the survey of
experts.

The questions have been divided into five sections of the
survey; however, the results have been considered for all
sections together because the research does not examine the
importance of practices at a particular software development
phase, but studies the importance of practices used in the whole
software development process. The results obtained and
summarised during the survey are shown in Table III. The
practices offered to the experts for evaluation are arranged
according to their importance by the team, work organisation,
development, testing and documentation.

The results show that the team’s self-organisation and ability
to find a suitable solution to solve a certain task as effectively
as possible are recognised as an important practice in software
development. As the first practice is from the section in terms
of importance, it can be concluded that the development team,
its composition and ability to cooperate with each other play an

Applied Computer Systems
___2021/26

41

important role in ensuring a successful project development
process. This is also evidenced by the relatively high evaluation
of the practice, which provides for daily team meetings, where
team members can exchange experience and speed up the
problem-solving process.

At the top of the list of priorities, there is also the
prioritisation of requirements and effort assessment, the
creation of a product to-do list, the ability of the team to select
tasks to complete, and the updating of the to-do list during the
iteration. It can be concluded that in the development process it
is important to understand the main tasks to be performed and
to closely follow their fulfillment. In order to successfully plan

the execution of tasks and to avoid, as far as possible, unplanned
delays in delivery deadlines, the effort and time required to
complete them must be accurately assessed.

Work organisation in iterations is considered to be the third
most important practice. It allows the team to regularly monitor
the progress of the development process, look back on what has
been done and evaluate the most important tasks to be
performed in the future. This practice is part of a capable
software development approach to practice that involves
regular communication between the development team and the
product customer.

TABLE III
RANKING OF SOFTWARE DEVELOPMENT PRACTICES ACCORDING TO EXPERT ASSESSMENTS

Priority No Software development practice (K = 0.46) Type of practice
Importance
of practice

(Gj)
1 2 The team is self-organised and able to find a suitable solution to solve a certain task as efficiently as

possible
Team 85.5

2 12 The requirements are prioritised and the effort required to implement them is estimated Development 103.5
3 3 The work is organised in iterations Organization 108
4 11 A product backlog has been created, which includes all the requirements from the product customer Development 120
5 15 The team chooses the tasks to be performed and the type of implementation depending on the business

priority and technical capabilities
Development 130.5

6 5 Development is divided into phases, after the completion of the phase it is possible to return to one of
the previous phases and make changes, which can be continued during the next phases

Organisation 134.5

7 13 During each new iteration, the project team reviews the updated to-do list, determining the scope of
tasks for the next iteration

Development 142.5

8 22 Emphasis is placed on minimising errors at the early stages of development Testing 148
9 26 The system to be developed is demonstrated to the customer of the product as soon as possible and,

based on feedback, the necessary changes are made
Testing 149

10 8 Daily meetings Organisation 169.5
11 17 Communication via code (using comments in code) Development 190
12 25 Testing the technology in the form of a test Testing 194
13 14 First, a system contour is created, to which functions are gradually added Development 196.5
14 10 Two or more weeks in which additional hours have to be worked (maximum 40 hours per week) are

not allowed
Organisation 211

15 27 The development process is strictly documented Documentation 216.5
16 6 System development is divided into function development Organisation 220
17 1 Managers, product customers and developers are equal members of the same team in one room Team 231
18 18 Every day, a piece of code created on that day is integrated into the system Development 240
19 16 When a new task appears, it is recorded in the user’s story card, which contains all the requirements

of the system expressed by the customer
Development 243.5

20 21 Prototype enrichment based on the evaluation of the customer’s existing prototype version Development 260.5
21 7 Development of a system prototype before the analysis, design and coding phases Organization 282
22 28 Written documentation is replaced by communication among people Documentation 284.5
23 20 The customer of the product is always among the developers and is able to explain the details of the

current task
Development 291

24 24 Unit tests are written before writing the unit code itself Testing 325.5
25 19 Integration can only be performed by one programmer at a time, who uses a single, unique physical

object for this purpose
Development 332

26 23 For each new functionality, a test is written first and then the functionality code itself Testing 348.5
27 4 Development is divided into phases and after completing one phase it is not possible to return to any

of the previous steps
Organisation 350.5

28 9 Staff rotation (pair programming) Organisation 371

Applied Computer Systems
___2021/26

42

At the end of the iteration of most capable software

development approaches, the product customer has the
opportunity to evaluate the product developed so far, propose
changes and add new requirements, which should ensure
customer satisfaction with the final version of the product.

Dividing the development process into phases and the
possibility to return to one of the previous development phases
during the development process are also recognised as
sufficiently important practices, which allow ensuring changes
in the customer’s requirements without starting the project
development from the beginning, as well as saving time and
money. In turn, the division of development into phases, when
it is not possible to return to any of the previous steps, occupies
the penultimate place according to the importance of the
practice and the frequency of use.

Although documentation practices are not at the top of the
list in terms of importance, it can be observed that strict
documentation of the development process is more important
than replacing documentation with communication. This shows
that although team communication is very important in the
software development process, writing and maintaining
documentation are also important and necessary.

Looking at the testing section practices, it can be seen that
unit text writing and pre-code writing are generally recognised
as relatively unimportant practices, and minimising errors at the
early stages of development and demonstrating the system to
the developer as soon as possible, which rank 8th and 9th,
occupy a more important place with ratings of 148 and 149.

Staff rotation or pair programming is recognised as a less
common practice. This practice ensures that all team members
are familiar with the development process and can take over
their work at any time when a team member leaves. However,
team members can be kept informed through daily and iteration
review meetings.

It can be seen that a number of capable software development
approach practices are recognised as the most important and
widely used practices. Practices that provide for the self-
organisation of the team and include communication among
team members are highly valued. Against this background, it
can be seen that practices that review the tasks and priorities to
be performed are also high in importance. It should be
mentioned that communication with the product customer is
also recognised as important in order to achieve the best
possible result.

Of the disciplined approaches to practice, the highest places
are occupied by the division of development into phases with
the possibility to return to one of the previous development
phases, as well as the strict maintenance of documentation. This
shows that although there is an increasing emphasis on people
and their communication in software development, it is also
important to understand the development process and the
various levels of transparency provided by both successive
phases and documentation.

V. CONCLUSION AND FUTURE RESEARCH
The aim of the study has been to investigate the software

development practices that are most important in software
development and the existing combinations of software
development approaches that are used at various software
development companies, and to offer possible additions to
existing approaches.

As a result, we have found that in disciplined software
development, the emphasis is on the sequential course and
transparency of the development process. Disciplined software
approaches can be complemented by regular feedback meetings
among the development team and the team and the product
customer, increasing mutual communication and information
exchange, thus ensuring a more efficient development process.
Agile software development approaches are more effective in
software development, as they incorporate most of the most
important development practices. However, in cases where the
specifics of the company do not allow it, Agile development
practices can be implemented during different phases of
disciplined approaches. In the Agile software development
process, great emphasis is placed on people-to-people
communication, team self-organisation, and prioritization and
evaluation of tasks to be performed. When using Agile software
development approaches, it is important to form a team of
professionals and attention should also be paid to their ability
to communicate successfully with each other. Agile software
development approaches can include tighter phasing of the
process and process documentation, thus ensuring process
transparency and traceability, as well as more efficient
replacement of team members. The results of this survey may
be of interest to project managers and analysts who need to
consider how to improve software development processes in
specific projects to make project development more efficient or
transparent. A summary of the practices developed and an
assessment of their relevance can be used to evaluate possible
additions.

Further research could include conducting the second
iteration of an expert survey, reviewing other software
approaches and their practices, as well as analysing the existing
hybrid software development approaches.

VI. ACKNOWLEDGMENT
The present study has been supported by the Doctoral Grant

Programme of Riga Technical University.

REFERENCES
[1] M. Kuhrmann, P. Diebold, J. Munch, P. Tell, K. Trektere, F. McCaffery,

V. Garousi, M. Felderer, O. Linssen, E. Hanser, and C. R. Prause, “Hybrid
Software Development Approaches in Practice: A European Perspective,”
IEEE Software, vol. 36, no. 4, pp. 20–31, Jul. 2019.
https://doi.org/10.1109/MS.2018.110161245

[2] M. Singh, N. Chauhan and R. Popli, “A Framework for Transitioning of
Traditional Software Development Method To Distributed Agile
Software Development,” in 2019 International Conference on Issues and
Challenges in Intelligent Computing Techniques (ICICT), Ghaziabad,
India, Sep. 2019, pp. 1–4.
https://doi.org/10.1109/ICICT46931.2019.8977654

https://doi.org/10.1109/MS.2018.110161245
https://doi.org/10.1109/ICICT46931.2019.8977654

Applied Computer Systems
___2021/26

43

[3] S. Komai, H. Nakanishi and H. Saidi, “Guidelines for Selecting Agile
Development Method in System Requirements Definition,” in 2017 7th
IEEE International Conference on Control System, Computing and
Engineering (ICCSCE), Penang, Nov. 2017, pp. 49–53.
https://doi.org/10.1109/ICCSCE.2017.8284378

[4] S. A. Ruk, M. F. Khan, S. G. Khan, and S. M. Zia, “A Survey on Adopting
Agile Software Development: Issues & Its impact on Software Quality,”
in 2019 IEEE 6th International Conference on Engineering Technologies
and Applied Sciences (ICETAS), Kuala Lumpur, Malaysia, Dec. 2019, pp.
1–5. https://doi.org/10.1109/ICETAS48360.2019.9117324

[5] L. R. Vijayasarathy and C. W. Butler, “Choice of Software Development
Methodologies: Do Organizational, Project, and Team Characteristics
Matter?,” IEEE Software, vol. 33, no. 5, pp. 86–94, Sep. 2016.
https://doi.org/10.1109/MS.2015.26

[6] H. Ishii, K. Maruya, T. Habara and H. Washizaki, “Compatibility
Assessment Method for Agile Development Based on Project
Characteristics,” SIG Technical Reports, vol. 2015-SE-187, no. 36, 2015.

[7] A. Shimoda and T. Yabuki, “Cost and Value Analysis of Software
Development Method Focused on Individual Function,” in 2017 Eighth
International Conference on Intelligent Computing and Information
Systems (ICICIS), Cairo, Dec. 2017, pp. 237–243.
https://doi.org/10.1109/INTELCIS.2017.8260053

[8] J. Sheffield and J. Lemétayer, “Factors Associated with the Software
Development Agility of Successful Projects,” International Journal of
Project Management, vol. 31, no. 3, pp. 459–472, Apr. 2013.
https://doi.org/10.1016/j.ijproman.2012.09.011

[9] T. Imani and M. Nakano, “Managing Large-Scale IT Projects: A
Decision-Making Flow Using Plan-Driven and Agile Method for a Hybrid
Approach,” Journal of the Society of Project Management, vol. 18, no. 3,
pp. 14–19, 2016.

[10] A. Rauf and M. AlGhafees, “Gap Analysis between State of Practice and
State of Art Practices in Agile Software Development,” in 2015 Agile
Conference, Washington, DC, Aug. 2015, pp. 102–106.
https://doi.org/10.1109/Agile.2015.21

[11] S. A. Ruk, M. F. Khan, S. G. Khan, and S. M. Zia, “A Survey on Adopting
Agile Software Development: Issues & Its impact on Software Quality,”
in 2019 IEEE 6th International Conference on Engineering Technologies
and Applied Sciences (ICETAS), Kuala Lumpur, Malaysia, Dec. 2019, pp.
1–5. https://doi.org/10.1109/ICETAS48360.2019.9117324

[12] B. Boehm and R. Turner, “Management Challenges to Implementing
Agile Processes in Traditional Development Organizations,” IEEE
Software, vol. 22, no. 5, pp. 30–39, Sep. 2005.
https://doi.org/10.1109/MS.2005.129

[13] M. Marinho, J. Noll, I. Richardson, and S. Beecham, “Plan-Driven
Approaches Are Alive and Kicking in Agile Global Software
Development,” in 2019 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement (ESEM), Porto de
Galinhas, Recife, Brazil, Sep. 2019, pp. 1–11.
https://doi.org/10.1109/ESEM.2019.8870168

[14] K. K. Lija, K. Laakso, and J. Palomäki, “Using the Delphi Method,” in
2011 Proceedings of PICMET’11: Technology Management in the
Energy Smart World (PICMET), Portland, OR, 2011, pp. 1–10

[15] L. Leimane., O. Nikiforova. “Results from Expert Survey on System
Analysis Process Activities”, in Applied Computer Systems, Vol. 24, Issue
2, pp. 141.-149., 2019. https://doi.org/10.2478/acss-2019-0018

[16] O. Nikiforova and U. Sukovskis, “Framework for Comparison of System
Modelling Tool”, in Proceedings of Fifth IEEE International Baltic
Workshop on DB and IS, BalticDB&IS’2002, Tallinn, Estonia, Jan. 2002,
vol. 1, pp. 63–70.

[17] L. Madelāne, “Analytical Review on Agile, Disciplined and Hybrid
Approaches to Software Development,” Bachelor thesis, Riga Technical
University, 2020.

Oksana Ņikiforova received the
Doctoral degree in Information
Technologies (system analysis,
modelling and design) from Riga
Technical University, Latvia, in 2001.
She is presently a Professor at the
Department of Applied Computer
Science, Riga Technical University. Her
current research interests include Agile
software development methodologies
and project management methods and
tools.
E-mail: oksana.nikiforova@rtu.lv
ORCID iD: https://orcid.org/0000-
0001-7983-3088

Kristaps Babris received the Master
degree in Computer Systems from Riga
Technical University, Latvia, in 2018.
He is presently the second-year PhD
student at the Department of Applied
Computer Science, Riga Technical
University. In parallel, he is a CTO at the
company, which develops Business
Intelligence solutions. His current
research interests include design and
modelling.
E-mail: kristaps.babris@rtu.lv

Linda Madelāne is a recent graduate of
Riga Technical University with
progressive experience in the IT
industry. She has a Bachelor degree in
Computer Control and Computer
Science.
E-mail: linda.madelane@edu.rtu.lv

https://doi.org/10.1109/ICCSCE.2017.8284378
https://doi.org/10.1109/ICETAS48360.2019.9117324
https://doi.org/10.1109/MS.2015.26
https://doi.org/10.1109/INTELCIS.2017.8260053
https://doi.org/10.1016/j.ijproman.2012.09.011
https://doi.org/10.1109/Agile.2015.21
https://doi.org/10.1109/ICETAS48360.2019.9117324
https://doi.org/10.1109/MS.2005.129
https://doi.org/10.1109/ESEM.2019.8870168
https://doi.org/10.2478/acss-2019-0018
mailto:oksana.nikiforova@rtu.lv
https://orcid.org/0000-0001-7983-3088
https://orcid.org/0000-0001-7983-3088
mailto:kristaps.babris@rtu.lv
mailto:linda.madelane@edu.rtu.lv

