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ABSTRACT 
The presented Doctoral Thesis illustrates the Author’s researches in the field of VHDL 

based “neuro-fuzzy controllers”. The Author’s academic investigations involve numerous 

applications of “neuro-fuzzy controllers”, and part of Doctoral researches focuses on 

evaluating different implementation methods. The decision of VHDL as “controller’s 

hardware description language” is the outcome of the Author’s academic researches, which 

are the core of the Author’s international papers.  

Presented work starts with an overview of autonomous mobile robotics applications, 

automotive applications and small Autonomous Unmanned Aerial Vehicles (derivative from 

RC planes), which describes the context where the Doctoral Thesis is implanted.  

Then, the dissertation moves to the motivations behind the decision process of the 

selection of VHDL as “controller’s hardware description language”, strictly correlated to the 

flexibility and the advantages of using an FPGA instead of a multi-core MCU. A major focus 

is given to the FPGAs parallel processing functionality. Part of the Doctoral Thesis 

scrutinises methods to mitigate the complexity of a VHDL based description and the 

implementation of advanced learning processes. 

Doctoral Thesis examines a novel software tool for the high-level “neuro-fuzzy 

controller” description capable of executing controller simulations, optimisation tasks, 

performing learning/training tasks, and exporting the controller in VHDL code.  

The Thesis proposes an application case for the VHDL based “neuro-fuzzy controllers” 

researches, aiming the use of learning/training controller’s capability to off-load the 

mechanical design. This approach targets the controller fine-tuning through a replicable 

process, which shall allow adapting the controller’s parameters to the mechanical 

characteristics of the RC plane that shall be converted into a small Unmanned Aerial Vehicle. 

A series of mechanical and electrical/electronic hardware assumptions and definitions are 

made as pre-requisites for the controller conception. The proposal’s focus is the controller’s 

design strategy, scrutinising the design process, the description and the simulation of the 

“neuro-fuzzy controller”.   

Since the system’s pre-requisites and boundary conditions are finalised to deliver a 

general aerial vehicle controller, the Thesis aims to deliver a “neuro-fuzzy controller” capable 

of replicating a human being pilot behaviour. Efforts are made to establish: fuzzy controller’s 

simulation (fuzzy controller is the core of the “neuro-fuzzy controller” before the 
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learning/training process and the optimisation process), a learning/training process and, an 

optimisation process.  

A learning capable controller design may result in a very sophisticated design, and the 

designer shall rely on robust software tools; the selection of the learning/training acceleration 

tool becomes a crucial step of the dissertation application case. Even more important for the 

dissertation is the definitions of the “Simulation Conditions” on which the “core fuzzy 

controller” shall be tested. In fact, a mandatory condition for an appropriate learning/training 

process is to use a “core fuzzy controller”, already capable of performing basic tasks, as the 

heart of the system.  

What is drawn, between the lines, by the Doctoral Thesis is the introduction of a design 

strategy that is looking to develop solutions for complex controller architecture of mobile 

robotic vehicles (of any nature) or even for multiple industrial application. This work enables 

further investigative researches into autonomous robotics, particularly to the physical 

implementation of an Autonomous Aerial Unmanned Vehicle from an inexpensive RC plane. 

A simplified RC plane design may be used, as a worst-case scenario for the controller 

design, where a 3D printed homebuilt aircraft may be turned into AUAV, through the process 

and the algorithms disserted. Replication of the learning/training process and their iteration 

on different mechanics and different RC planes to be adapted into AUAV may result in 

information gold mining for the researchers. Indeed, the determination of reliable processes 

allows researchers to reutilise the same principles for totally different applications, 

circumscribed only by the researcher’s imagination. 

The Doctoral Thesis has been written in English. All summaries and conclusions and the 

results of the research relate to the hypothesis and the relationship between them. Researches 

outcome has the potential to evolve into other projects consisting of various methodologies 

extracted from the investigations. 

The Thesis consists of 7 chapters, inclusive of the introduction and the subsequent conclusions. 

The bibliography contains 66 reference sources and 12 appendices. 

The volume of the present Doctoral Thesis is 249 pages. 

It has been illustrated with 111 figures, 88 formulas and 19 tables. 
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Anotācija 

Promocijas darbs ilustrē autora pētījumus saistībā ar “neironu faziloģikas 

kontrolleriem”, kam pamatā ir VHDL. Autora akadēmiskie pētījumi ietver daudzus “neironu 

faziloģikas kontrolleru” izmēģinājumus, un daļa pētījumu ir vērsta uz dažādu to ieviešanas 

metožu novērtēšanu. Lēmums izmantot VHDL kā “kontrollera aparatūras aprakstīšanas 

valodu” ir autora akadēmisko pētījumu rezultāts, kas ir autora starptautisko rakstu pamatā. 

Promocijas darba sākumā ir autonomas mobilās robotikas lietojuma, transportlīdzekļu 

lietojuma un mazu autonomu bezpilota lidaparātu (atvasinājums no radiovadāmām 

lidmašīnām) pārskats, kurā aprakstīts konteksts promocijas darba ietvaros. 

Turpmāk disertācijā aprakstīts lēmumu pieņemšanas process, izvēloties VHDL kā 

“kontrollera aparatūras aprakstīšanas valodu”, kas cieši saistās ar iespēju dažādību un 

priekšrocībām, izmantojot FPGA, nevis daudzkodolu MCU. Liela daļa uzmanības tiek 

pievērsta FPGA paralēlās apstrādes funkcionalitātei. Promocijas darbā tiek pārbaudītas 

metodes, lai mazinātu uz VHDL balstīta apraksta sarežģītību un progresīvu mācību procesu 

ieviešanu. 

Promocijas darbā tiek pētīts jauns programmatūras rīks augsta līmeņa “neironu 

faziloģikas kontrollera” aprakstam, kas spēj izpildīt kontrollera simulācijas, optimizācijas 

uzdevumus, veikt mācīšanās/apmācības uzdevumus un spēj eksportēt kontrolleri VHDL 

kodā. 

Disertācijā tiek piedāvāts uz VHDL balstītu “neironu faziloģikas kontrolleru” pētījumu 

izmantošanas gadījums ar mērķi izmantot mācīšanās/apmācības kontrollera spējas 

mehāniskās konstrukcijas noslogošanai. Šī pieeja ir vērsta uz kontrollera precīzu 

noregulēšanu ar atkārtojumu palīdzību, kas ļauj kontrollera parametrus pielāgot 

radiovadāmas lidmašīnas mehāniskajām īpašībām, kura tiks pārveidota par mazu bezpilota 

lidaparātu. Kā priekšnosacījums kontrollera koncepcijai tiek izveidota virkne mehānisku un 

elektrisku/elektronisku aparatūras pieņēmumu un definīciju. Šajā priekšlikumā galvenā 

uzmanība tiek pievērsta kontrollera projektēšanas stratēģijai, rūpīgi pārbaudot “neironu 

faziloģikas kontrolleru” veidošanas procesu, aprakstu un simulāciju. 

Tā kā sistēmas priekšnosacījumi un robežnosacījumi ir pilnībā skaidri, tad, lai izveidotu 

universālu lidaparāta kontrolleri, disertācijas mērķis ir radīt “neironu faziloģikas kontrolleri”, 

kas spētu imitēt cilvēka kā pilota rīcību. Ir mēģinājumi izveidot faziloģikas kontrollera 

simulāciju (faziloģikas kontrolleris ir “neironu faziloģikas kontrollera” pamats pirms 
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mācīšanās/apmācības un optimizācijas procesa), mācīšanās/apmācības procesu un 

optimizācijas procesu. 

Tādu kontrolleri ar iemācīšanās opciju var būt ļoti sarežģīti izveidot un tā veidotājam 

jāpaļaujas uz izturīgiem programmatūras rīkiem – mācīšanās/apmācības paātrināšanas rīka 

izvēle kļūst par izšķirošu soli disertācijā aprakstītā izmantojuma gadījumā. Vēl nozīmīgāki ir 

“Simulācijas apstākļu” nosacījumi, kuros būtu jātestē “pamata faziloģikas kontrolleris”. 

Patiesībā obligāts nosacījums atbilstošam mācīšanās/apmācības procesam ir izmantot 

“pamata faziloģikas kontrolleri” kā sistēmas centru, kas jau spēj veikt vienkāršus uzdevumus. 

Disertācijā vispārējā ideja ir ieviest tādu projektēšanas stratēģiju, kuras mērķis ir 

izstrādāt risinājumus mobilo robotu transportlīdzekļu (jebkāda veida) sarežģītai kontrolleru 

arhitektūrai vai pat dažādām industriālām vajadzībām. Šis darbs dod iespēju turpināt 

pētījumus par autonomu robotiku, jeb radīt autonomu bezpilota lidaparātu no lētas RC 

(radiovadāmas) lidmašīnas. 

Vienkāršotu RC lidmašīnas projektu var izmantot kā pēdējo variantu neveiksmīgāka 

rezultāta gadījumā, lai izveidotu kontrolleri, kur 3D formātā izdrukātu un mājās uzbūvētu 

lidaparātu procesa gaitā un ar pārrunāto algoritmu palīdzību varētu pārveidot par AUAV. 

Mācīšanās/apmācības procesu imitēšana un to atkārtojums dažādos mehānismos un dažādām 

RC lidmašīnām, ko pārveidotu par AUAV, pētniekiem varētu kļūt par informācijas zelta 

raktuvēm. Patiesi, uzticamu procesu noteikšana ļauj pētniekiem atkārtoti izmantot vienus un 

tos pašus principus pilnīgi atšķirīgiem pielietojumiem, ko ierobežo tikai pētnieka iztēle. 

Promocijas darbs ir uzrakstīts angļu valodā. Visi kopsavilkumi un secinājumi, kā arī 

pētījumu rezultāti ir saistīti ar hipotēzi un mijiedarbību starp tiem. Pētījumu rezultātiem ir 

potenciāls attīstīties citos projektos, kas sastāvētu no dažādām metodoloģijām, kas rastos no 

pētījumiem. 

Promocijas darbs sastāv no 7 nodaļām ieskaitot ievadu un sekojošos secinājumus. 

Bibliogrāfija sastāv no 66 atsaucēm un 12 pielikumiem. 

Promocijas darba apjoms ir 249 lapas.  

Darbā ir 111 zīmējumi, 88 matemātiskās formulas un 19 tabulas. 
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1 Introduction 

1.1 Unmanned Vehicles Introduction 

Nowadays, Unmanned Vehicles are getting more popular. Although during the last 

decades’ Unmanned Vehicles mainly had a military application, today it is possible to 

observe Unmanned Vehicles in factories, streets, civil airfields and cities’ parks. It is possible 

to divide Unmanned Vehicles into three groups: 

a) Unmanned Ground Vehicles;  

b) Unmanned Aerial Vehicles; 

c) Unmanned Underwater Vehicles. 

 Unmanned Ground Vehicles 

In the previous decades, “Unmanned Ground Vehicles” (UGV) were primarily 

associated with robots, especially indoor robots used for carrying goods from deposit to 

factory’s working station. Over the last few years, an impressive technological acceleration 

brought to market many new UGV for both military and civil application. The most prevalent 

military applications are: 

a) hazardous object manipulations; 

b) explorer; 

c) delivery of goods and supplies. 

There are many attention-grabbing systems developed for military applications, such as 

the ANDROS (Northrop Grumman Unmanned Ground Systems - Figure 1.1) or the 

Lockheed Martin Squad Mission Support System (SMSS – Figure 1.2). Civil applications for 

UGV result in line with the Thesis researches and, it is possible to highlight a few exciting 

applications:  

a) industrial applications (Autonomous Robots or AR); 

b) Utility Unmanned Ground Vehicles (UUGV); 

c) human transportation. 
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Figure 1.1: ANDROS - Northrop Grumman, Unmanned Ground Vehicles. 

 
Figure 1.2: Lockheed Martin Squad Mission Support System (SMSS). 
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Industrial utilisation is the most common application of civil UGVs. The best example 

is a robotic unit that delivers parts from the stockroom to the single working station and 

withdraws from the working station to the refuse warehouse. Fundamentally this application 

has two advantages: increase the factory’s efficiency/productivity and limit human handling 

of dangerous refuses.  “Figure 1.3” represents a typical illustration of an industrial UGV 

operation environment. 

 

 
Figure 1.3: example of  Industrial Ground Vehicle. 

“Utility Unmanned Ground Vehicle” is a general definition, which may be associated 

with a wide range of UGVs. Generally, it is associated with a vehicle that performs a specific 

task, which might be the delivery of a parcel or a farm field groundwork. A good example 

could be a driverless-capable truck able to assist the driver during his delivery route1 (in order 

to increase the vehicle’s productivity).  

One more interesting example of a “Utility UGV” is represented by the autonomous 

tractor, as shown in “Figure 1.4”. 

                                                 

 
1 The amount of items that may be delivered during a shift by a driver, is generally affected by the availability of parking space near 
the delivery area. This particular kind of UGV may allow the driver to stop near the address where an item should be delivered, in 
meanwhile truck will autonomously move within a pre-defined area and will pick up driver after a specified amount of time. This 
strategy targets delivery time efficiency optimisation. 
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Figure 1.4: Prototype of Autonomous Tractor. 

The last group of autonomous vehicles (human transportation UV topology) might be 

perceived in contrast with the UV’s definition because the vehicle carries a “Human Load”. 

In fact, by definition: UV may be interpreted as a vehicle without any humans or as a vehicle 

that is driverless and capable of performing complex task autonomously, independently by 

the load that they are carrying; in this case, passengers should be professed only like a “load” 

(“Human Load”).  

The best example of a driverless capable passenger vehicle is the “TESLA 

AUTOPILOT” (although the legislator, at the moment, does not allow the driver to take off 

both hands from the steering wheel while the vehicle is moving).  

 Unmanned Aerial Vehicles 

 Unmanned Aerial Vehicles (UAV) is the most famous category of Unmanned Vehicles, 

mainly due to the impact that UAV had on military combat strategies and techniques. Today, 

it is common to associate the perception of a UAV with the USAF models “PREDATOR” 

and “REAPER”. It is also important to highlight that almost all developed countries are 

running programs for new UAVs and AUAVs combat systems that will progressively replace 

the human-piloted reconnaissance vehicles and, lastly, the combat aeroplanes. 
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Figure 1.5: General Atomics Predator B (or MQ-9 Reaper). 

The civil market is also observing a broad interest in UAVs for multiple purposes. 

Increased availability of cheap and durable batteries mixed with the low cost and high-

performance available electronics for controls and power electronics made it possible to 

diffuse small-sized hobby UAVs (widely accessible in a consumer electronics store; it is 

common to observe in our parks flying quad-copters or small model based aeroplanes 

controlled by a smartphone or just flying entirely autonomously). 

 Unmanned Underwater Vehicles 

UUVs may be divided into the two categories of “Remotely Operated Underwater 

Vehicles” (ROUV) and “Autonomous Underwater Vehicles” (AUV). Previously, UUVs 

have been used for a limited number of tasks dictated by the technology available. Recently, 

with technological progress, UUVs and (particularly AUVs) are now being used for more 

and more challenging tasks. It is possible to highlight four main applications of UUVs. 

• Commercial: UUVs are very popular in the oil and gas industry for a large 

variety of uses2; 

                                                 

 
2 Such as: the definition of detailed maps of the seafloor, pre-lay or post-lay subsea infrastructure survey, pipelines or any subsea 
infrastructure installation and maintenance. 
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• Military: the navies of multiple countries are currently producing UUVs to be 

used in oceanic warfare, with particular attention to the sea exploration to 

eradicate underwater mines threats or the sea exploration to detect unfriendly 

objects3; 

• Research: scientists rely on a heterogeneous4 variety of UUVs to study lakes, 

seas, and the ocean floor;  

• Hobby: many robotic enthusiasts enjoy constructing and operating UUVs as a 

hobby.  

1.2 Topicality 

Previously described autonomous vehicles applications (mobile robotics applications, 

driverless automotive applications, AUAV and UAV applications, etc.) define the context 

where the Doctoral Thesis is implanted. However, the Doctoral Thesis objective is devoted 

to the research and development of VHDL based “neuro-fuzzy controllers” for small 

Autonomous Unmanned Aerial Vehicles (derivative from RC planes). 

For many years, fuzzy logic has been an attractive technology for designers of industrial, 

consumer and automotive products. Conversely, achieving the right balance between cost 

and performance results in a difficult task. In fact, fuzzy algorithms can be executed on low-

cost MCUs, but as these have architectures that were not designed to handle fuzzy logic often 

their performance results being inadequate. Dedicated fuzzy processor microchips can meet 

the most demanding performance requirements, but it is mainly an expensive ASIC solution.  

Indeed, only a few full customs (or semi-custom) integrated fuzzy controllers exist and most 

of them are assembled from standard cells at the gate level. At the moment, an FPGA based 

solution is a valid option capable of delivering both: good system performances and high 

flexibility to the designer. Relevant scientific literature proves the strength of the use of 

FPGAs for the implementation of neuro-fuzzy controllers. FPGA’s parallel processing 

capability results in a significant advantage over the use of conventional MCUs, which are 

operating serial data processing.  

                                                 

 
3 There are a very large variety of objects that a navy may wish to detect. As simple example a navy may look for a missing airplane’s 
wreckage or an illegal UUV used for drug smuggling. 
4 In function of the UUV’s task its technical characteristics may significantly change. For instance, a variety of sensors can be 
affixed to AUVs to measure the concentration of various elements or compounds, the absorption or reflection of light, and the 
presence of microscopic life. Or operate conductivity-temperature-depth sensors (CTDs), fluorometers, and pH sensors. 
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The selection of VHDL as “controller’s hardware description language” has its 

fundamentals on the VHDL efficiency and reliability for sophisticated hardware, verified in 

numerous scientific articles, such as an AUAV controller. 

1.3 Primary Hypothesis and Intentions 

As system pre-requisites and boundary conditions are finalised to deliver a general aerial 

vehicle controller, the Thesis aims to deliver a “neuro-fuzzy controller” capable of replicating 

a human being pilot behaviour. A series of mechanical and electrical/electronic hardware 

assumptions and definitions are made as pre-requisites for the controller’s conception.  

Project’s Hypotheses are: 

a) to use a fly-wing platform as a baseline for the small UAV mechanical design;  

b) to use a not optimised mechanical design;  

c) the controller shall compensate eventual mechanical misbalances; 

d) the controller, by definition, has nine inputs (altitude, speed, pitch angle, rolling 

angle, yaw angle, estimated position, flight reference parameters, proximity 

sensor and, battery state of charge);  

e) the controller, by definition, has five outputs (ailerons, elevator, rudder, left E-

Motor and, right E-Motor) 

f) to use a Lattice Semiconductors automotive-qualified FPGA;  

g) to define a binding set of “simulation conditions” for the validation process of 

the controller; 

h) to use two independent low-cost BLDC motors and two independent motor 

drivers; 

i) the telemetry’s data will be stored into a dedicated EEPROM. 

The project’s goals are to establish: fuzzy controller simulation, a learning/training 

process and, an optimisation process. 

Project’s Intentions are: 
a) to move part of the hardware/mechanical design load, making it as thoroughly as 

possible, to the controller design; 

b) overcome the design load of defining the UAV flight dynamics model;  

c) to predispose the controller design to be easily adapted to different platforms with 

different flight dynamics models; 

d) to define a control unit capable of parallel computation; 
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e) to design a fuzzy logic controller able to perform limited flying operations; 

f) to validate the fuzzy logic controller through the use of simulations;  

g) to define the fuzzy logic controller optimisation process; 

h) to define an algorithm development strategy for the learning/training process.  

1.4 Methods of Research and Development 

Doctoral Thesis scrutinises methods to mitigate the complexity of a VHDL based 

controller’s description and to implement advanced learning processes. 

A learning capable controller design may result in being a very complex project, and the 

designer shall rely on robust software tools. The selection of the learning/training acceleration 

tool becomes a crucial step of the dissertation. However, paramount importance is assigned 

to the definitions of the “simulation conditions” on which the “core fuzzy controller” should 

be tested. In fact, a mandatory condition for an appropriate learning/training process is to use 

a “core fuzzy controller”, already capable of performing basic tasks, as the heart of the 

system.  

Many of the processes of theoretical calculations and graphical representation of the 

results have been obtained utilising a menagerie of software systems, including: 

• Aforge.net (C# framework); 

• ALDEC Active-HDL (VHDL compatible FPGA design creation and simulation 

environment); 

• Altium Designer (hardware design environment); 

• Cadence-OrCAD (hardware design environment); 

• fuzzyTECH (Fuzzy/Neural GUI for fuzzy logic modelling and programming 

algorithms); 

• Lattice Diamond (Lattice Semiconductors VHDL design environment); 

• LT Spice (hardware design environment); 

• MATLAB (multi-paradigm numerical computing environment); 

• Maplesoft Maple (symbolic and numeric computing environment); 

• Microsoft Excel (tables and spreadsheets); 

• Microsoft Paint 3D (2D parts design); 

• Microsoft PowerPoint (2D parts design); 

• Microsoft Visio (2D parts design); 

• Microsoft Word;  
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• Model-Sim (Mentor Graphics); 

• Neural.NET (neural guided learning software); 

• Pspice (Circuit modelling and analysis); 

• Synopsys Synplify PRO (VHDL compatible FPGA synthesis software);  

• Solidworks (3D parts design environment); 

• XFL3 (Xfuzzy 3 GUI development environment for Neuro-Fuzzy system design, 

optimisation and simulations).  

1.5 Scientific Novelty 

The project’s primary focus is a small AUAV (it is assumed to be an autonomous RC 

plane) “neuro-fuzzy controller” capable of replicating a human being pilot behaviour. Efforts 

are concentrated on the design, the description and the simulation of the “neuro-fuzzy 

controller”. Doctoral Thesis introduces a design strategy proficient at supporting advanced 

controller’s development for mobile robotic vehicles of any nature or even for multiple 

industrial application5.  

The dissertation examines a novel software’s tool for the high-level “neuro-fuzzy 

controller description” capable of executing controller’s simulations, optimising tasks, 

performing learning/training tasks, and exporting the controller in VHDL code. 

The resulting outcome is a flexible and innovative system capable of being adapted to a 

different machine through a training-based process for the adjustment, weighting, and 

learning of the neuro-fuzzy control algorithm.  

1.6 Practical Application of Research Results 

The Thesis proposes an application case for the VHDL based “neuro-fuzzy controllers” 

researches, aiming the use of learning/training controller’s capability to off-load the 

mechanical design. This approach targets the controller’s fine-tuning through a replicable 

process, which shall allow adapting the controller’s parameters to the mechanical 

characteristics of the RC plane that might be converted into a small AUAV.  

A simplified 3D printed homebuilt RC plane is an extreme study case. Turning it into a 

basic AUAV, thanks to the use of core algorithms properly adapted and developed through a 

                                                 

 
5 Few Author’s international publications developed self-learning concepts capable of being applied to a wide range of difficult 
control networks design. 
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series of proposed optimisation and learning/training processes, it may represent a 

remarkable achievement.   

Researches results are applicable to a wide range of autonomous robotics, not only to the 

physical implementation of an AUAV from an inexpensive RC plane. The determination of 

reliable processes may allow reutilising the same principles for different kind of applications.  

1.7 Dissemination of Research Results 

Author’s academic investigations touched on several different applications of “neuro-

fuzzy controllers”, and part of Doctoral research focused on evaluating different 

implementation methods. The decision process that led to the selection of VHDL as 

“controller’s hardware description language” is linked to the Author’s academic researches. 

The following ten publications are presented in the Doctoral Thesis: 

1. L. R. Adrian, D. Repole and L. Ribickis, “Proposed neuro-guided learning for 

obstacle avoidance in AMBOA robotic device”, 2015 56th International Scientific 

Conference on Power and Electrical Engineering of Riga Technical University 

(RTUCON), Riga, 2015, pp. 1-5. 

2. Janis Voitkans, Leslie R. Adrian, Donato Repole, “INVESTIGATION OF 

ELECTRICAL PARAMETERS FOR PCB TRANSFORMER” 15th International 

Scientific Conference: Engineering for Rural Development 25-27.05.2016 Jelgava, 

LATVIA, pp. 1445-1452. 

3. L. R. Adrian, D. Repole and L. Ribickis, “High efficiency modular DC-DC power 

converter for adaption to industrial & hybrid robotics”, 2016 57th International 

Scientific Conference on Power and Electrical Engineering of Riga Technical 

University (RTUCON), Riga, 2016, pp. 1-5. 

4. L. R. Adrian and D. Repole, “Intelligent autonomous environmental monitoring based 

on the AMBOA robot sensory system”, 2017 IEEE 58th International Scientific 

Conference on Power and Electrical Engineering of Riga Technical University 

(RTUCON), Riga, 2017, pp. 1-6. 

5. D. Repole and L. R. Adrian, “Fuzzy nano piezo hybrid for fault detection in 

automotive power PCB”, 2017 IEEE 37th International Conference on Electronics 

and Nanotechnology (ELNANO), Kiev, 2017, pp. 400-404. 

6. D. Repole and L. R. Adrian, “Evaluation of GaN MOSFET for Unmanned Aerial 

Vehicles BLDC Motor Drive”, 2018 IEEE 59th International Scientific Conference on 
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Power and Electrical Engineering of Riga Technical University (RTUCON), Riga, 

Latvia, 2018, pp. 1-4. 

7. D. Repole and L. R. Adrian, “Introduction to Parallel MAS Control for MAS - Smart 

Sensor Networks”, 2019 IEEE 60th International Scientific Conference on Power and 

Electrical Engineering of Riga Technical University (RTUCON), Riga, Latvia, 2019, 

pp. 1-5. 

8. L. R. Adrian, D. Repole and A. Rubenis, “Comparative study of Lithium-Ion hybrid 

super capacitors”, 19th International Scientific Conference Engineering for Rural 

Development, 20-22.05.2020 Jelgava, LATVIA, pp. 906-912. 

DOI:10.22616/ERDev.2020.19.TF217. 

9. D. Repole and L. R. Adrian, “VHDL based Neuro-Fuzzy Lithium-Ion Hybrid Super 

Capacitors management, Advantages of the high-level descriptions of neural fuzzy 

logic-based systems”, 2020 IEEE 61th International Scientific Conference on Power 

and Electrical Engineering of Riga Technical University (RTUCON), Riga, Latvia, 5-

6 Nov. 2020. 

10. Krists Kviesis, Leslie Robert Adrian, Ansis Avotins, Olegs Tetervenoks and D. Repole, 

“MAS Concept for PIR Sensor-Based Lighting System Control Applications”, 8th 

IEEE Workshop on Advances in Information, Electronic and Electrical Engineering 

(AIEEE’2020), Vilnius (Lithuania) 2021, accepted for publication (ID: PID014). 
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2 Unmanned Vehicles Control Strategies Overview 

Each kind of Unmanned Vehicles has a specific control strategy that allows the 

performing of particular tasks. In specific, it is taken as an example of the control strategy for 

a civil UAV. Generally, it might be applied to three different control strategies to govern a 

UAV, which are: 

a) linear control;  

b) non-linear control; 

c) AI (learning-based control). 

2.1 Principles of flight dynamics 

Newton’s laws of mechanics for a body frame, whose origin coincides with the aircraft’s 

centre of mass, are defined by: 

𝐹𝐹𝐵𝐵 = 𝑚𝑚 ∙ 𝑣̇𝑣𝐵𝐵 + 𝜔𝜔𝐵𝐵 × 𝑚𝑚 ∙ 𝑣𝑣𝐵𝐵 

(Equation 1) 

𝑇𝑇𝐵𝐵 = 𝐽𝐽𝐵𝐵 ∙ 𝜔̇𝜔𝐵𝐵 + 𝜔𝜔𝐵𝐵 × 𝐽𝐽𝐵𝐵 ∙ 𝜔𝜔𝐵𝐵 

(Equation 2) 

𝐽𝐽𝐵𝐵 = � 𝜌𝜌(𝑠𝑠)[(𝑠𝑠 ∙ 𝑠𝑠)𝐼𝐼 − 𝑠𝑠⨂𝑠𝑠]𝑑𝑑𝑑𝑑
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

 

(Equation 3) 

 
Figure 2.1: various body frames used for aircraft analysis.[1] 
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Where: the subscript “B” indicates vectors or tensors expressed in the body frame, the 

dot indicates differentiation with respect to time, “𝑣𝑣𝐵𝐵” is the velocity of the aircraft’s centre 

of mass with respect to the inertial frame, “𝜔𝜔𝐵𝐵” is the angular velocity of the body frame with 

respect to the inertial frame, “𝑚𝑚” is the aircraft's mass, and “𝐽𝐽𝐵𝐵” is its inertia tensor, which is 

constant in the body frame. [1] 

Equations mentioned above might be written as follows: 

1
𝑚𝑚
𝐹𝐹𝐵𝐵 ≡

1
𝑚𝑚
�
𝑋𝑋
𝑌𝑌
𝑍𝑍
� = �

𝑈̇𝑈 + 𝑄𝑄𝑄𝑄 − 𝑅𝑅𝑅𝑅
𝑉̇𝑉 + 𝑅𝑅𝑅𝑅 − 𝑃𝑃𝑃𝑃
𝑊̇𝑊 + 𝑃𝑃𝑃𝑃 − 𝑄𝑄𝑄𝑄

� 

(Equation 4) 

𝑇𝑇𝐵𝐵 ≡ �
𝐿𝐿�
𝑀𝑀
𝑁𝑁
� = �

𝐽𝐽𝑥𝑥𝑥𝑥𝑃̇𝑃 − 𝐽𝐽𝑥𝑥𝑥𝑥𝑅̇𝑅 + 𝑄𝑄𝑄𝑄�𝐽𝐽𝑧𝑧𝑧𝑧 − 𝐽𝐽𝑦𝑦𝑦𝑦� − 𝑃𝑃𝑃𝑃𝐽𝐽𝑥𝑥𝑥𝑥
𝐽𝐽𝑦𝑦𝑦𝑦𝑄̇𝑄 + 𝑃𝑃𝑃𝑃�𝐽𝐽𝑥𝑥𝑥𝑥 − 𝐽𝐽𝑧𝑧𝑧𝑧� + (𝑃𝑃2 − 𝑅𝑅2)𝐽𝐽𝑥𝑥𝑥𝑥
𝐽𝐽𝑧𝑧𝑧𝑧𝑅̇𝑅 − 𝐽𝐽𝑥𝑥𝑥𝑥𝑃̇𝑃 + 𝑃𝑃𝑃𝑃�𝐽𝐽𝑦𝑦𝑦𝑦 − 𝐽𝐽𝑥𝑥𝑥𝑥� − 𝑄𝑄𝑄𝑄𝐽𝐽𝑥𝑥𝑥𝑥

� 

(Equation 5) 

“𝐹𝐹𝐵𝐵” denotes the sum of the forces acting on the vehicle (including aerodynamic, 

gravity, thrust, and buoyancy), and “𝑇𝑇𝐵𝐵” denotes the sum of the moments of these forces 

about its centre of mass. [1] 

 
Figure 2.2: representation of the “lift” and the “drag” acting on the aircraft.[1] 

Neglecting the aircraft's rotational dynamics and treating it as a point mass with no thrust, 

the twelve non-linear equations of motion (EOMs) used to represent 6-DOF aircraft motion 

(Honeywell, 1996:65-66) reduce to the following six non-linear differential equations. [2] 
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𝑉̇𝑉𝑡𝑡 =
1

𝑚𝑚
[−𝐷𝐷 − 𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠(𝛾𝛾)] 

(Equation 6) 

𝜓𝜓
˙

=
1

𝑚𝑚 ∙ 𝑉𝑉𝑡𝑡 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝛾𝛾)
[𝐿𝐿 𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)] 

(Equation 7) 

𝛾̇𝛾 =
1

𝑚𝑚 ∙ 𝑉𝑉𝑡𝑡
[𝐿𝐿 𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙) −𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐(𝛾𝛾)] 

(Equation 8) 

ℎ̇ = 𝑉𝑉𝑡𝑡 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝛾𝛾) 

(Equation 9) 

𝐸̇𝐸 = 𝑉𝑉𝑡𝑡 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝛾𝛾) 𝑠𝑠𝑠𝑠𝑠𝑠(𝜓𝜓) 

(Equation 10) 

𝑁̇𝑁 = 𝑉𝑉𝑡𝑡 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝛾𝛾) 𝑐𝑐𝑐𝑐𝑐𝑐(𝜓𝜓) 

(Equation 11) 

Where: 

ψ   → Heading Angle (deg) 

φ  → Roll Angle (deg) 

γ  → Flight Path Angle (deg) 

D  → Drag (kgf) 

E  → Inertial Crossrange Distance (m) 

g   → Gravitational Acceleration (m/s2) 

h  → Inertial Altitude (m) 

L  → Lift (kdf) 

m  → Mass (kg) 

N  → Inertial Downrange Distance (m) 

T → Thrust 

Vt  → True airspeed (m/s) 

 

In the case of a vehicle with a powertrain capable of generating a thrust, “Equation 6” is 

not valid and shall be considered “Equation 12”. 
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𝑉̇𝑉𝑡𝑡 =
1

𝑚𝑚
[𝑇𝑇 − 𝐷𝐷 − 𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠(𝛾𝛾)] 

(Equation 12) 

 
Figure 2.3: Dentition of the flight path angle.[1] 

2.2 Linear Control 

The UAV’s control may be accomplished using estimates of its dynamic states, including 

position, velocity, angular rate, and attitude of the autonomous vehicle. Linear Control is the 

more straightforward approach for achieving a UAV autonomous control; a simplified set of 

aircraft motion equations can be derived for route planning purposes. In deriving these 

equations, the aircraft roll rate, pitch rate, and yaw rate dynamics are neglected and 

superseded using kinematic approximations. The resulting model describes the motion of a 

rigid point mass with kinematic path constraints. For this model, the position of the aircraft 

in an inertial frame whose 𝑥𝑥 axis is parallel to the local horizon is denoted by: 𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒 , 𝑧𝑧𝑒𝑒. The 

flight “path angle 𝛾𝛾” denotes the angle between the local horizon and the velocity vector of 

the aircraft “𝑉𝑉𝑇𝑇”. The “heading angle 𝜓𝜓” is the angle between: “𝑉𝑉𝑇𝑇” and the 𝑧𝑧 axis of the local 

inertial frame. The “bank angle 𝜙𝜙” is the angle that the aircraft is banked about the velocity 

vector (𝑉𝑉𝑇𝑇). The forces acting on the aircraft consist of the weight “𝑚𝑚 ∙ 𝑔𝑔”, thrust “𝑇𝑇”, lift 

“𝐿𝐿”, and drag “𝐷𝐷”. The equations for a point mass model of a fixed-wing aircraft can then be 

formulated by assuming small “𝛾𝛾” and “𝜓𝜓”.  

[1] 

𝑥̇𝑥𝑒𝑒 = 𝑉𝑉𝑇𝑇 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝛾𝛾) ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜓𝜓) 

(Equation 13) 
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𝑦̇𝑦𝑒𝑒 = 𝑉𝑉𝑇𝑇 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝛾𝛾) ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜓𝜓) 

(Equation 14) 

𝑥̇𝑥𝑒𝑒 = −𝑉𝑉𝑇𝑇 𝑠𝑠𝑠𝑠𝑠𝑠(𝛾𝛾) 

(Equation 15) 

𝑉̇𝑉𝑡𝑡 =
1

𝑚𝑚
[𝑇𝑇 − 𝐷𝐷 − 𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠(𝛾𝛾)] 

(Equation 16) 

𝛾̇𝛾 =
1

𝑚𝑚𝑉𝑉𝑇𝑇
[𝐿𝐿 𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙) −𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐(𝛾𝛾)] 

(Equation 17) 

𝜓𝜓
˙

=
𝐿𝐿 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)

𝑚𝑚 ∙ 𝑉𝑉𝑇𝑇 𝑐𝑐𝑐𝑐𝑐𝑐(𝛾𝛾) 

(Equation 18) 

𝐿𝐿 ≡ 𝑄𝑄�𝑆𝑆𝐶𝐶𝑙𝑙 

(Equation 19) 

𝐷𝐷 = 𝑄𝑄�𝑆𝑆(𝐶𝐶𝐷𝐷0 + 𝐾𝐾𝐶𝐶𝐿𝐿2) 

(Equation 20) 

Where: 

CD0   → parasitic drag coefficient 

CL  → lift coefficient 

K  → aircraft wing geometry constant 

𝑄𝑄� → dynamic pressure equal to 1
2
𝜌𝜌𝑉𝑉𝑇𝑇2    

𝜌𝜌 → air density 

S  → wing surface area (m2) 

 

A linear control tries to approximate a complex non-linear problem, although described 

by a simplified pattern of equations, into a linear system that may be reduced as a classical 

control feedback loop.  

[3 and 4] 
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Figure 2.4: a classical control feedback loop representation. [1] 

Due to the complexity of the dynamics, there are two basic strategies for the control 

design. 

The first method is to continue the decomposition in the previous section to identify 

components of the dynamics that are well controlled by specific choices of the actuators, and 

then perform successive loop closure (Figure 2.5). In this case, the loops are nested by 

arranging that the outer-loop controller provides the reference commands for the inner loop. 

Figure 2.5 shows an example in which the outermost position control loop provides desired 

velocity commands using path following guidance previously discussed. The outer velocity 

control loop provides a reference (in this case, the desired quaternion value) for the inner 

attitude control loop. A key advantage of this approach is that it leads to a natural mechanism 

of handling limits on flights variables (e.g., bank or pitch angles) and actuator inputs because 

the reference commands can be saturated before being passed to the inner loop. Each step of 

the control design process may result simplistic, but the control loops’ nesting leads to some 

challenges. A general design rule aims that the inner control loops result in “fast” dynamics, 

and then each successive loop added is “slower than the previous one”. The primary 

challenges are the determination of what is fast or slow and the entity of the interaction 

between the inner/outer loops being closed6. “Figure 2.5” illustrates the previously described 

simplified approach (but extremely robust), which describes the “successive loop-closure 

control architecture”. [1, 3 and 4] 

                                                 

 
6 e.g., closing the outer loop might reduce the performance of the inner loop requiring a redesign. 
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Figure 2.5: successive loop-closure control architecture.[1] 

The second approach is to design a controller for the full dynamics, either linear or 

non-linear. The advantage of this approach is that it employs the state space control 

approaches to handle fully coupled dynamics. However, it is challenging to handle the 

actuator’s saturation and very hard to include state constraints. Furthermore, unless done with 

extreme care, these controllers, especially in high-performance flight, can be very sensitive 

to modelling errors and omissions. [1 and 3] 

As soon as is defined the architecture, the next step in any control design is to determine 

the dynamics of the system of interest (i.e., the full set of dynamics or the approximate inner 

loop dynamics). The subsequent action defines the requirements and the extent to which the 

dynamics will meet its goals. For example, could be requirements on a specific frequency (to 

ensure the dynamics are “fast”) and damping (to ensure that the oscillations die out quickly) 

specifications on the pole locations. There may also be requirements on the maximum steady 

tracking error to a step command input. Since the vehicle’s open-loop dynamics rarely satisfy 

these requirements, the typical approach uses linear feedback control to modify the pole 

locations and loop gains. [1 and 3] 

A full-state feedback controller could implement this second strategy. Moving by a 

linearized and simplified state-space model, controller design is reduced to a classical 

exercise of well-known control techniques synthesis (controller could be designed using a 

specific technique such as: “Linear Quadratic Regulator”, “Dynamic Output Feedback 

Controller”, “Optimal Estimator”, “Robust Controller”, “Robust Control Synthesis” and 

etc.). 
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Figure 2.6: full-state feedback controller.[1] 

2.3 Non-Linear Control 

The scientific literature shows that for LTI systems, the controller’s design may result in 

a simple task, but in front of a non-linear system, some other more complex techniques should 

be considered, with particular attention to the system’s stability. The most common non-

linear control techniques7 are: 

• Linearization (approximation); 

• Feedback Linearisation; 

• Lyapunov Stability; 

• CPWL (Continuous Piecewise Linear Approximation). 

It has been shown that aircraft dynamics can be linearized around equilibrium points (or 

trim conditions). A commonly used aircraft control methodology leverages this fact by 

designing a finite number of linear controllers, each corresponding to a linear model of the 

aircraft dynamics near a design trim condition. The key motivation in this approach is to 

leverage well-understood tools in linear systems design. [5] 

Let 𝐴𝐴𝑖𝑖 ,𝐵𝐵𝑖𝑖, 𝑖𝑖 ∈ {1, … ,𝑁𝑁} denote the matrices containing the aerodynamic and control 

effectiveness derivatives around the 𝑖𝑖𝑡𝑡ℎ trimmed condition 𝑥̅𝑥𝑖𝑖. Let 𝑋𝑋1, . . . ,𝑋𝑋𝑁𝑁 be a partition of 

the state space, i.e., 𝑈𝑈𝑖𝑖=1𝑁𝑁 𝑋𝑋𝑖𝑖 = ℝ𝑛𝑛,𝑋𝑋𝑖𝑖 ∩ 𝑋𝑋𝑗𝑗 = ∅ for ≠ 𝑗𝑗 , into regions that are “near” the design 

trim conditions; in other words, whenever the state 𝑥𝑥 is in the region 𝑋𝑋𝑖𝑖, the aircraft dynamics 

are approximated by the linearisation at 𝑥𝑥𝑖𝑖 ∈ 𝑋𝑋𝑖𝑖. Then, the dynamics of the aircraft can be 

approximated as a state-dependent switching linear system as follows: 

                                                 

 
7 Those techniques are briefly enunciated in the “Appendices section”. 
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𝑥̇𝑥 = 𝐴𝐴𝑖𝑖𝑥𝑥 + 𝐵𝐵𝑖𝑖𝑢𝑢 , 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑥𝑥 ∈ 𝑋𝑋𝑖𝑖 

(Equation 21) 

The idea in a gain scheduling based control is to create a set of gains “𝐾𝐾𝑖𝑖” corresponding 

to each of the switched models and apply the linear control 𝑢𝑢 = 𝐾𝐾𝑖𝑖𝑥𝑥. Contrary to intuition, 

however, merely ensuring that the 𝑖𝑖𝑡𝑡ℎ system is rendered stable (that is, the real parts of the 

eigenvalues 𝐴𝐴𝑖𝑖 + 𝐵𝐵𝑖𝑖𝐾𝐾𝑖𝑖 of are negative) is not sufficient to guarantee the closed-loop stability 

of “Equation 21”. A Lyapunov based approach can be used to guarantee the stability of the 

closed-loop when using a gain scheduling controller. [5, 6 and 7] 

Consider the following Lyapunov candidate:  

𝑉𝑉�𝑥𝑥(𝑡𝑡)� = 𝑥𝑥(𝑡𝑡)𝑇𝑇𝑃𝑃𝑃𝑃(𝑡𝑡) 

(Equation 22) 

where 𝑃𝑃 is a positive definite matrix, that is, for all 𝑥𝑥 ≠ 0,  𝑥𝑥𝑇𝑇𝑃𝑃 𝑥𝑥 > 0. Therefore, 

𝑉𝑉(0) = 0, and  𝑉𝑉(𝑥𝑥) > 0 for all 𝑥𝑥 ≠ 0, making 𝑉𝑉 a valid Lyapunov candidate. The derivative 

of the Lyapunov candidate is: 

𝑉̇𝑉(𝑥𝑥) = 𝑥̇𝑥  𝑇𝑇𝑃𝑃𝑃𝑃 + 𝑥𝑥  𝑇𝑇𝑃𝑃𝑥̇𝑥 

(Equation 23) 

For the 𝑖𝑖𝑡𝑡ℎ  system, “Equation 23” can be written as: 

𝑉̇𝑉(𝑥𝑥) = (𝐴𝐴𝑖𝑖𝑥𝑥 − 𝐵𝐵𝑖𝑖𝐾𝐾𝑖𝑖𝑥𝑥)𝑇𝑇𝑃𝑃𝑃𝑃 + 𝑥𝑥𝑇𝑇𝑃𝑃(𝐴𝐴𝑖𝑖𝑥𝑥 − 𝐵𝐵𝑖𝑖𝐾𝐾𝑖𝑖𝑥𝑥) 

(Equation 24) 

Let 𝐴̅𝐴𝑖𝑖 = (𝐴𝐴𝑖𝑖𝑥𝑥 − 𝐵𝐵𝑖𝑖𝐾𝐾𝑖𝑖𝑥𝑥); then from Lyapunov theory, it follows that for a positive 

definite matrix “𝑄𝑄” if for all 𝑖𝑖 

𝐴̅𝐴𝑖𝑖  𝑇𝑇𝑃𝑃 + 𝑃𝑃𝐴̅𝐴𝑖𝑖 < −𝑄𝑄 

(Equation 25) 

then: 

𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝜕𝜕

𝑓𝑓(𝑥𝑥) < −𝑥𝑥𝑇𝑇𝑄𝑄𝑄𝑄 

(Equation 26) 

In this case, “𝑉𝑉(𝑥𝑥)” is a standard Lyapunov function for the switched closed-loop system 

establishing the equilibrium's stability at the origin. Therefore, the control design task is to 

select the gains 𝐾𝐾𝑖𝑖  such that “Equation 25” is satisfied. One way to tackle this problem is 

through the framework of “Linear Matrix Inequalities” (LMI) [5]. It should be noted that the 
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condition in “Equation 25” allows switching between the linear models to occur infinitely 

fast, this can be a reasonably conservative assumption for most UAV control applications. 

This condition can be relaxed to 𝐴̅𝐴𝑖𝑖  𝑇𝑇𝑃𝑃 + 𝑃𝑃𝐴̅𝐴𝑖𝑖 < −𝑄𝑄𝑖𝑖 for  𝑄𝑄𝑖𝑖 > 0 to guarantee the stability of 

the system if the system does not switch arbitrarily fast. A rigorous condition for proving the 

asymptotic stability of a system of the form of “Equation 21” was introduced in [6].  

Let 𝑉𝑉𝑖𝑖, 𝑖𝑖 ∈ {1, … ,𝑁𝑁}be Lyapunov-like functions, i.e., positive definite functions such that 

𝑉̇𝑉𝑖𝑖(𝑥𝑥) < 0 whenever 𝑥𝑥 ∈ 𝑋𝑋𝑖𝑖\{0}. Define 𝑉𝑉𝑖𝑖[𝑘𝑘] as the infimum of all the values taken by 

𝑉𝑉𝑉𝑉during the 𝑘𝑘 − 𝑡𝑡ℎ time interval over which 𝑥𝑥 ∈ 𝑋𝑋𝑖𝑖. Then, if the system satisfies the 

sequence non-increasing condition 𝑉𝑉𝑖𝑖[𝑘𝑘 + 1] < 𝑉𝑉𝑖𝑖[𝑘𝑘], for all 𝑘𝑘 ∈ ℕ, asymptotic stability is 

guaranteed. [5] 

 
Figure 2.7: schematic of a gain scheduled scheme for UAV control8. [5] 

The above example illustrates the use of Lyapunov techniques in synthesising 

controllers. In general, given the system  𝑥̇𝑥(𝑡𝑡) = 𝑓𝑓�𝑥𝑥(𝑡𝑡)�, and a positive definite Lyapunov 

candidate, the Lyapunov synthesis approach of creating robust exponentially stable 

controllers can be summarised as follows: let 𝑉̇𝑉(𝑥𝑥) = 𝑔𝑔(𝑥𝑥,𝑢𝑢), find a control function 𝑢𝑢(𝑥𝑥) 

such that 𝑉̇𝑉(𝑥𝑥) < −𝜖𝜖𝜖𝜖(𝑥𝑥) for some positive constant 𝜀𝜀.  

Robust methods for Lyapunov based control synthesis are discussed in [8]. Furthermore, 

[9] provides an output feedback control algorithm for a system with switching dynamics. 

Linear Parameter Varying (LPV) systems’ framework leads naturally to the design and 

analysis of controllers based on a UAV dynamics representation via linearisation across 

                                                 

 
8 The controller’s selector box decides which linear controller is to be used based on measured system states. 
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multiple equilibria. Gain scheduling based LPV control synthesis techniques have been 

studied for flight control, and conditions for stability have been established. [5] 

2.4 Practical Non-Linear UAV control strategy, CPWL Mathematical model 

and controller approximation 

Moving from the previous description of a few strategies for AUAV control design, in 

order to evaluate the complexity of a non-linear AUAV control, the “CPWL control strategy” 

is taken as an example.   

Achieving a CPWL control algorithm may be a very intricate task, and it is the final 

result of many working steps. The first step is to create a mathematical model capable of 

describing the system’s dynamics during the flight operation. The second step is the test of 

those mathematical models through the use of powerful simulations software (e.g. “Matlab”). 

The use of comprehensive simulations increases the reliability of mathematical models and, 

supports the transition to the design of CPWL control algorithms. For a CPWL control 

algorithm, it is intended a control algorithm that is achieved according to the “continuous 

piecewise linear models” principles and implementation technique.  

The equations previously shown are at the base of the mathematical models that describe 

the AUAV flight dynamics. Models have been developed by [2] for controlling a specific 

aircraft adapting the basic flight equations. These models are tailored to the physical 

characteristics of the vehicle. Indeed, this operation requires the investigation of all the 

unique coefficients associated with the vehicle, which are indispensable for the flight control 

equations’ solution. 

For the mathematical modelling, the Author appreciates the use of “Maplesoft Maple” 

(a commercial computer algebra system developed and sold commercially by Waterloo 

Maple Inc.). This affirmation is motivated by the capability of “Maplesoft Maple” to manage 

“symbolic computations”. In fact, once that all the equations are written, it is possible to 

generate the “CompleteSystem”, as shown in the “Figure 2.8” example. 
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Figure 2.8: “Maplesoft Maple” code extract. 

According to the theory of the non-linear differential system shown before, the CPWL 

controller design passes by the controller’s “Affine Function” (called “F”). This function is 

determined through a series of iterations, as illustrated in Figure 2.9. 

 
Figure 2.9: MAPLE code extract. 

The function “F” is the output generated by “Maplesoft Maple” and should be exported 

to Matlab, which will use that function as input for the generation of the CPWL controller’s 

parameter.  
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As the complete “Affine Function” could be very complicated, it may require a too-large 

computational power (Matlab may generate a control algorithm, which may result too heavy 

for a conventional MCU), and it is recommended to simplify the model that should produce 

a steepest simplification of the CPWL parameters. 

The first simplification taken into consideration is to develop the “Affine Form” in the 

following equations. 
𝐶𝐶𝐷𝐷 = (0.0027 ∙ 𝐶𝐶𝑙𝑙2 + 0.017) + 𝐶𝐶𝐷𝐷𝐷𝐷𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 

(Equation 27) 

𝐶𝐶𝑙𝑙 = 𝐶𝐶𝐿𝐿𝐿𝐿 ∙ 𝛽𝛽 + 𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝑅𝑅𝑅𝑅𝑅𝑅 +
𝑏𝑏

2𝑉𝑉𝑡𝑡
�𝐶𝐶𝐿𝐿𝐿𝐿𝑃𝑃 + 𝐶𝐶𝐿𝐿𝐿𝐿𝑅𝑅� 

(Equation 28) 

The purpose is to avoid quadratic or any other function different than linear (in the 

original system’s controls, there is one control with a quadratic behaviour). 

The next simplification operation may consist of the simplification of the winds 

reckonings and their coordinate transformation. The wind measures, taken in the coordinates  

𝐸𝐸 𝑁𝑁 ℎ  and then transformed to 𝑋𝑋 𝑌𝑌 𝑍𝑍, present their influence on the relative velocity of the 

aircraft. The simplification consists of the assumption: the winds are not measured, and they 

appear in the form of white noise (this make it possible to delete the change of coordinates 

of the winds and work directly with winds in 𝑋𝑋 𝑌𝑌 𝑍𝑍). [2, 5, 10, and 11] 

At this point, the simplified model can be exported9 and may become Matlab’s algorithm 

input. The “CPWL algorithm” is the result of a specific process, where a tailored “Matlab 

toolbox” (for the CPWL algorithm generation) computes the input mathematical model 

(Maple’s exported model or “Matlab input”).  The outcome, the “CPWL Algorithm”, to be 

functional shall be translated into C-Code (or VHDL if it is used an FPGA), using the 

dedicated Matlab’s tool. Generated C-Code is raw and needs a final configuration; this may 

vary in function of the MCU and its specific environment tool (such as MPLAB, IAR, Keil, 

etc.).  The final step includes the MCU programming and debugging operation. 

2.5 Neuro-Fuzzy Logic for UV and Robotic applications 

When fuzzy systems become popular in industrial applications, many engineers 

perceived that developing a fuzzy system with excellent performance might not be a 

                                                 

 
9 The model processed by “Maplesoft Maple”, shall be exported in Matlab through a dedicated GUI’s tool. 
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straightforward task. The problem of attaining membership functions and appropriate 

weighted rules is frequently a laborious and exhausting process of attempts and errors. This 

lead to the idea of employing learning algorithms in fuzzy systems. The neural networks that 

have robust learning algorithms were offered as an alternative to automate or assist the 

development of tuning fuzzy systems. 

Methods for fine-tuning the fuzzy logic controllers are an evolution of fuzzy logic. A 

neuro-fuzzy controller uses the neural network learning techniques to tune the membership 

functions while preserving the semantics of the fuzzy logic controller intact. In conclusion, 

neural networks offer the possibility of solving the problem of tuning. 

 AI, Learning-Based Control 

“Learning-Based Control” (LBC) is an alternative approach to control an Unmanned 

Vehicle and could be based on a hybrid neuro-fuzzy network tuned by a genetic algorithm. 

Practically the system uses the available parameters, or digitally processed differential 

parameters, as inputs of a specific fuzzy membership function.  

The fuzzy system (MIFs, MOFs, FIS, etc.) could be processed in a dedicated neuro-fuzzy 

network. Subsequent interaction of neuro-fuzzy modules and genetic algorithms produce a 

neuro-fuzzy controller tuned by a genetic algorithm10. The training system produces a more 

elaborated and accurate “Fuzzy Inference System” (FIS). 

Usually, a hybrid neuro-fuzzy controller uses a combination of several layers, and only 

two of them will be entirely readable because inner layers, as usual for a neuro-fuzzy system, 

are the neuro-fuzzy hidden layers. 

The first layer contains all “Membership Input Functions” (MIFs), which for a UAV 

controller could be divided in:  

• Flight dynamics membership functions;  

• Trajectory membership functions; 

• Energy estimation membership functions. 

                                                 

 
10 Such iteration is the training process of the fuzzy logic control unit, by a genetic algorithm. 
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Figure 2.10: neural network blocks scheme representation. 

Each MIF activates a specific group of neurones, and each membership function 

activates the “Status neurone”; neuro-fuzzy training (achieved into hidden layers) defines 

features and weights of the second layer neurones network. 

 
Figure 2.11: hybrid neuro-fuzzy network, hidden layer representation. 

The second network (described in “Figure 2.11”) activates the output layer, which may 

be associated with an array of actuators and with a powertrain. The successive step of the 

controller’s design process is the definition of the “defuzzification method”. The designer 

shall select the most appropriate between various methods and techniques; the most 

commonly used is the “Center of Area” method.  
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 Data capture for the training process  

 There are many methods and techniques to achieve the learning system; for the study 

case, one robust strategy could be the collection of data during several human-piloted flights.   

Data collection could be achieved as the UAV is guided via remote control (RC) through 

an area defined as the “selected environment”, which is either the actual environment in 

which the UAV will operate or is a near facsimile of that environment. Therefore, appropriate 

hardware is required to provide the RC aspect of the learning process. The operator guides 

the UAV through a series of flight manoeuvres (such as the take-off, landing, and any other 

significant manoeuvre) to establish a base and bias pattern for the algorithm. The on-board 

data collection algorithm should be designed to capture both digital and analogue readings 

from the UAV sensor array during the allocated learning period “Tlearn”, during which time 

the received data is stored within the on-board memory chip. “Tlearn” must not exceed the 

MOB maximum as in Equation 29. [12 and 13] 

𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 < �
𝑀𝑀𝑀𝑀𝑀𝑀 × 106

�(𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑 × 1) + (𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎 × 2)� × 𝑆𝑆𝑝𝑝𝑝𝑝 × 𝑆𝑆
�𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 

(Equation 29) 

Where: 

𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = Maximum run time. 

𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑 = Digital Sensors (1 or 2 bytes per sample). 

𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎= Analog Sensors ( generally 2 bytes per sample). 

𝑆𝑆𝑝𝑝𝑝𝑝 = Samples per second. 

𝑆𝑆 = Number of seconds. 

𝑀𝑀𝑀𝑀𝑀𝑀 = On-board memory Mbytes.                                                                                        

Collected data consists of raw sensor data from the UAV sensor array and should be 

processed through a selected genetic algorithm11. The process might be referred to a batch 

learning because it could be analysed using the “Delta Rule Method” after the data has been 

collected. The “Delta Rule” is illustrated by “Equation 30” and, in its purest form, as 

pronounced by [14].  

                                                 

 
11 An example case may be the Aforge.net C# framework, which is purpose-designed for developers and researchers in the fields 
of Artificial Intelligence, neural networks, genetic algorithms, machine learning and robotics among other things) 
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∆𝑊𝑊𝑖𝑖𝑗𝑗𝑥𝑥
= −𝜀𝜀

𝛿𝛿𝛿𝛿

𝛿𝛿𝑊𝑊𝑖𝑖𝑖𝑖

= 𝜀𝜀𝜀𝜀𝛼𝛼𝑖𝑖𝑥𝑥  

(Equation 30) 

Scrutinising “Equation 30”, it can be seen that the change in any particular weight is 

equal to the products of: 

• the learning rate 𝜀𝜀; 

• the difference between the target and actual activation of the output node 𝛿𝛿; 

• the activation of the input node associated with the weight in question. 

A higher value for 𝜀𝜀 will inevitably result in a greater magnitude of variation. Because 

each weight update has a physical limit for the error’s reduction, many iterations are required 

in order to minimise error satisfactorily. In batch mode, the value of “Equation 31”, 
𝛿𝛿𝛿𝛿𝑝𝑝
𝛿𝛿𝑊𝑊𝑖𝑖𝑖𝑖

 

(Equation 31) 

is calculated after each sample, and it is submitted to the network with the total derivative 

equation (“Equation 32”) calculated at the end of an iteration by summing the individual 

pattern derivatives. When this value is calculated, it is possible to update the weights. 
𝛿𝛿𝛿𝛿
𝛿𝛿𝑊𝑊𝑖𝑖𝑖𝑖

 

(Equation 32) 

As long as the learning rate epsilon is small, batch mode approximates gradient descents. 

[12, 13 and 15]  
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3 Typical Architectures for Electric Vehicles 

Autonomous Unmanned Vehicles (AUV) development (and evolution) is rigorously 

connected to the vehicles electrification process. Part of the Author’s researches also analyses 

this process, using automotive applications as a significant study case. 

The automotive market’s electrification process is in constant growth, and the 

expectation is that the incoming regulations will strengthen the trend. In fact, across the globe, 

numerous cities and countries are opting for severe “Diesel Combustion Engines” limitation 

in the urban areas and, in a few cases, some substantial limitations as well as for “Petrol 

Combustion Engines”. The E-Mobility process is going to affect the whole urban transport 

(private and public), this means that in the function of the vehicle’s application a specific 

architecture will be used in order to satisfy the new regulations at the lowest production cost. 

3.1 Automotive Regulations/Standards Overview 

Scrutinising the EV/HEV electrical architectures and the annexe legislation, the most 

relevant regulation to highlight is the “UN/ECE-R100”. This regulation defines the main 

requirements in terms of electrical safety and makes a clear architecture distinction in the 

function of the vehicle’s battery configuration (topology, technology and voltage). It is 

imperative to highlight the following scopes of UN/ECE-R100: 

• safety requirements with respect to the electric powertrain of road vehicles of 

categories M and N1, with a maximum design speed exceeding 25 km/h, 

equipped with one or more traction motor(s) operated by electric power and not 

permanently connected to the grid, as well as their high voltage components and 

systems which are galvanically connected to the high voltage bus of the electric 

power train;12 

• safety requirements with respect to the “Rechargeable Energy Storage System” 

(REESS), of road vehicles of categories “M” and “N” equipped with one or more 

traction motors operated by electric power and not permanently connected to the 

grid.13 

[16] 

                                                 

 
12 UN/ECE-R100 Part I - this regulation does not cover post-crash safety requirements of road vehicles. [16] 
13 UN/ECE-R100 Part II - this regulation does not apply to REESS(s) whose primary use is to supply power for starting the engine 
and/or lighting and/or other vehicle auxiliary’s systems. [16] 
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Automotive legislation, regulations and standards are in constant evolution in order to 

stay in line with the continuous technological progression of the automotive industries. 

Modern automotive standards compliance is becoming day by day more challenging due to 

the increasing complexity of new vehicles (especially for HEVs and EVs), due to the amount 

of “computational power”14 installed on the new vehicles and due to the safety role associated 

with the functions performed by the vehicle’s ECUs. Particularly relevant are the new 

“ADAS” functionalities installed on modern vehicles. 

In this scenario, ISO 26262, which is an adaptation of IEC 61508, compliance represent 

a goal that every major automaker cannot miss, even more, for what is inherent to the security 

of new HEV/EV.   

A wide range of variables influence the “SECURITY LEVEL”, which “ISO 26262” 

defines as “ASIL LEVEL”, which shall be associated with each ECU’s and system’s 

function. The target “ASIL LEVEL” imposes design rules, component level selections 

guidelines, software validation procedures, hardware tests and hardware validations 

protocols. The highest “SECURITY LEVEL” is defined as “ASIL LEVEL D” (represents 

the highest safety standards for automotive components/functions), generally associated with 

particular critical15 functions. 

  It follows a short resume of a few prominent automotive standards.   

                                                 

 
14 The amount of data exchanged across the vehicle between the vehicle’s ECU is exponentially increasing. It is due to two factors: 
the increasing number of ECUs installed on the vehicle and the increasing amount of data broadcasted by the vehicle’s ECUs. It is 
essential to annotate that each ECU is fitted with at least one modern automotive MCU (continuously growing in terms of 
computational power and functionalities) and, often with a combination of multiple MCUs and FPGA. It is obvious to highlight 
the safety challenge to secure such amount of data exchanged between within each ECU and across the vehicle. 
15 Breaking, Torque Control, Power Steering, etc. 
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Reference Title Published 

ISO 26262 Road vehicles – Functional safety 2011 

IEC 61508 Functional Safety of Electrical/Electronic/Programmable 
Electronic Safety-related Systems (E/E/PE, or E/E/PES)  

1994 

ISO 16750 Road vehicles—Environmental conditions and electrical testing 
for electrical and electronic equipment  

2006 

IEC 60950 Information technology equipment - Safety 2005 

ISO 12405 Electrically propelled road vehicles — Test specification for 
Lithium-Ion traction battery packs and systems 

2011 

IEC 62660 Secondary Lithium-Ion cells for the propulsion of electric road 
vehicles 

2010 

UL 2580 Batteries for Use In Electric Vehicles 2013 

SAE J2464 Electric and Hybrid Electric Vehicle Rechargeable Energy 
Storage System (RESS) Safety and Abuse Testing 

2009 

SAE J2929 Electric and Hybrid Vehicle Propulsion Battery System Safety 
Standard - Lithium-based Rechargeable Cells 

2011 

IEC TS 61851 Electric vehicle conductive charging system 2017 

Table 3.1: automotive standards summary. 

3.2 Low Voltage Electric Vehicles Architecture 

[16] clearly defines the “Low Voltage Architecture” as the system that utilises a REESS 

with a maximum operative voltage below 60 VDC.  

This architecture is predominant in the ultra-light, light and low power vehicle’s 

segment. Its simplicity and its superior cost-efficiency make this architecture the most 

popular solution for vehicles having a powertrain’s power rating below 15 kW.  

This configuration’s main advantage is: it is not required reinforced galvanic isolation 

between the REESS and the vehicle’s chassis16. Below a “Low Voltage Architecture” 

representation17. 

                                                 

 
16 Since that vehicle’s chassis is electrically connected to the negative pole of the secondary battery (12V or 24V), any electrical 
device, such as vehicle’s ECUs, installed are referenced to the vehicle’s chassis. 
17 The block diagram refers to a conventional system architecture applicable to light and low-power vehicles. 
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Figure 3.1: EV “Low Voltage Architecture” representation. 

3.3 High Voltage Electric Vehicles Architecture 

[16] allows the use of the “High Voltage Architecture” for passengers and commercial 

vehicles under strict conditions. Where “High Voltage” means the classification of an electric 

component or circuit, if its working voltage is greater than 60 VDC ([16] does not allow the 

use of working voltage above 1500VDC) or greater than 30Vac ([16] does not allow the use of 

working voltage above 1000Vac).  

[16] makes mandatory the introduction of reinforced galvanic isolation18 between the 

“High Voltage REESS” and the vehicle’s chassis on which is connected the negative battery 

pole of the vehicle’s “Low Voltage Battery” (thus each vehicle’s “Low Voltage” device and 

circuit). 

The main advantages of operating in “High Voltage” are: 

                                                 

 
18 Please refer to UN/ECE-R100 (particularly to the section 5.1.3.2) and to the IEC60950. 
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• reduced current flow and the relative use of small cable cross-section19;  

• increased E-Motor performances (in particular power density and efficiency);  

• E-Motor size/weight reduction. 

What presented is the most popular architecture for EVs in the segment of passenger 

vehicles and heavy-duty with a powertrain power rating above 15kW. Currently, there are 

many REESS designs on the market; most commons are: 

• approximately 200VDC “NiMH Battery” with a bidirectional DCDC that 

generally fixes powertrain’s operative voltage up to 600VDC;  

• 200VDC to 400VDC “Lithium-Ion Battery” directly connected to the powertrain; 

• 200VDC to 400VDC “Lithium-Ion Battery” with a bidirectional DCDC that 

generally fixes powertrain’s operative voltage up to 800V;   

• 600VDC to 820VDC “Lithium-Ion Battery” directly connected to the powertrain. 

 
Figure 3.2: EV “High Voltage Architecture” representation. 

                                                 

 
19 Considerable advantages in terms of weight reduction, power cables cost reduction and utilisation of power cables with 
considerable higher mechanical bending flexibility; 
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3.4 Hybrid Architecture variants 

The HV evolution during the last decades brought to the automotive market a few 

architecture’s variants. This process has its roots in the always popular objective for the 

automotive OEMs industries: vehicle cost optimisation. In truth, what may be effective in a 

particular vehicle’s segment most likely will not give any economic advantage for a vehicle 

of a different segment. Typical HV topologies are: 

• Full Hybrid (or Hybrid Electric Vehicle - HEV); 

• Mild Hybrid (MHEV); 

• Hybrid Plug-In (PHEV). 

 Hybrid Electric Vehicle (HEV) Overview 

A Hybrid Electric Vehicle (HEV) uses the combined efforts of both a combustion engine 

and a battery-powered E-Motor to drive the vehicle. The work of driving the vehicle is 

distributed between the two propulsion sources in the best way possible at any given time. 

For instance, the E-Motor can give the vehicle a boost of power, feasibly while climbing 

a hill, without burning additional fuel. The vehicle may also be able to drive for brief periods 

solely in EV mode, with ICE switched off. 

The electric motor’s power is produced by a built-in generator, or by the traction E-

Motor, and then stored in a REESS. In an HEV, all power is generated on-board, and there is 

no plugging-in possible. The system charges the battery in two ways. Firstly, the combustion 

engine drives the electric motor (or a dedicated generator) to charge the battery. The second 

method is through regenerative braking, where the system utilises the E-Motor as a “power 

generator”. 

By definition, a Full Hybrid or HEV utilises a “High Voltage REESS” and complies with 

the safety standards and automotive regulation previously disserted (ISO26262, [16], 

IEC60950, etc.). At the moment, this is the most popular Hybrid topology; the best example 

for this topology is the TOYOTA Hybrid Synergy Drive (HSD)20 architecture.  

                                                 

 
20 Hybrid Synergy Drive (HSD) is the Toyota Motor Corporation hybrid car drivetrain technology brand name. It is the most 

popular hybrid system in the world and has sold more than 12 million units since the Prius was launched in Japan in August 1997. 
Currently, each year Toyota Group produces more than 1.5 million hybrid vehicles. HSD technology produces a full hybrid vehicle 
which allows the car to run on the electric motor only, as opposed to many other brand hybrids which cannot and are considered 
mild hybrids. The HSD combines an electric drive and a continuously variable transmission (CVT). The Synergy Drive is a drive-
by-wire system with no direct mechanical connection between the engine and the engine controls: both the gas pedal/accelerator 
and the gearshift lever in an HSD car merely send electrical signals to a control computer. HSD is a refinement of the original 
Toyota Hybrid System (THS).  
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Figure 3.3 TOYOTA’s Hybrid Synergy Drive. 

Since 1997, Toyota pioneered a full hybrid system that consists of six primary 

components:  

a) Internal Combustion Engine (ICE); 

b) CVT Gearbox; 

c) electric motor; 

d) electric generator; 

e) power control unit; 

f) power split device that uses a particular type of gearbox to smoothly distribute 

power from the ICE, electric motor and electric generator; 

As a complete system, HSD is a bright, reliable, and robust fuel-saving technology that 

seamlessly (and automatically) switches between electric power and conventional engine 

power. Proficient in adapting to different driving conditions, HSD effectively controls the 

power coming from both sources and tells the car how to combine them for the highest 

efficiency and performance. 

As its name suggests, the system delivers tangible synergy between the two power 

sources. When the engine is running, it charges the battery via the generator; when driving 

conditions allow it, the generator can cut out the ICE and let the electric motor take over for 

zero-emissions travelling. The sophisticated engine management system can sense when the 
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car is stopped and will switch off the engine to conserve power and cut emissions, 

automatically starting up again when needed. 

Traction control diverts energy back to the battery, where it is recycled, every time the 

user requests a vehicle deceleration. Instead of the energy being lost as heat or noise from the 

brakes, it is captured and used to power the electric motor later. It is incredibly efficient in 

stop-start traffic, where the system recovers and stores a considerable amount of energy, 

increasing the vehicle’s efficiency. This approach, as well, reduces the emissions of 

microparticles generated by the mechanical interaction between brake pads and brake disks. 

The HSD's peculiarity is the particular ICE with a slightly different engine cycle than 

the conventional Otto-type four-stroke cycle. Called the Atkinson cycle21, this modified four-

stroke cycle produces less heat, and it is, consequently, more efficient. 

A general-purpose HEV system that may be a great study case is the ZF System 

developed for various car manufacturers. As may be observed in Figure 3.5, this solution is 

very flexible and aims to efficiently adapt the conventional FR-ICE vehicle structure (front 

engine-rear traction vehicle) to an HEV. In contrast with HSD, this solution uses only one 

electric motor embedded in an integrated transmission. This integrated transmission, which 

includes an E-Motor and an automatic gearbox, is installed between the ICE and the drive 

shaft. This solution allows to mechanically disconnect the engine (and switch it off) from the 

transmission while the electric motor may, for example, perform a regenerative braking 

operation or, most simply, spin the drive shaft. 

 

                                                 

 
21 The Atkinson-cycle engine is a type of ICE invented by J. Atkinson (1882) to increase fuel efficiency, although if compared to 
the conventional Otto cycle engine, it results capable of lower power density. Toyota’s variable valve timing solution is a very 
reliable, fuel-efficient oriented design. 
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Figure 3.4: FR HEV configuration. 

 

 
Figure 3.5: BMW HEV architecture. 
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 Plug-In Hybrid Electric Vehicle (PHEV) Overview 

Except for the fact of having a few core enhancements, PHEV architecture is very similar 

to the HEV architecture. In contrast with an HEV, the PHEV has an on-board battery charger 

(OBC), which allows the vehicle of being charged from the grid. 

Usually, the REESS capacity of a PHEV is between the HEV and the EV REESS 

capacity, and this allows PHEV to drive in “zero-emission mode” for a considerable distance 

(depending on the vehicle may be above 40 km). 

 Mild Hybrid Electric Vehicle (MHEV) Overview 

The operational principles of MHEVs are very similar to the operational principles of 

HEVs. The main difference between MHEV and HEV is the vehicle’s REESS and the E-

Motor's design strategy. By definition, an MHEV utilises a small “Low Voltage” REESS, 

while the HEV utilises a “High Voltage” REESS. The lower REESS capacity and relatively 

low operating voltage limit the power rating of the E-Motor, which is generally rated below 

the 15kW. 

As for the previous example of “Low Voltage EV”, the “MHEV” is usually a low-cost 

hybrid solution that generally targets the compact size vehicles market.  

3.5  Example of 48V REESS with Boost Voltage Converters 

Although not popular as the previous ones, a particular EV architecture is characterised 

by a “Low Voltage” REESS and a “High Voltage” E-Motor. It is gaining the attention of a 

few debates in the automotive industries due to the availability on the market of always more 

performing “WBG Power Semiconductors”. New WBG devices, which can work with very 

high switching frequencies compatible with the planar Transformers/Inductors technology, 

make it possible to build very efficient small form-factors bidirectional DC/DC. This 

architecture’s main advantage is to reduce the vehicle’s hazards restricting the “High 

Voltage” operations only when the vehicle is in a “DRIVE MODE”.  As soon as the ignition 

key is “OFF”, all DC/DC converters will be disengaged, and as soon as the “High Voltage 

DC-link capacitor” will be discharged, no “High Voltage” will be detected on the vehicle. 

What described represents a significant advantage for the vehicle service procedures and the 

passenger’s safety in case of a vehicle’s “fault” or “crash event”.  

As for the previous examples of “Low Voltage EV” and “MHEV”, this specific study 

case may target the compact size vehicles market. 
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Figure 3.6: EV with a “Low Voltage” REESS and a “High Voltage” E-Motor. 

3.6 Electric Vehicles Power Converters  

Currently, e-Mobility (Vehicles) and Industrial Service Hybrid Robots (Factory ISH) 

applications are becoming progressively more accessible, and a significant evolution is 

occurring for the power electronics parts of these systems. Constant growth in terms of 

quantities of vehicles produced and power ratings of vehicles, emphasises the development 

of new, more efficient, more cost-effective and with higher power density traction inverters. 

It is possible to identify two primary design strategy: discrete power elements design and 

power module design. 

 Discrete Power Elements design 

A low-cost oriented design would most likely look to a traction inverter design realised 

with discrete power elements. Indeed, this strategy will sacrifice the power density, life 

expectancy and the power electronics elements switching frequency favouring a cost-saving. 

Although, the installation on a PCB (as for Figure 3.7 and Figure 3.8) of many discrete 

components per switch is generally necessary to match the E-Motor power ratings [17].  
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A remarkable study case is the first generation of “TESLA” EV powertrain shown in 

Fig. 3.7, which uses 14 x IGBT discrete elements per every single inverter’s switch in order 

to drive the required current to the mated E-Motor. To achieve such high current ratings, it is 

usually necessary to connect additional laminated bus bars to the PCB, which results in 

increased weight and higher vulnerability to vibration. To ensure the appropriate electrical 

and thermal connection between the PCB and bus bars, bespoke connections (joints) are 

usually indispensable22. [17] 

 
Figure 3.7: TESLA integrated powertrain. 

The TESLA’s powertrain displays a fascinating mechanical design. It utilises three 

“Power PCBs”, one for each motor’s phase (shown in Figure 3.8), with the motor positioned 

within the cavity achieved by the triangular formation of the “Power PCBs” (shown in Figure 

3.7). On every “Power PCB”, there are 28 IGBTs installed and, the electrical connection of 

these power element forms a half-bridge inverter. Each IGBT is thermally connected to its 

                                                 

 
22 At each point, the pressure is achieved by a fixing element that ensures the contact between the surfaces of two conductive parts. 
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cold plate (heatsink), and the PCB applies a force to the cold plate in order to ensure the 

thermal connection between each IGBT and the cold plate.23 [17] 

 
Figure 3.8: TESLA Model S half-bridge inverter power PCB. 

 Critical issues on Discrete Power Elements Power PCB 

E-Mobility vehicles must comply with a wide range of several safety requirements, 

ensure a minimum product lifetime, and provide fail-safe mechanisms in case of a fault. In 

the majority of cases, the vehicle’s DCU and traction inverters can guarantee a high level of 

safety as well as being able to prevent catastrophic faults24. [17] 

Studies to address the issues related to the forces that the Power PCB applies on the cold 

plate have been made by the Author. Typically, there is a “Thermal Material”25 between the 

component and the cold plate, which needs to be compressed accordingly. A lack of 

compression will increase the thermal resistance between the component and cold plate, or 

additionally, excessive compression may trigger an insulation fault, as shown in Figure 3.9. 

[17]  

                                                 

 
23 The action is performed by an optimised array of mechanical screws, accordingly selected. This ensures a uniform force applied 
from the top side of each IGBT to the cold plate. 
24 A fault on the Power PCB may occur in many circumstances, more likely due to a collision, lack of insulation or of some other 
external event. 
25 This material is generally a “Gap Pad” or “Thermal Paste”, the advantage of using the “Gap Pad” lies on its reinforced galvanic 
isolation capability. 
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Nano-piezo electric sensors might act as safety feedback and monitor the existence of a 

correct thermal connection because it may detect if an appropriate compression is applied 

(power electronics devices to the cold plate26). [17] 

 
Figure 3.9: example of excessive compression fault [left] and vertical section of a study case “Power PCB” [right]. 

A Common “Power PCB” is manufactured in layers, constructed mainly by copper films 

and FR4’s variants, and it is possible to bend the PCB at specific points when not symmetrical 

and not uniform forces are applied. Uniformity of force spread is necessary to prevent 

inappropriate mechanical stress on the PCB and achieve an excellent thermal connection 

between the cold plate and power components.  

In this kind of PCB, a single element that does not establish a good enough thermal 

connection will most likely trigger a system fault. Consequently, a power stage fault may 

have catastrophic consequences on other systems directly connected with the traction 

inverter, such as the vehicle’s REESS. [17] 

 “Power Module”, Benefits for Electric Vehicle Power Converters 

“Power Modules” based power electronics systems are the most popular design choice 

for modern EV, HEV, and PHEV. Its popularity has its roots in the following factors:  

• limited space available; 

• power requirements;  

• traction inverter life expectancy (warranty). 

                                                 

 
26 Thus, a contact IGBT’s heat-sinks to the cold plate. 
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In order to reach a high switching frequency with low switching losses, a package design 

targets the lowest stray inductance for both the module and the system-level bus-bar design. 

A common approach is to use a low-inductance, overlapping planar structure. 

“Direct Bonded Copper” (DBC) substrates have become an essential electronic circuit 

board for multichip power semiconductor modules. They replace complicated assemblies 

based on lead frames and refractory metallised substrates due to ease of assembly and the 

low-temperature coefficient of expansion of DBC, which matches silicon despite thick 

copper metallisation. The DBC technology allows the bonding of copper to alumina and 

aluminium nitride, fusing copper to copper has been developed to establish efficient water 

cooling devices with sophisticated internal microchannel structures for cooling power laser 

diodes and other high power density electronics. The continuous demand to satisfy more 

stringent requirements for temperature cycling reliability and mechanical stability in 

automotive, avionics and space applications result in more investments in new, more reliable 

and more performing DBC solutions. [18] 

There are four different kinds of ceramic materials that can be bonded with copper foils 

by either the DBC or AMB (Active Metal Brazing) process. Each combination of these 

insulating materials and joining technologies meets specific demands and is suitable for 

different applications. Furthermore, thick printed copper may be an alternative solution for 

special applications. According to their physical properties, the costs of metallised substrates 

vary widely. 

Because of the outstanding performance ratio against cost-efficiency, DBC aluminium 

oxide ceramic is the most commonly used substrate. For many industrial applications, the 

performance is sufficient to meet the lifetime and the thermal dissipation requirements. If 

higher mechanical performance is required, “ZTA” DCB offers an even higher bending 

strength, whereas thermal conductivity is comparable to “Al2O3” DCB (due to the direct 

bonding process, costs for production are in an acceptable range). 

Joining copper foils on highly thermal conductive aluminium nitride can be done 

utilising AMB and DCB. However, DCB is a more cost-effective method, whereas “AlN” 

AMB shows enhanced thermal cycling performance. Because of the inherent low mechanical 

strength of “AlN”, the insulating layer needs to be thick compared to “Al2O3”, ZTA (Zirconia 

Toughened Alumina) and “Si3N4”. Furthermore, aluminium nitride DCB  (especially AMB) 

is quite expensive and mainly used for very high voltage applications. Silicon nitride 

combines both superb mechanical properties and enhanced thermal conductivity. However, 
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prices for raw ceramic substrates are still high and, until now, AMB is the only joining 

technology applicable for metallisation. 

The die improvement imposes a further irreversible trend, and the power losses are 

reduced by each new IGBT and new Power MOSFET technology (device’s die). Therefore, 

power density increases and die size shrinks over the development time. Recently the 

maximum junction temperature increases from 125°C from the past to 200°C. In the future 

are expected new material combinations and joining technologies, primarily when a wide 

bandgap (WBG) material like silicon carbide (SiC) or gallium nitride (GaN) is used. 

This dissertation highlight that in the power semiconductor package technology, there is 

still room for improvements. The most commons stacks layer combination, from the die to 

case bottom, are already used for several decades. It shows considerable potential for 

improvement from the material science perspective. Indeed, it impacts the cost, the 

performance, the thermal dissipation and the system’s reliability. 

For the best reliability: the substrate, its functional surfaces, the die-attach, and other 

packaging materials must be perfectly matched together. Therefore, the fine-tuning of the 

material set is mandatory, including a wide range of qualification and intensive FMEAs. [19] 

What disserted displays the automotive “Power Module” mechanical design complexity, 

which targets to: 

• maximise the thermal exchange between each power electronics element (die 

form) and the package heat-sink; 

• minimise the stray inductance; 

• maximise space consumption; 

• maximise the system’s reliability; 

• minimise the stress on key “Power Module” components (die, wire bonding and, 

etc.);  

Those efforts are rewarded by the opportunity to obtain the best of performance and 

reliability from any power electronics element (Diode, IGBT or Power MOSFET). 

Significant limitations27 occurring on traction inverters are associated with the DC-link 

capacitor (usually a PP film capacitor).  

                                                 

 
27 In terms of mechanical design, volume consumption and converter’s forecasted life-time. 
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 Wide bandgap (WBC) Semiconductors advantages for Electric Vehicles 

WBC Power Elements are more expensive than the standard “Si” technology, especially 

if compared to the IGBT alternatives. The notable advantages of WBC power elements, such 

as SiC Technology, are: 

• lower losses (higher efficiency); 

• higher switching frequency; 

• higher junction temperature. 

The selection of the correct power element technology for an automotive engineer is the 

outcome of a complex process driven by the end application technical requirements. It is 

possible to affirm that the SiC technology main advantage is the possibility of using a higher 

switching frequency, which enables the design of smaller E-Motors because it is rated to a 

much higher frequency. Therefore, the use of a higher switching frequency implies the size 

reduction of the DC-Link Capacitor28.  

The possibility of being more efficient and working at junction temperature above 200 

degrees Celsius is a significant mechanical advantage on a system vehicle level. There are 

gains in terms of components packaging, not only because the traction inverter may be 

smaller and more convenient to install within the vehicle, but mainly for the more relaxed 

cooling requirements. Since a significant vehicle’s design challenge is to ensure the 

appropriate cooling to each component, the combination of lower losses and higher 

acceptable coolant temperature produces a substantial cost reduction. Those facts explain 

why SiC technology is gaining popularity in every power converter for automotive 

application. 

3.7 Battery Technology Overview 

At the moment, automotive REESS technology represents the main limitation for the EV 

breakthrough and the full EVs market quota ramps up. Comparing to conventional 

combustion engine vehicles, EVs suffer a technological gap in three key factors, which are: 

• REESS cost; 

• range and charging time; 

• lifetime. 

                                                 

 
28 Many solutions based on PP film Capacitor and CERA-LINK (TDK) capacitors, demonstrate this opportunity. 
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Observing the technological evolution of Lithium-Ion technology, there is a shred of 

evidence that during the last 24 months, ample technological signs of progress have been 

achieved in the following areas: 

a) cost per KWh; 

b) charging cycles; 

c) charging capability; 

d) discharging capability. 

At the moment, OEMs are trying to prioritise the investments in technologies, 

potentially, capable of performing super-fast charging of the vehicle’s  “REESS” and the 

relative infrastructures for performing this operation on a large scale. Automotive OEMs are 

targeting to transfer enough energy29 in 15-20 minutes to allow the vehicle to drive for 

approximately 200 km.   

 PHEV, HEV and EV Battery Cell Chemistry Overview  

At the moment, the most popular technologies used by automotive industries to 

implement REESS for HEV, PHEV and EV applications are: 

a) NiMH; 

b) Lithium-Ion (Li-Ion). 

The most self-evident intrinsic difference between Li-Ion and NiMH batteries is the 

material used. Lithium-Ion batteries are made of carbon and highly reactive Lithium, which 

allows high-density energy storage. Nickel-metal Hydride batteries use Hydrogen to store 

energy, with Nickel and another metal (such as Titanium) to secure the Hydrogen-Ions 

(keeping a lid on the Hydrogen-Ions). Such different chemistry structures implicate 

substantial practical differences. A rough comparative parametric summary of both 

technologies may be the following.  

• Cost: Nickel-metal Hydride batteries, at the moment30, is the less expensive 

technology.  

                                                 

 
29 It means to convoy up to 250KW from the charging station to the EV’s REESS; this requires a cell’s chemistry capable of 
allowing charging profile up to 5C. 
30 As production of Lithium-Ion cells is currently ramping up, it is expected that the economies of scale will play a role and price 
of Li-Ion cells will drop. 
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• Weight: NiMH batteries are larger and heavier than Li-Ion batteries (the density 

energy stored is critical in EV and PHEV applications, slightly less for HEV 

application, limiting the NiMH technology applications31). 

• Power: current NiMH batteries can handle sudden power demands just as 

quickly as Lithium-Ion batteries, but the strength of Lithium-Ion cells is their 

ability to be charged and discharged more rapidly.  

• Energy: Li-Ion technology has higher energy storage density and is less affected 

by the memory effect than NiMH technology (this affects the battery’s capacity).  

• Durability: both types of batteries are durable, and both have been in use for 

years in various applications; this is the one area where NiMH technology has an 

advantage32.  

 

 
Figure 3.10: Toyota Prius HEV Nickel-Metal Hydride Battery (NiMH). 

The scrutiny of these two technologies allows the Author to articulate a set of 

conclusions. The NiMH battery is currently an integral part of a large portion of HEVs on 

the market, while the new EVs and PHEVs use mostly Lithium-Ion batteries. The Li-Ion 

battery has the potential of eclipsing the NiMH battery, but it will require a few more years. 

                                                 

 
31 Obviously, lighter battery packs with higher energy density makes it possible to extend the vehicle range. 
32 NiMH batteries are more predictable when it comes to performances. 
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The study case of the standard Toyota HEV NiMH REESS33 appears very intriguing. It 

proved to be remarkably reliable in extreme environments during the last decades, especially 

during the vehicle cold start. Nowadays, Toyota is offering up to 14 years of warranty on 

their HEV NiMH battery pack, and it is common to obtain a prolonged warranty on a similar 

kind of REESS from other car manufactures. Li-Ion batteries do not last as long in extreme 

temperatures, particularly in hot climates. Presently, there are massive investments efforts to 

improve the Li-Ion batteries chemistry to improve performances (especially under thermal 

stress) and last as long as the vehicles they power. 

 Battery Management System (BMS) 

The automotive EV market continues to be constrained by demand for longer range 

vehicles, improved functional safety, and decreased charge times and cost. Unlike a single 

energy storage element, such as a fuel tank, an EV’s battery pack (or REESS) consists of 

hundreds or thousands of individual battery cells working together. BMS is interfaced with 

each cell, providing accurate cell measurement from the time the pack is manufactured to its 

retirement. Then, reading the remaining energy in a battery is more complicated than 

dispensing liquid fuel. While a fuel tank has a fixed dimension and carries fuel which amount 

can be estimated with excellent accuracy, an electrochemical storage system reduces its size 

and the “in and outflowing Coulombs” cannot be assessed with great accuracy as the battery 

ages.  

Today’s automotive battery market continues to be not merely cost-driven, but the 

demand for longer range vehicles, decreased charge times, and functional safety has 

paramount importance. Although, with up to 40% of the sticker price of an EV attributed to 

the REESS, performance and lifetime become the crucial factor in an EV’s brand success. 

Truthfully, the EV battery design is a very intricate task, where shall be considered a range 

of priorities, including price, reliability and, safety. Market burdens are giving challenging 

battery management system requirements, demanding the adherence to the highest of 

standards with the narrowest of tolerances. Since a battery system is expected to deliver more 

than a hundred Amperes with a pedal’s push (it is beneficial to operate at the highest voltage 

to be efficient).  

                                                 

 
33 The batteries in Toyota’s hybrid vehicles are efficient, corrosion-resistant units designed to last, which is why Toyota’s standard 
battery warranty is five years or 100,000 miles and can be extended up to 15 years with no limit on total mileage. The batteries are 
actual units that have to store sufficient voltage to power the car with no assistance from the petrol engine. 
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However, Lithium-Ion battery cells can deliver only a few Volts and, to extract enough 

power, a large number of battery cells shall be connected together in series as one long stack.  

The apparent result is that the BMS is responsible for monitoring the EV’s REESS and 

managing critical processes such as ensure battery safety, productivity, and longevity. 

In fact, the purposes of a BMS are: 

• to provide battery safety and longevity; 

• to reveal the “State of Function” in the form of the “State of Charge” (SoC) and 

the “State of Health” (SoH, capacity); 

• thermal monitoring and calibration; 

• to indicate the “End of Life” when the capacity falls below the user-set target 

threshold; 

• to provide cell balancing in multi-cell battery chains34 (the most common 

automotive BMS architecture assigns this function to EBMs); 

• to provide authentication and identification35;  

• to provide communications and diagnostics, BMSs incorporate some form of 

communication between the REESS, other vehicle’s ECUs and the charger or the 

test equipment36 (communication interfaces to allow the user to access to the 

battery for modifying the BMS control parameters or for diagnostics/test 

purpose).  

In modular design, an EV’s REESS is built with several battery modules connected in 

series and parallel accordingly. Electronics are attached directly to each cell in the stack, 

broadcasting back voltage and temperature, coordinated with output current. BMS requires a 

robust communication interface between the central unit (the BMS ECU) and the peripherals 

electronics units (electronic battery monitors, EBMs). It allows a modular design 

(architecture), fully extensible for a variety of different customer end applications. 

BMS is continuously monitoring the cells, delivering reliable measurement accuracy 

over time, temperature, and operating environment; to do that, BMS relies entirely on the 

                                                 

 
34 Small differences between cells due to production tolerances or operating conditions tend to be amplified during the 
charging/discharging cycles and, weaker cells became overstress during the charging causing them to became even weaker until 
they eventually fail (it will, most likely, cause premature failure of the whole battery). 
35 The BMS also allows the possibility to record information about the cell such as the manufacturers, type designation and the cell 
chemistry (which can facilitate automatic testing and the batch or serial numbers or date of a manufacturer which enable traceability 
in case of cell failure). 
36 A BMS might have a link to another system interfacing with the battery for monitoring its conditions history. 
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information broadcasted by EBMs37, in order to estimate the REESS’s SoC and SoH. Every 

cell’s current and temperature must be controlled through a multi-layered algorithm at the 

central node (BMS processor)38.  

The BMS carefully monitors, controls, and distributes the reliable charge and discharge 

of the entire battery system during its lifetime. Precise monitoring of current and voltage 

profiles is critical, as overcharging a battery can cause an endothermic reaction  (even an 

explosion), and undercharging (or a full discharge) magnifies the battery ageing. The quality 

and the reliability of the BMS directly impacts the miles per charge that an EV can deliver, 

maximizes the REESS lifetime, and, as a result, lowers the cost of ownership. Considering 

the investment for the EV’s REESS, the value of BMS performance is clear, and it becomes 

even more evident as automotive designers consider warranty (and lifetime) costs. If one cell 

dies in a long stack of battery cells, eventually, the whole system may be lost. So, shall be 

adequately monitored and managed each cell, every day for the vehicle’s life. Li-Ion cells 

cannot be operated to the full extent of their charge and discharge range. They must be kept 

in a particular range39, as recommended by the manufactures (could be a range between 20% 

and 90% or slightly different depending on chemistry), or the cells are weakened. While SoC 

is helpful, the readout is incomplete without also tracking the capacity as the battery fades. 

Capacity is the primary indicator of battery SoH and should be part of the BMS 

functionalities. Knowing SoC and SoH, it is possible to estimate the “State of Function” 

(SoF).  

By definition, the battery consists of:  

• stored energy; 

• the empty portion that can be recharged ; 

• the inactive portion that is permanently lost due to ageing. 

Rated capacity refers to the manufacturer’s quantified capacity in Ah (Ampere-hours) 

that is only valid when the battery is new; available capacity indicates the actual energy 

storage capability derived by deducting the inactive part. “SoC” refers to the stored energy, 

which also includes the inactive part. 

                                                 

 
37 The EBM has limitations; it cannot estimate the cell’s capacity effectively. This can be mitigated by adding capacity estimations 
on the EBM’s software. 
38 Key Values: Accuracy, Reliability, and Stability 
39 BMS devices address safety and reliability concerns by providing measurements that ensure each cell is functioning within a 
constrained operating range. 
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A BMS is programmed to rated capacity, and it measures the in and outflowing 

Coulombs that relate to the available capacity. As the capacity falls, the Coulomb count 

decreases, and this divergence enables capacity estimation. The most accurate readings are 

possible when computing the Coulombs from a fully discharged battery during a complete 

charge or discharging a fully charged battery to the cut-off point. Such clean starts are 

occasionally possible, and real-life capacity estimations get entangled over time. 

A BMS sets flags when experiencing a full discharge and charge. During a rest period, 

an upper-level BMS might calculate SoC on hand of the stable open-circuit voltage and begin 

counting the Coulombs during charge and discharge from that vantage point. A few BMS 

also look at voltage recovery after removing a load to estimate SoC and (or) SoH. 

Although the BMS is very effective in detecting anomalies, it is not that easy to elaborate 

even the most predictable health indicator. “Capacity fade” is challenging to estimate because 

voltage and internal resistance are commonly not affected. A typical BMS usually responds 

to anomalies that lie outside capacity estimation, such as voltage differences among cells 

caused by cell imbalances and a change in internal resistance. 

A BMS might take the imprint of the “chemical battery” during charging and discharge. 

As well, the BMS establishes the “digital battery” that communicates with the user.  

Nowadays, the leading automotive industry is targeting superior accuracy, stability and 

safety ratings. It is common to observe new EV, PHEV and HEV vehicles BMS targeting 

full compliant “ASIL D” systems. 

 
Figure 3.11: ST BMS reference design block diagram. 
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 Application of Fuzzy Logic for BMS 

Although there is interest in the topic and fuzzy logic may be a capable control strategy 

for the BMS ECUs, at this time, it is not a popular choice for automotive manufacturers. 

However, in the future, BMS might combine the information of the “digital battery” 

with that information of the “chemical battery” to provide reliable “SoF” data through 

advanced learning algorithms, which may allow a BMS to predict an eventual 

replacement. 
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4 Theoretical Framework 

A learning capable AUAV controller design is the core of the Thesis project; the 

Author’s preferences lie in the “fuzzy logic” and “neural networks” arena. However, the 

system’s software may lead itself to a whole array of possibilities regarding the choice of 

protocol and subsequent proprietary software, the software architecture of the system 

becomes the main focus of the proposal. 

For many years, fuzzy logic has been a fascinating technology for designers of industrial, 

consumer and automotive products. However, achieving the right balance between cost and 

performance has not always been easy. Fuzzy algorithms can be executed on low-cost 

conventional microcontrollers, but as these have architectures that were not designed to 

handle fuzzy logic, the software overhead often makes the performance inadequate. 

Dedicated fuzzy processor chips can meet the most demanding performance needs. Today, 

only a few full custom (or semi-custom) integrated fuzzy controllers exist, and most of them 

are assembled from standard cells at the gate level. [20] 

The dissertation starts with the scrutiny of a high-level design approach. The usage of 

high-level description methodologies for modelling fuzzy controllers reduce development 

time significantly, making a rapid design of custom fuzzy hardware possible. VHDL [21] for 

design capture and VHDL based logic synthesis are an efficient method for designing 

complex hardware.  

However, for describing regular structures like finite state-machines, a different 

approach could be more appropriate. For describing such structures, could be used state-

charts. Besides, a commercial tool based on state-charts incorporates a VHDL generation 

facility for generating synthesizable code. The employment of state-charts formalism for 

capturing a fuzzy control system’s rule base is a widely used approach in the scientific 

literature.  

Fuzzy controller relies on conventional principles for the interface and the information 

exchange. In the controller, an external device’s information (such as a sensor) is converted 

into an output control signal to drive a device40 (or multiple devices) via the process of 

fuzzification, rule evaluation and defuzzification. These processes are all based on a set of 

                                                 

 
40 Such as motors, actuators etc. 
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membership functions and the FIS; it is available a vast scientific literature, such as [20, 21, 

22, 23, 24 and 25], to support those design processes. 

The VHDL assembly of the fuzzy control system and the synthesis to a gate-level 

description for Field Programmable Gate Array (FPGA) technology is usually performed 

using dedicated tools provided by the FPGA manufacturer (often are available dedicated 

open-source compilers).  

Although the motivation behind the implementation of a fuzzy controller in VHDL is 

driven by the need for an inexpensive hardware implementation of a generic fuzzy controller 

for use in industrial and commercial applications. There are several advantages more for this 

approach. Field Programmable Gate Array (FPGA) is used as a hardware platform because 

FPGA allows very high logic capacity (the amount of digital logic that can be mapped into a 

single FPD) [26 and 27]. FPGAs offer more flexibility than ASICs because the chip can be 

reprogrammed41, allowing to redesign portions of the system’s circuits for optimisation [28]. 

With the use of cost-effective FPGA for the implementation of the fuzzy logic controller, it 

is possible to fully benefit from the parallel computational capabilities of the fuzzy logic (and 

neural networks). [29] 

A significant advantage of using an FPGA, after the parallel computational process, is 

the possibility of having interchangeable blocks-based software where the objects associated 

with each “Rulebase” represent an independent “VHDL component”. For each “VHDL 

component”, if a standard porting layout is used, it could be possible to tune the controller 

within the main state machine algorithms performing only two operations:  

• adapt the algorithm’s objects (adapt or replace at the “Component Level” the 

rules, the membership functions, etc.); 

• define the new weights of each “Rulebase” (algorithms can be trained42 to 

achieve a perfectly tuned system). [29] 

This solution enables a dynamic43 FIS tuning via the cloud or a dedicated learning 

process typical of the neural network design. Enabling this functionality, it is possible then 

to influence the behaviour of a specific “device”, adapting the “controller’s behaviour” to 

particular tasks or environmental conditions.  

                                                 

 
41 FPGA based systems can be reprogrammed several times. 
42 It might be used as a pre-defined algorithms setup. 
43 It might be seen as a partially DES function. 
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4.1 Study Case Introduction 

Neural networks, given their learning ability and adaptability, are applied in areas such 

as robotics (Bekey and Goldberg, 1993; Rao, 1995; Zouetal.,2006), image processing 

(Carpenter and Grossberg, 1992; Egmont-Petersenetal., 2002; Hongetal., 2009), and speech 

recognition (Othman and Riadh, 2008; Lippman, 1988). Within the hybrid systems, the 

neuro-fuzzy systems combine both paradigms; on the one hand, the system of linguistic rules 

generated by an expert, on the other hand, the learning ability of neural networks applied to 

this system. The applications include pattern recognition (Ray and Ghoshal, 1997; Pal and 

Mitra,1999), robotics (Rusuetal., 2003; Wongsuwarn and Laowattana, 2006), non-linear 

system identification (Babuska and Verbruggen, 2003; Panchariyaetal., 2004), adaptive 

signal processing (Li and Tsai, 2006; Chabaaetal., 2009) and, etc. [30] 

The study case focuses on the learning process of neuro-fuzzy networks for the control 

of a small electric UAV. The project's idea is to move part of the hardware/mechanical design 

load, making it as simple as possible, to the controller’s design. The main goal is to study a 

technique in order to make it possible to build a controller able to learn and tune itself in 

order to control its own flight properly. By assumption, the design employs, as a baseline, a 

fly-wing platform for the small UAV mechanical design due to the packaging constraints for 

batteries and all electronics. For packaging constraints, it is meant a not optimised design in 

terms of size/volume, the outcome of a low-cost hardware/electronics solution, which is 

divided into three groups: the central control unit, the actuators’ (E-Motors and SERVO-

Motors) drivers and the battery monitoring unit.  

As the main project’s ambition is to implement a parallel computation unit, the “Control 

Unit” is assumed to be built around an automotive-qualified FPGA, while the motor drivers 

used are low-cost motor driver available on the market. The algorithm’s development strategy 

moves from the definition of a few essential fuzzy logic functions used as fundamentals for 

the learning process.  

For essential fuzzy logic functions, it is meant a set of fundamental “Membership Input 

Functions” (MIF), a set of fundamental “Membership Outputs Functions” (MOF) and a 

detailed set of “Rulebases” (FIS). Such a primary fuzzy logic controller may perform a 

limited flying operation, but to achieve a proper vehicle control, it is indispensable to 

perfectly tailor a set of weights for each function of each “Rulebase”. Calling back what 

described in “Chapter 2”, in order to define such weights, it is required the full knowledge of 

the “UAV Dynamics”. The identification of the weight’s values is associable with the 
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identification of the unique physical parameters of the vehicle; required information (as 

described in “Chapter 2”) to solve the “Vehicle’s Dynamic Equations”. This proposed work 

aims to overcome the design’s load of defining the “UAV Flight Dynamics model”; by 

assumption, the controller’s design is not based on the solution of the “UAV Dynamics 

Equations”. 

In front of the absence of this essential information, the controller’s key point is the 

learning process, which is the outcome of two critical processes: data capture from a human-

controlled flying operation and by the consequent learning/training process, which is a 

software-based data computation of the information previously captured. 

4.2 Controller’s Framework Definition 

As previously introduced, the “Control Unit” receives external devices’ information and 

generates the output control signals to drive a device (or multiple devices) via the process of 

fuzzification, rule evaluation and defuzzification. Such kind of processes are based on a set 

of membership functions and FIS; numerous publications, such as [20, 21, 22, 23, 24 and 25], 

illustrate the processes’ details. The first step of the “Control Unit” design is the definition 

of the system’s peripherals: the sensors, the actuators and the UAV’s powertrain. 

 Controller’s Inputs Definition 

By definition, sensors are peripherals capable of detecting pre-defined information 

(generally defined as the “controller’s inputs”). Each input is associated with a function and, 

if required, a functional safety rating; the application case associates a specific MIF for each 

sensor data.  

As previously declared, the systems controller’s goal is to replicate the behaviour44 of a 

“Human Pilot”; to achieve that, the controller requires the information provided by a set of 

heterogeneous sensors. It is reasonable that a “Pilot” might control the vehicle giving more 

attention to particular parameters (or sensors) and less attention to others. In the proposed 

“controller’s framework”, this “behaviour” is implemented using the primary fuzzy logic 

controller’s optimisation process first and then a learning/training process. 

It is assumed that the study case system requires the following mandatory parameters: 

a) altitude; 

                                                 

 
44 For a Pilot’s behaviour, it is intended the Pilot’s driving style.  
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b) speed; 

c) pitch angle; 

d) rolling angle; 

e) yaw angle; 

f) estimated position; 

g) REESS SoC45. 

As previously introduced, the strategy to be pursued is to utilise a simplified mechanical 

design of a small UAV and to focus on the “neuro-fuzzy learning process”. The assumptions 

made on the selection of the controller’s mandatory inputs are coherent with a mechanical 

design based on a flying-wing concept46. 

 Controller’s Outputs Definition 

By definition, an “actuator” is a component of a machine that is moving and controlling 

a specific mechanism. An “electro-mechanical actuator” utilises a relatively low power 

electrical signal to control the mechanical load. In the proposed study case, each “electro-

mechanical actuator control signal” represents a controller’s output. 

In regards to the study case, the controller’s outputs are the following: 

• ailerons SERVO-Motors (two units, complementary control); 

• Elevator SERVO-Motor; 

• Rudder SERVO-Motor; 

• Propulsion E-Motors (two independent units). 

Indeed, it is assumed that the “controller” has six outputs, although it is more appropriate 

to declare that there are five independent outputs since that the two ailerons are controlled by 

a single control signal (the ailerons control signal splits into two complementary signals). 

This signal conditioning is a digital operation, and it is implemented within the FPGA by a 

digital signal processing sub-system. 

                                                 

 
45 Mostly for safety purposes. 
46 This mechanical concept overcomes the REESS and hardware/electronics packaging issues typical of small UAV based on small 
RC planes architecture. 
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 Rule Block and Defuzzification 

FIS (the fuzzy logic “Rule Block”47) is the controller’s core, which in several specialised 

fuzzy logic GUI environments is addressed as a single “Rulebase” or a set of multiple 

independent “Rulebases”. Each rule has a unique weight, which defines the importance of 

function to function link for the system’s decision-making process. At the beginning of the 

“Rulebase” design process, unregulated weights are assigned, according to assumptions made 

on the available data. Later the weights can be tuned by a “learning/training process” as a 

result of field tests.  

 VHDL implementation theory 

It can briefly be mentioned that one of the main reasons that influenced the success of 

fuzzy systems, neural networks and neuro-fuzzy systems is their ability to approximate 

continuous non-linear functions. In this area within the fuzzy systems, the following works 

can be cited: Wang (1992), Kosko (1994), Zeng and Singh (1996), Rovatti (1998), 

Kreinovichetal (2000), Caoetal (2001), and Landajo et al. (2001). Concerning neural 

networks, the following contributions should be highlighted: Stinchcombe and White (1989), 

Cotter (1990), Hornik (1991), Attali and Pagès (1997) and, Castro et al. (2000). On neuro-

fuzzy networks, the following references are emphasised: Buckley (1993), Castro (1995), 

Jang et al. (1997), Nauck and Kruse (1999), Wang and Wei (2000), and Wu et al. (2010). 

[30] 

The different applications of soft computing algorithms have been realised on different 

supports overtime, depending on the technologies of the moment. The following have been 

used: general-purpose processors, dedicated processors, dedicated coprocessors, specific 

designs with Very Large Scale Integration (VLSI) integration scales, either analogue or 

digital or mixed, up to the current reconfigurable hardware (HW) devices. Use has also been 

made up of multi-processor platforms for systems that require high-speed computation and 

supporting parallel processing, as in the case of neural networks. The use of one or other 

support has been conditioned by different requirements, among others, power consumption, 

processing speed, size, portability and cost. [30] 

                                                 

 
47 The “Rule Block” links accordingly MIFs to the MOFs. It may be seen as a simplified definition of the block. 
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Digital hardware achieved the most crucial development due to the consolidation of 

programmable or reconfigurable devices, mainly in the FPGAs. The high integration density 

and the power introduced by the parallel structures achieved by this technology have enabled 

implementations of fuzzy inference systems with a high number of fuzzy rules, neural 

networks with a large number of layers and neurons, including learning algorithms, and 

finally, neuro-fuzzy systems based on fuzzy rules and endowed with learning mechanisms of 

the same type as those used in neural networks. [30] 

In this proposed structure, it is considered that a programmable integrated circuit is a 

hardware that a user can reconfigure by means of any specific technique. These are 

commercial devices such as FPGAs, where the applications, as in the dedicated ones, are 

entirely HW based. One aspect that makes these devices particularly attractive is their ability 

to re-programme and the existence of EDA tools that facilitate their design. A recent type of 

programmable device called FPAA (Field Programmable Analog Array) can also be 

mentioned, which emerged as a commercial option in the 2000s, but in a very low integration 

density and with few applications made in the area at hand. [30] 

Digital implementations have superior immunity against factors such as noise, 

temperature or voltage variation, among others. In contrast, the processing speed tends to be 

lower than in ASIC analogue devices, although evolution in integration technologies has 

changed this scenario. 

In this classification, FPGAs are emphasised because they can be programmed through 

circuit design using graphic or, preferably, HW description languages like VHDL (Very 

High-Speed Hardware Design Language) or Verilog. Further development of FIS privileges 

the FPGAs because of their ability to reconfigure and the low “time to market”. For example, 

consulting the “Web of Knowledge - Web of Science”, there are approximately 340 works 

on FPGAs only between 1990 and 2012. [30] 

A few literature examples of fuzzy and neuro-fuzzy systems build on digital 

programmable integrated circuits are: 

• Manzoul and Jayabharathi (1992) presented the work “Fuzzy controller on FPGA 

chip” (a fuzzy controller expressed as Boolean equations on an FPGA). 

• Hung and Zajak (1995) presented the implementation of a fuzzy inference system 

on an FPGA in the article “Design and implementation of a hardware fuzzy 

inference system”. 
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• Hollstein et al. (1996), in the article “Computer-aided design of fuzzy systems 

based on generic VHDL specifications”, presented a development tool for 

performing parallel processing architectures48 or sequential rules.  

• Blake et al. (1998), in the article “The implementation of fuzzy systems, neural 

networks and fuzzy neural networks using FPGAs”, presented three approaches 

to “Soft Computing”, but the article will focus on the FIS49.  

• D’Amore et al. (2001), in the article “A two-input, one-output bit-scalable 

architecture for fuzzy processors”, presented an automatic synthesis of a fuzzy 

system with scalability, with either the bits of the I/O variables or the bits of the 

membership functions of the I/O (the synthesis process is performed using the 

VHDL code). 

• Raychev et al. (2005) presented the work “VHDL modelling of a fuzzy co-

processor architecture” (presented a hardware accelerator for fuzzy calculations). 

• Hung (2007), in the article “Using FPGA technique for design and 

implementation of a fuzzy inference system”, implemented a fuzzy inference 

system with the max-min compositional rule with the COG being the 

defuzzification method applied. 

• Lizárraga et al. (2008), in the article “Modeling and simulation of the 

defuzzification stage using Xilinx system generator and Simulink”, illustrated a 

defuzzification stage, using the “Height method” (Driankovetal.,1996). 

• Fung et al. (2009), in the article “FPGA-based adaptive fuzzy back-stepping 

control for a micro-positioning Scott–Russell mechanism”, presented a fuzzy 

controller with an error feedback mechanism applied to a micro-positioning 

Scott–Russell type (The actuator was piezoelectric). 

• Hsu et al. (2010), in the article “Chip-implementation of a self-tuning non-linear 

function control for DC-DC converters”, proposed a model-free STNFC design 

method suitable for real-time practical applications50.  

                                                 

 
48 Each FIS consists of three distinct modules: fuzzification, rules of inference and composition/defuzzification. Modules can be 
described in C or VHDL. The defuzzification follows the MOA (Midpoint of Area) method. 
49 The interest of the article is, taking a non-linear function of three variables, to compare the approximation capacity between the 
architecture e on an FPGA and the architecture on Matlab. 
50 The system is applied to a DC-DC converter based on an FPGA controlling the duty-ratio of PWM modulator in the DC-DC 
converter. The article highlights the following points: STNFC is a system without heavy computational loading, the parameter-
learning algorithm is designed based on the Lyapunov stability theorem to guarantee the system stability, there are successful 
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• Kung et al. (2011) in “Simulink/Modelsim co-simulation and FPGA realisation 

of speed control IC for PMSM drive”, implemented a fuzzy-control based speed 

control IC for a Permanent Magnetic Synchronous Motor (PMSM). 

• Abramson et al. (1998), in the paper “FPGA based implementation of a Hopfield 

neural network for solving constraint satisfaction problems”51, described and 

solved the N-Queen problem using a Hopfield neural network (used to solve 

complex optimisation problems) to demonstrate and solve the potential of a 

custom computer-based on FPGA technology.  

• Omondi and Rajapakse (2002) published the work, “Neural networks in FPGAs” 

in which an approach is made to parallelism and arithmetic, the HW or SW 

implementation, and which finally examines a case of Independent Component 

Analysis (ICA) (Comon, 1994), implementing an independent component neural 

network (ICNN) over the Xilinx XCV812C. 

• Kim et al. (2003) presented the article “FPGA implementation of ICA algorithm 

for blind signal separation and adaptive noise cancelling” (applied to speech 

recognition in noise environments and echo52).  

• Ide and Saito (2006) presented the article “FPGA implementations of 

neocognitrons” applied to character recognition and biometric measures.53  

• Bastos et al. (2006) presented the work “FPGA implementation of neural 

network-based controllers for power electronics applications”, where an ANN54 

governs a buck converter (step-down DC/DC) based on the behaviour of a SACT 

controller (synergetic approach to control theory).  

• Hu et al. (2008), in the article “Key issues of FPGA implementation of neural 

networks”, give an overview of the different parts and methods involved in the 

                                                 

 
applications of the STNFC system to control the forward DC-DC converter, and finally, the proposed STNFC methodology can 
be easily extended to other DC-DC converters. 
51 The paper highlights that in this architecture, first, the weights are small land can be represented using small integers. They also 
reduce the carry propagation delays. It means that the hardware responsible for the accumulation can be optimised for small integer 
values. Second, the vector product becomes a set of conditional additions without the need to perform any multiplication 
operations. Third, the interconnection between neurons is fixed and dictated by the nature of the constraints in the problem. 
52 Algorithms of signal separation (blind signal separation) and algorithms of adaptive noise cancellation (adaptive noise cancelling) 
were implemented. 
53 It describes the implementation of a reconfigurable ANN on a parallel computer architecture based on FPGAs, called REOMP 
(Reconfigurable Orthogonal Multi-Processor Memory). On this architecture, Neocognitrons are implemented. A Neocognitron 
ANN model is a feed-forward topology proposed by Fukushima (1982), based on the model of Hubel and Wiesel (1968) concerning 
the research of the vision from a biological point of view. 
54 The ANN chosen had the structure 4–4–1 and was trained to have the high-performance characteristics of the SACT controller. 



74 
 
 

design of the ANNs such as data representation, inner-products computation, 

implementation of activation function, storage and update of weights, nature of 

learning algorithm and design constraints. 

• Shoushan et al. (2010), in the article “A single layer architecture to FPGA 

implementation of BP artificial neural network”, presented a back-propagation 

ANN design and constructed an application for classifying the defects of the 

carbon-fibre reinforced plastic.55  

• Mekki et al. (2010), in the article “FPGA-based implementation of a real-time 

photovoltaic module simulator”, proposed a multilayer perceptron (MLP) for 

simulation and implementation of a real-time PV-module56 on FPGA.  

• Hasanien (2011), in the article “FPGA implementation of adaptive ANN 

controller for speed regulation of permanent magnet stepper motor drives”, 

studied the dynamic response of a PMSM under full load torque and underload 

disturbance.57  

• Cárdenas et al. (2012), in the article “Development of an FPGA based real-time 

power analysis and control for distributed generation interface”, presented the 

development and the experimental evaluation of a power control system for a 

single-phase grid-connected which has several energy sources connected.58  

• Soleimani et al. (2012), in the article “Biologically inspired spiking neurons: 

piece-wise linear models and digital implementation”, proposed PWL models 

with a fewer number of multipliers for implementations of spiking neural 

networks on FPGAs.59  

                                                 

 
55 A one-dimensional systolic array of the finite impulse response (FIR) filter for the back-propagation algorithm is introduced. All 
calculated parameters are stored on a RAM, and the implementation of excitation function (sigmoid) is performed on Look-up 
tables. The design is implemented on two FPGAs, and a comparison between the resources used is performed. 
56 The evaluation of the performance of a PV-module is based only on meteorological data such as air temperature and total solar 
radiation and can be used for prediction of the PV electrical energy output under actual climatic conditions. 
57 The evaluation of the performance of a PV-module is based only on meteorological data. The model has been developed and 
Simulated under Matlab/Simulink and the optimal configuration has been written in VHDL on ModelSim and then implemented 
on an FPGA. 
58 An ADALINE network is used for control and synchronisation of the power of the electric network. The learning is performed 
by means of the Widrow-Hoff algorithm. The article performs a comparison between the Adaline network and the FFT 
implemented off-line on Matlab. The results are similar. 
59 The models replaced the operation “square” by comparison or “absolute value”; this means that in digital implementations the 
multipliers are replaced by comparators which implies that they can implement a large number of neurons. The network is trained 
with a supervised and unsupervised learning algorithm. The results show that: the 91.7% accuracy in the recognition and the 
implemented PWL models are significantly faster than the Izhikevich (2003) model with a simple combinational multiplier. 
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• Saadi and Bettayeb (2013) in the article “ABC optimised neural network model 

for image deblurring with its FPGA implementation”, try to improve radiological 

images degraded during acquisition and processing.60  

[30] 

Concerning the design flow of a fuzzy system, two different levels may be considered. 

The algorithmic level specifies the functional behaviour of the system. The objective within 

this level is to define the shape of the membership functions, the implication mechanism, the 

“Rulebase”, and the defuzzification strategy that better achieve the proposed system task. At 

the circuit level, the designer has to select an efficient system architecture, design the 

required building blocks, and verify the temporal behaviour of the system. Therefore, a 

design methodology for a fuzzy system has to cover the different design stages, from the 

system’s specification up to the system’s prototyping and testing. To accomplish this task, 

some authors proposed the use of VHDL as a language to describe and model the high-level 

system [31, 32, 33 and 34] and the employment of specific architectures of fuzzy processor 

[32, 35 and 36]. 

 VHDL Modelling theory  

VHDL language imposes some limitations if confronted with the versatility and 

expressiveness of other fuzzy logic oriented languages (such as XFL3 [37]). On the other 

hand, it is crucial to adapt the system’s characteristics (types of membership functions, 

inference algorithms, defuzzification mechanisms) to its hardware implementation. [32] 

The premise, VHDL will be used as the working platform for the system implies that the 

fuzzy system description must be synthesisable (hardware realisations on FPGA). A 

synthesisable VHDL algorithm requires to adapt and tune the characteristics of the controller 

(types of membership functions, inference algorithms, defuzzification mechanisms, etc.) to 

the physical hardware implementation (FPGA printing). [32] 

The [32] and the [38] describe the advantages of the high-level descriptions of neuro-

fuzzy systems in an easy way61. To achieve behavioural modelling might be used a VHDL 

description style where the system’s definition structure (fuzzy sets, rule base, etc.) and the 

operator’s description (connectives, fuzzy operations) are defined separately, making it 

                                                 

 
60 An autoregressive moving average (ARMA) model is identified using an ANN. The network training is improved using a novel 
swarm optimisation algorithm called Artificial Bees Colony (ABC), inspired by the foraging intelligence of honey bees. 
61 Linguistic variables, rule base, fuzzy operators. 
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possible to describe both the fuzzy system structure and the processing algorithm 

independently. The description format makes it possible to use linguistic hedges in order to 

compact the rules defining the system’s behaviour. High-level descriptions’ main advantage 

is the availability of tools capable of translating a fuzzy logic oriented language with a GUI 

interface into a VHDL code62. [32 and 38] 

Proposed work utilises the “XFUZZY XFL version 3.5” (or XFL3) GUI developed by 

“Instituto de Microelectrónica de Sevilla (IMSE-CNM)” [38] to describe the fuzzy logic 

controller (or the neuro-fuzzy logic controller after the learning/training process) and then 

translate this description to a valid VHDL code.  

 

Figure 4.1: proposed design flow. 

                                                 

 
62 VHDL code could be automatically integrated on specific supported FPGAs or shall be manually integrated by the designer into 
the “VHDL Top Level Architecture” that the user uses to describe all other systems’ blocks and interfaces. 
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“Xfuzzy” is a development environment that eases the specification, verification and 

synthesis of fuzzy inference systems. XFL3 specification language is the core of the tools 

integrated into such described environment [37]. A set of standard functions encased in a 

module called the “XFL library” performs the parsing and semantic analysis of XFL 

specifications and stores them using an abstract syntax tree. This format is used inside the 

environment when handling system descriptions. “Figure 4.1” illustrates the design flow for 

the hardware implementation of fuzzy systems.  

The starting point of the process is a behavioural description of the system using the 

specification language XFL. The verification process is carried out with the help of the 

simulation and learning tools provided by the environment.  

Once the system specification is validated, the subsequent step is the generation of the 

VHDL code from the XFL description. The synthesis tool, called “xfvhdl”, translates the 

XFL specification into a VHDL description according to the realisation strategy (behavioural 

or structural). In the case of behavioural strategy, “xfvhdl” gives a system description 

according to the description style63. It includes a package containing the type and function 

definitions. In specific architecture, “xfvhdl” employs a cell library containing the 

parameterised VHDL description for the basic building blocks. There are two kinds of blocks: 

data path building blocks (implementing the inference algorithm) and control blocks 

(controlling the memory write/read operations and the signals which control the operation 

scheduling). The code used in the cell library description is compatible with the restricted 

VHDL implementations of most synthesis tools. It is essential to highlight that the output 

VHDL code is “raw”64, and it is necessary to adapt the code to the end FPGA and the system’s 

“state-machine”.  

[32] validates the VHDL description using a simulation process (simulator Model-Sim 

of Mentor Graphics), then performs the logic synthesis stage65  and then creates66 the circuit 

description of the fuzzy system. [32] 

                                                 

 
63 The behavioural modelling uses a VHDL description style where the system structure description and the operator description 
are defined separately, making it possible to describe both the fuzzy system structure and the processing algorithm independently. 
64 For “Raw” code it is intended that the generated VHDL describes only the “Architectures” which contains the “neuro-fuzzy 
block” without any configuration of the FPGA, this because the XFUZZY XFL3.5 GUI is able to configure only two specific 
FPGA; proposed work focuses on a not supported brand and P/N. 
65 Such as XST of Xilinx or FPGA Express of Synopsys. [32 and 38] 
66 In order to accelerate the development of those two design stages, “xfvhdl” provides two additional outputs: a “testbench file” 
to ease the simulation of the fuzzy system and a command script file to drive the synthesis and Xilinx FPGA implementation. The 
following architectural options are defined by the user when “xfvhdl” is run: architectural options (memory-based MFCs or 
arithmetic MFCs), knowledge-base (predefined using ROM or programmable using RAM), and memory implementation (using 
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The study case, due to the complexity and by the necessities to generate a general-

purpose algorithm compatible with a wide range of potential FPGAs (rather than focusing on 

the specific P/Ns supported by the XFL GUI), requires few more intermediate steps. It is 

indispensable a manual integration of the generated VHDL algorithm within the whole 

system (the main VHDL algorithm, which includes: sensors interface, actuators interface, 

powertrain interface, system’s clock, etc.). This operation shall be performed on the adopted 

VHDL environment; it cannot be performed on XFUZZY GUI. 

The tuning stage is usually a very intricated task when designing fuzzy systems. The 

system behaviour depends on the logic structure of its “Rulebases” and the membership 

functions of its linguistic variables. The tuning process often exploits the adjustments of the 

different membership function parameters that appear in the system definition. Since the 

number of parameters to modify (simultaneously) is high, manual tuning is cumbersome, and 

automatic techniques are required. The two learning mechanisms most widely used are 

supervised and reinforcement learning. In supervised learning techniques, the desired 

system behaviour is given by a set of training (and test) input/output data, while in 

reinforcement learning, what is known is not the exact output data but the effect that the 

system has to produce on its environment, thus making necessary the monitoring of its on-

line behaviour. [38] 

[38] shows that the Xfuzzy 3 environment includes four tools for this design stage: 

“xfdm” and “xftsp” are knowledge acquisition tools. The first one allows obtaining the 

structure of inference systems used as fuzzy approximators or classifiers. In contrast, the 

second one primarily focuses on time series prediction applications. “xfsl” is a parameter 

adjustment tool based on the use of supervised learning algorithms. In supervised learning 

techniques, the system’s desired behaviour is described by a set of training (and test) patterns. 

Supervised learning attempts to minimise an error function that evaluates the 

                                                 

 
distributed or block-type RAM, distributed ROM or combinational logic). The storage strategy for the knowledge base conditions 
the VHDL description style of the system modules. The choice between the two alternatives (ROM or combinational logic) depends 
on the synthesis tool. Synopsys tools (as an example) will implement the MFC using combinational logic. Nevertheless, the Xilinx 
synthesis tool (XST) can detect the ROM structure, and the implementation tool can configure properly the XC4000 and Spartan2E 
basic building blocks (CLBs and Slices, respectively). Synopsys tools cannot identify a memory from that VHDL code, but the 
Xilinx tool can make two kinds of implementations: using distributed memory, or using block memory (Spartan2, Spartan3 and 
Virtex families). 
The selection of the synthesis tool and the implementation options are performed as “xfvhdl” command parameters. Option-C 
allows the choice between Xilinx-XST (x), Synopsys-FPGA Express (e) or Synopsys-FPGA Compiler. Parameter-M allows a 
selection between the RAM memory implementation using distributed RAM (d), block RAM (b), ROM (o) or combinational block. 
The “xfvhdl” command admits additional parameters to determine the FPGA device, the synthesis effort level, and the synthesis 
optimisation objective (area or speed). [32 and 38] 
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difference between the actual system behaviour and its desired behaviour defined by 

the set of input/output patterns. Finally, “xfsp” is a simplification tool that allows reducing 

the number of membership functions and compacting the rules bases of a fuzzy system to 

facilitate its software or hardware implementation and to increase its linguistic 

interpretability. [38] 

The tool “xfdm” facilitates the identification of fuzzy systems from numerical data using 

different algorithms based on matrix partitioning (Grid Partitioning) or data grouping 

(Cluster Partitioning) techniques. “xfdm” can be executed from the command line or through 

its graphical user interface using the “Data Mining” option of the “Tuning” or the 

corresponding icon in the main window of the environment. [38] 

The main window of “xfdm” is divided into two parts. The upper part configures the 

identification process, defining: the selection of the algorithm, input/output data file, number 

of inputs and outputs, inputs style and fuzzy system style. [38] 

The system’s learning and training activities represent the last design process before 

generating the final VHDL code67.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 

 
67 Which shall be integrated into the main VHDL algorithm before to be synthesised and then printed on the target FPGA. 
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5 System’s Hardware Design Proposal 

As previously introduced, the assumption is to use a simplified RC plane mechanical 

design as a worst-case scenario for the controller design, where a 3D printed homebuilt 

aircraft may be turned into AUAV through the process and the algorithms disserted. The 

design uses a twin-motor fly-wing platform as a mechanical baseline for the controller’s 

design dissertation. For the proposed work, the electronic hardware configuration proposal 

endeavours to perform a few functions, which are: 

• to define the core electronics/hardware required by the “Autonomous Flight 

Mode Controller”; 

• to define the hardware for the neuro-fuzzy controller; 

• to define the hardware for the learning/training process. 

5.1 Core Hardware Definition 

Budget is the main project’s limitation, and the electronic design and prototyping 

converge on cost optimisation. This concept is reinforced by the study case assumptions made 

previously; as mentioned before, most of the design load moves to the controller’s design.  In 

order to reduce the cost has been privileged the usage of free sample parts and functional 

development boards.  

 
Figure 5.1: HW high-level block diagram. 



81 
 
 

Figure 5.1 describes the block diagram of the employed electronic hardware; the 

system’s core unit is the FPGA, which acts before as the system’s gateway (collects and 

digital processes all peripherals information) and then acts as the system’s controller 

performing a parallel computation of the collected information.     

 Control Unit, FPGA 

FPGA is the core component of the AUAV control unit, which collect the information 

from all the sensors and generates commands for the actuators and the motor drivers. By 

assumption, the proposal’s control strategy targets to implement a neuro-fuzzy network, 

which, by definition, is a parallel controller. The decision of using an FPGA comes from the 

fact that an FPGA has a parallel computation capability while any standard MCU sequentially 

executes68 operations. For FPGA’s parallel computation capability, it is meant that the FPGA 

allows designing the controller in blocks that will work in parallel and in a symbiosis between 

each other. The practical result will be that each MIF will be processed simultaneously and 

independently, as well as for each MOF69.  

 
Figure 5.2: FPGA’s peripherals block diagram.  

                                                 

 
68 It computes the data in a serial loop. 
69 Both MIF and MOF use similar integration structures within the controller.  
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For this specific project, the Author advocates the use of a “Lattice Semiconductor” 

automotive-qualified FPGA; few factors drive the decision: 

a) low unit cost; 

b) high reliability;  

c) production longevity; 

d) free compiler; 

e) low-cost debugger/programmer device. 

 Digital Motion Sensor  

For the implementation of autonomous applications has paramount importance, the 

estimation of the vehicle’s orientation. To implement such peripheral, it is available for the 

project a “LIS3DSH”. It is a very low-power device with a high-performance three-axis linear 

accelerometer belonging to the “nano” family with an embedded state machine that can be 

programmed to implement autonomous applications. 

The “LIS3DSH” has dynamically selectable full-scales of ±2g/±4g/±6g/±8g/±16g and is 

capable of measuring accelerations with output data rates from 3.125 Hz to 1.6 kHz. The unit 

configuration happens via six control registers, a FIFO control register and several registers 

for the calibration (device’s fine-tuning). The system’s outputs are accessible on seven 

registers: one temperature register and two registers for each axis output. 

“Control Register 1”, State Machine 1 (SM1) control register, defines the SM1 Interrupt 

Enable / port selection. 

0 0 0 0 0 0 0 0 

Table 5.1: proposed configuration for the LIS3DSH “Control Register 1”. 

“Control Register 2”, State Machine 2 (SM2) control register, defines the SM2 Interrupt 

Enable / port selection. 

0 0 0 0 0 0 0 0 

Table 5.2: proposed configuration for the LIS3DSH “Control Register 2”. 

“Control Register 3” defines the “Interrupt” configuration (the assumption is to do not 

use Interrupts on the state machine). 

0 0 0 0 0 0 0 0 

Table 5.3: proposed configuration for the LIS3DSH “Control Register 3”. 
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“Control Register 4” enables the sensor and defines its working frequency (in this case 

set to 400Hz) and empowers the “Block Data Update” (BDU) to avoid the reading of values 

(most significant and least significant parts of the acceleration data) related to different 

samples. Expressly, when the BDU is activated, the data registers related to each channel 

hold the device’s most recent acceleration data produced. However, if the reading of a given 

pair70 starts, the refresh for that pair results blocked until both MSB and LSB data sections 

will be read. 

0 1 1 1 1 1 1 1 

Table 5.4: proposed configuration for the LIS3DSH “Control Register 4”. 

“Control Register 5” controls four functions: the unit Self-Test, the output scale (by 

default, it is 2g, for the application it is more appropriate to select 4g), the anti-aliasing 

bandwidth filters (proposed configuration sets to 800Hz) and the SPI interface mode 

selection.  

0 0 0 0 1 0 0 0 

Table 5.5: proposed configuration for the LIS3DSH “Control Register 5”. 

“Control Register 6” is an advanced functionality register that enables BOOT, FIFO, 

“Stop on watermark”, and the functionality of register address automatically increased during 

multiple byte access with a serial interface. For the application, the proposed configuration 

accepts the default configuration. 

0 0 0 0 0 0 0 0 

Table 5.6: proposed configuration for the LIS3DSH “Control Register 6”. 

In conclusion: 

• FIFO Control Registers are set to default because the FIFO advance operations 

are not required; 

• device tuning and system calibration are achieved on all 3-axis via a dedicated 

“Offset Register “and by a constant shift register; 

• all other registers are kept as default; 

                                                 

 
70 i.e. OUT_X_H and OUT_X_L, or OUT_Y_H and OUT_Y_L, or OUT_Z_H and OUT_Z_L. 
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• all “Output registers” contains data in TWO’s complement format (signed 

integer); this means that the data should be converted before getting meaningful 

information. 

 Gyroscope 

The correct estimation of the vehicle’s motion angles requires, in addition to the 3-axis 

accelerometer, the use of a gyroscope. The “A3G4250D” is a low power 3-axis angular rate 

sensor able to provide high stability at zero rate level and sensitivity over temperature and 

time. It includes a sensing element and an IC interface capable of providing the measured 

angular rate through a standard SPI protocol. The “A3G4250D” is configured via 15 

Registers, has three read-only operational/status registers and has seven output registers, one 

for the temperature and six for the axis acceleration computed in “Degree Per Second” (DPS). 

“Control Register 1” defines: the “Output Data Rate”, the “Bandwidth Cut-Off 

Frequency”, “The Power Mode” and, the 3 Axis enables. In the application case, ODR is set 

(Output Data Rate) to 200Hz, and the Cut-Off Frequency is set to 50Hz.  

0 1 1 0 1 1 1 1 

Table 5.7: proposed configuration for the A3G4250D “Control Register 1”. 

“Control Register 2” defines the digital filters and, in particular, the High Pass Filters. 

Default mode configuration is the selection for this register (“Normal Mode” - 2Hz High pass 

filter). 

0 0 1 0 0 0 1 1 

Table 5.8: proposed configuration for the A3G4250D “Control Register 2”. 

“Control Register 3” manages Interrupts. It is selected as a standard default mode 

operations. 

0 0 0 0 0 0 0 0 

Table 5.9: proposed configuration for the A3G4250D “Control Register 3”. 

  “Control Register 4” manages the SPI Communication, default71 setup is selected. 

0 0 0 0 0 0 0 0 

Table 5.10: proposed configuration for the A3G4250D “Control Register 4”. 

                                                 

 
71 BLE sets the LSB Register and MSB registers addresses (pag.14 of [39]). 
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“Control Register 5”, configures the memory management. It is kept the default mode. 

0 0 0 0 0 0 0 0 

Table 5.11: proposed configuration for the A3G4250D “Control Register 5”. 

All other registers are considered to be as default. All Output registers contain data in 

TWO’s complement format (signed integer); this means that the data should be converted 

before to get meaningful information. Temperature sensor’s output data consists of only one 

8-bit TWO’s complement format signed integer register, while each axis 16-bit gyroscope’s 

output data is stored in 2 x 8-bit registers with the address defined by “Control Register 4”.  

First, a conversion to “Decimal base” and then a multiplication by the device’s sensitivity of 

8.75m DPS per integer will produce the Gyroscope output, expressed by the equation: 

𝑅𝑅𝑡𝑡 = 𝑆𝑆𝑆𝑆 ∙ (𝑅𝑅𝑚𝑚 − 𝑅𝑅0) 
(Equation 33) 

where, 

𝑅𝑅𝑡𝑡   → the actual angular rate, given in DPS 

𝑅𝑅𝑚𝑚  → the MEMS gyroscope measurement, given in signed integer LSBs 

𝑅𝑅0  → the zero-rate level72 given in signed integer LSBs 

𝑆𝑆𝑆𝑆 → the scale factor (or sensitivity) given in DPS/LSB 

 Landing Proximity sensor  

Landing manoeuvre is a critical operation for a controller to perform, and the likelihood 

of an approach error is not negligible. It suggests that shall be considered the risk associated 

with the landing manoeuvre.  

In order to help the controller to perform the last phase of the landing manoeuvre safely, 

it is necessary to know when the vehicle is close to the ground; it means that the vehicle is 

going to arrive shortly to the touch-down. The Author’s proposed solution to the problem is 

a ventral installation of obstacle detection sensors, which will allow detecting the soil, as 

“Figure 5.3” illustrates.  

A design assumption is: as soon as the system detects the ground, the controller will 

disable the powertrain (propellers will not produce anymore trust and, in case of an impact 

                                                 

 
72 The gyroscope output when no angular rate is applied. 
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of the propeller on the ground, the damages to the motor will be limited). Due to the 

importance of the information, The Author’s proposal privileges an independent two-stage 

proximity detection. First stage detection operated by an obstacle sensor tuned for detection 

in the range of 1 to 1.5 meters, and a second stage operated by a sensor capable of higher 

resolution (and accuracy) but capable of detecting targets only at a much shorter distance. 

 
Figure 5.3: representation of landing sensor operation during the landing manoeuvre. 

There are several devices capable of performing the first stage detection for the hardware 

proposal; the Author’s selection is the “ST VL53L1X” plug-in board. It is a “Time of Flight” 

(ToF), laser-ranging sensor, enhancing the ST “FlightSenseTM” product family. It is also 

possible to program the size of the Region of interest (ROI) on the receiving array, allowing 

a reduced sensor’s “Field of View” (FoV). 

The VL53L1X has three distance modes (DM): short, medium, and long. Long-distance 

mode allows reaching the longest possible ranging distance of 4 m. However, this maximum 

ranging distance is impacted by ambient light. Short distance mode is more immune to 

ambient light, but its maximum ranging distance is typically limited to 1.3 m and ranging 

frequency up to 50 Hz. This solution results in the optimal solution for the application, and it 

is assumed that the system will detect the ground when the vehicle elevation is in the range 

between 120cm and 140 cm. 

VL53L1X is designed to operate with the VL6180X; it is the latest product based on 

ST’s patented “FlightSenseTM” technology. It is a ground-breaking technology allowing 

absolute distance to be measured independent of target reflectance. Instead of estimating the 

distance by measuring the amount of light reflected back from the object (which is 

significantly influenced by colour and surface), the VL6180X precisely measures the time 

the light takes to travel to the nearest object and reflect back to the “ToF” sensor. The 
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detection distance is in the range of 10 cm. Although the detection distance may look very 

limited, it is crucial to highlight that this information not only has a safety purpose (redundant 

sensor for safety-critical function) but allows future controller improvements on the landing 

manoeuvre.  

It possible to conclude that this approach allows the designer to be confident that at the 

touch-down, the powertrain will be disabled and gives enough flexibility for future controller 

quality improvements. 

 Navigation Monitor 

A human being pilot to monitor its route relies on a multitude of information; it is 

possible to highlight a few significant ones: 

a) the estimated geophysical position or the “Global Positioning System” 

localization (GPS coordinates); 

b) coordinates of the final destination;  

c) the vehicle’s altitude; 

d) the vehicle’s direction; 

e) the vehicle’s speed. 

Given the destination coordinates and altitude, a standard GPS Module can supply all 

the requested relevant information. Acknowledging the vehicle’s flight dynamics, the Author 

advises having a redundant altimeter in order to increase the quality of the data and reduce 

the error typical of the GPS altitude measurements. A cost-effective solution is the 

combination of a GPS module with a piezoresistive absolute pressure sensor which functions 

as a digital output barometer. The Author’s opinion is that optimal utilisation of these sensors 

requires a reading of the digital output barometer value and the GPS values before starting 

the take-off manoeuvre; then use these data as calibration information to identify the “0m” 

altitude reference value. It is likely to observe discordant values, in order to increase the 

quality of the information, Author privileges to broadcast to the controller a weighted average 

altitude value to the next stage.  

In front of a predefined flight route, the expectation is that the vehicle will accordingly 

reach a flying altitude and keep the target altitude until that the vehicle is close enough to the 

final destination to approach the landing manoeuvre. Landing manoeuvre will utilize a 

reference altitude reference value, a function of the final target destination’s distance. 
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It is assumed that the core controller will use an altitude “approximation error” (or 

“relative error”), a function of the reference altitude value and the perceived vehicle altitude 

as for “Equation 34”. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  

�
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

2 �
 

(Equation 34) 

5.1.5.1 GPS Module, Teseo-LIV3F 

There is a wide range of available plug-in GPS modules for the “hardware proposal”, the 

Author’s benchmark is the ST Teseo-LIV3F module. It is an easy to use “Global Navigation 

Satellite System” (GNSS) standalone module, connectable with I2C or UART 

communication port. 

 
Figure 5.4: ST Teseo-LIV3F module, block scheme.[40] 

This device results in a cost-effective plug-in solution for any robotic applications; it is 

capable of delivering, with enough accuracy, the essential information to establish a 

navigation monitoring interface, such as: 

• altitude; 

• geographical position (Geographic Coordinates); 

• heading angle; 

• speed. 
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Parameter Specification GPS & GLONASS GPS & BeiDou GPS & Galileo Unit 

Time To First Fix73 
Cold start Warm start 

<32 <36 <30 

s <25 <29 <26 

Hot start <1.5  <2.5  <2 

Sensitivity 74 75 76 77 

Tracking -163 -163 -163 

dBm 

Navigation78  -158 -158 -158 

Reacquisition79 80 -156 -156 -156 

Cold start -147 -147 -147 

Warm start -148 -148 -148 

Hot start -154 -151 -154 

Max fix rate — 10 10 10 Hz 

Velocity accuracy81 — 0.01 — 0.01 m/s 

Velocity accuracy82 — 0.1 — 0.1 m/s 

Heading accuracy67 — 0.01 — 0.01 ° 

Heading accuracy68 — 2.3 — 2.4 ° 

Horizontal position 
accuracy83 

Autonomous <1.869 <1.569 — 
m 

SBAS  <1.569  —  — 

Accuracy of time pulse 
RMS         

99%  ±12.4   ±29.0  ±21.8  ns 

Frequency of time pulse  —  1 1 1  Hz 

Operational limits84 

Dynamic85  <4.5g  <4g  <4.5g  — 

Altitude86 18000 18000 18000 m 

Velocity72 515 515 515 m/s 

Table 5.12: ST Teseo-LIV3F module datasheet summary. 

The previous table is extracted from the ST Teseo-LIV3F module datasheet and 

summarizes the most relevant device characteristics information. It is imperative to highlight 

that the vehicle initialisation shall include a time of at least 36s in order to allow the module 

to lock enough satellites signals87. Only after this waiting time, the controller can begin the 

                                                 

 
73 All satellites at -130 dBm - TTFF@50%. 
74 Demonstrated with a good external LNA. 
75 For hot start, all sats have the same signal level except one (pilot sat @-145 dBm). 
76 For BEIDOU tracking sensitivity refers to MEO sats. For GEO the tracking sensitivity is -151 dBm. For GALILEO the signal 
level refers to both pilot and data components. 
77 For GALILEO the signal level refers to both pilot and data components. 
78 Configurable Value. 
79 All satellites at same signal level. 
80 Minimum level to get valid fix after reacquisition. 
81 50% @ 30 m/s - linear path. 
82 50% @0.5 g - shape path. 
83 CEP 50%, 24h static, Roof Antenna. 
84 Verified the limit checking the fix availability. 
85 Special configuration for high dynamic scenario. 
86 ITAR limits. 
87 Teseo Module cold start may require up to 36 s. 
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initialisation and perform the altitude calibration task. It is unavoidable for the controller to 

set the “0m” altitude reference value every time before starting the take-off manoeuvre. It is 

meaningful to report the absence of an altitude accuracy indication; this information 

limitation (lack of accuracy) reinforces the assumption made to use a redundant altimeter in 

order to mitigate the data inaccuracy.     

A valuable device feature is the capability of data-logging88. Teseo-LIV3F receiver89 

can, locally, save the resolved GNSS position on the internal flash memory in order to be 

retrieved on demand from the host. The recorded data is configurable; data-logging supports 

three types of data logged, and each type has a different size and different data-logged90. [40] 

All the data logged types have: timestamp, latitude and longitude, while other fields 

depend on the type. “Table 5.13” enlightens the details.  

 
Table 5.13: ST Teseo-LIV3F module data logging types.[40] 

5.1.5.2 Redundant Altimeter  

The Author’s preference is to use a cost-effective device capable of estimating accurate 

enough the vehicle flying altitude; LPS25HB91 results in a suitable choice since it is widely 

available on target application PCB (similar alternative hardware solutions92 are available on 

the market). It is a piezoresistive absolute pressure sensor that functions as a digital output 

barometer. The device incorporates a sensing element and an Integrated Circuit (IC) 

interface, which communicates through I2C or SPI from the sensing element to the 

application. The sensing element, which detects absolute pressure, consists of a suspended 

membrane manufactured using a dedicated process developed by ST.  

                                                 

 
88 Datalogging can be enabled, disabled and erased using proprietary NMEA runtime commands. Datalogging subsystem supports 
both: Circular buffer and Standard buffer. 
89 Teseo-LIV3F supports only one datalog at a time. 
90 Teseo-LIV3F can support until 12 hours logging using “log-type 1” and fix-rate at 1 Hz. 
91 The LPS25HB is available in a full-mould, holed LGA package (HLGA). It is guaranteed to operate over a temperature range 
extending from -30 to +105 °C. The holed package allows external pressure to reach the sensing element. The LPS25HB is a high 
resolution, digital output pressure sensor packaged in an HLGA full-mould package. 
92 For example, SparkFun Electronics MPL3115A2 PRESSURE/ALTIMETER P/N SEN-11084 or Parallax ALTIMETER 
MODULE MS5607 P/N 29124. 
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The comprehensive device includes a sensing element based on a piezoresistive 

“Wheatstone Bridge” approach and a sensor’s interface, which communicates a digital signal 

from the sensing element to the application. “Figure 5.5” clarifies the IC block scheme. 

 
Figure 5.5: LPS25HB block scheme. [41] 

The device has a large number of read-only registers and read/write registers, and the 

most significant ones are: “Control Register 1” (20h), “Control Register 2” (21h), 

PRESS_OUT_H (2Ah), PRESS_OUT_L (29h) and PRESS_OUT_XL (28h). 

“Control Register 1” (address: 20h) defines the “Power-down control”, the “Output data 

rate selection” (ODR [2:0]), the “Interrupt generation enable”, the “Block data update” 

(BDU), the “Reset Auto-zero function” and the “Serial Interface Mode selection” (SIM - 

SPI).  The register is set in order to ensure the device “active mode” (bit 7, PD = 1), with a 

12.5Hz frequency (ODR [2:0] set to “011”) continuous update (BDU, “0” default value); 

other parameters are kept as default, ensuring the four-wire SPI operation mode (SIM, “0” 

default value). “Table 5.14” clarifies the register’s setting. 

1 0 1 1 0 0 0 0 

Table 5.14: proposed configuration for the LPS25HB “Control Register 1”. 
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“Control Register 2” (address: 21h) defines: the “Reboot memory content”, the “FIFO 

enable”, the “STOP_ON_FTH93”, the “Enable to decimate the output pressure to 1Hz with 

FIFO Mean mode”, the “I2C interface enable”, the “Software reset”, the “Auto-zero enable”, 

and the “One shot mode enable”. Except for the I2C interface control forced to “Disabled”, 

all bits will be kept as default (set to “0”) in order to keep the “normal mode operation”. Table 

5.15 elucidates the register’s setting. 

0 0 0 0 1 0 0 0 

Table 5.15: proposed configuration for the LPS25HB  “Control Register 2”. 

The pressure data are stored in three registers: PRESS_OUT_H (2Ah), PRESS_OUT_L 

(29h) and PRESS_OUT_XL (28h). The value is expressed as “TWO’s complement”. The 

information translation in hPa (pressure) requires that the algorithm shall take the “TWO’s 

complement” of the complete word and then divide it by 4096 hPa. As described in the below 

picture. [41] 

 
Figure 5.6: LPS25HB output pressure algorithm example [41]. 

Moving by the consideration that the following table and graph illustrate the relationship 

between altitude and pressure using the “default values”94 for pressure and temperature at sea 

level. Then considering that by definition, the altitude at a given air pressure can be calculated 

using “Equation 35” for an altitude up to 11 km (36,090 feet), the Author proposes the use of 

                                                 

 
93 “Enable the FTH_FIFO bit in FIFO_STATUS (2Fh) for monitoring of FIFO level”. 
94 Using ISA standards, the defaults for pressure and temperature at sea level are 1013.25 hPa and 288 K. 
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such information as a baseline and to operate a linearization in the limited RC plane 

operational altitude. 

ℎ = ℎ𝑏𝑏 +
𝑇𝑇𝑏𝑏
𝐿𝐿𝑏𝑏
∙ ��

𝑃𝑃
𝑃𝑃𝑏𝑏
�
−�𝑅𝑅∙𝐿𝐿𝑏𝑏𝑔𝑔0∙𝑀𝑀

�

− 1� 

(Equation 35) 

Where: 

𝑃𝑃    → dynamic pressure [Pa] 

𝑃𝑃𝑏𝑏  → static pressure (pressure at sea level) [Pa] 

𝑇𝑇𝑏𝑏  → standard temperature (the temperature at sea level) [K] 

𝐿𝐿𝑏𝑏 → standard temperature lapse rate [K/m] = -0.0065 [K/m] 

ℎ  → height about sea level [m] 

ℎ𝑏𝑏 → height at the bottom of the atmospheric layer [m]  

𝑅𝑅  → universal gas constant = 8.31432 [(N∙m)/(mol∙K)] 

𝑔𝑔0 → gravitational acceleration constant = 9.80665�𝑚𝑚
𝑠𝑠2
� 

𝑀𝑀 → molar mass of Earth’s air = 0.0289644 [kg/mol] 

 
Figure 5.7: graphical representation of “Equation 35”.  
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Table 5.16: parametric solution of “Equation 35”. 

Assuming that the RC plane will operate in an altitude range between “0 m” and “305m”, 

the Author assumes a linearization accurate enough for the system. The linearization process 

upshot asserts that the pressure will decrease by about 11.9hPa (or 1.19kPa) every 100m (or 

will decrease by 0.119hPa each meter).  

To make the conversion assumption robust, before the take-off, it is necessary to 

correlate the pressure value read before the manoeuvre start to the “0 m” altitude parameter. 

It means that at the system turn-on shall follow the barometric altimeter initialisation, which 

performs the altitude calibration task. During the calibration, the first reading of the first 

pressure output, expressed in “hPa”, shall be stored in the FPGA’s internal RAM (or in any 

other functional memory)95. Author preference is to make the altimeter’s SPI interface 

externally accessible to the user. This feature will allow the user to calibrate the device and 

store the calibration data in a dedicated memory unit, together with all other flight planning 

parameters. The algorithm’s output value is the solution of the following equation. 

                                                 

 
95 The reference pressure value in “hPa” linked to the “0m” altitude reference value. 
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𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿25𝐻𝐻𝐻𝐻 =
𝑃𝑃0𝑚𝑚,ℎ𝑃𝑃𝑃𝑃 − 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿25𝐻𝐻𝐻𝐻,ℎ𝑃𝑃𝑃𝑃

0.119 �ℎ𝑃𝑃𝑃𝑃𝑚𝑚 �
 

(Equation 36) 

Where: 

𝑃𝑃0𝑚𝑚,ℎ𝑃𝑃𝑃𝑃   → 0 m pressure reference value [hPa] 

𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿25𝐻𝐻𝐻𝐻,ℎ𝑃𝑃𝑃𝑃  → dynamic pressure read [hPa] 

 Electronic Compass Unit 

The implementation of the Electronic Compass peripheral is software achieved using the 

information of the 3-axis accelerometer, the gyroscope and the GPS Module.  

 Motor Drive - Powertrain 

The Author’s academic researches [17 and 42] focus on new technologies of “Motor 

Drives” and the state of the art of “WBG” technologies for powertrain applications. Notably, 

research works focused on studying new and more efficient technology for “AUAV Motor 

Drive”96 and a cost/performance/reliability comparison with conventional “Si” Technology 

conventional alternative.  

For the proposed “AUAV Motor Drive”, priority is given to a reliable oriented solution, 

in line with [42] conclusions. A set of stand-alone “ST Microelectronics Eval BRD”97, based 

on “Si” technology power elements, is chosen. It is a low-cost solution that does not require 

developments or ASIC implementations.  

The peripheral is fully capable of controlling the “E-Motor’s Torque”, and it is interfaced 

with the FPGA via an RS-232 port (communication standard). FPGA unit (thus the proposed 

                                                 

 
96 The chosen parameters are in line with the current requirements for a small UAV or Small Hybrid Robots that operate on DC 
battery systems, maintaining the Integrity of the Specifications [42]. Research work moved by the prerequisites of driving compatible 
3-ph brushless motor in line with what required by the AUAV project in the object of the doctoral work.  

Main parameters summary:   
• Form-factor: Smaller than (W127mm x H80mm x L127mm) 
• Converter topology: 3 Phase Inverter 
• Input voltage: 20 volts to 48 volts 
• Nominal input: 36Volts 
• Battery Configuration: 10 x 4.2 VDC Li-Ion 5Ah Batteries, series configuration  
• Maximum Output Current: 15Arms. 

97  The “Motor Drive Unit” includes a control unit and a power unit. The control unit can perform a full E-Motor “Speed Control” 
or “Torque control”. User is allowed to set the control strategy together with the E-Motor settings. The power unit is capable of 
accepting a variety of “Power MOSFETs”, but it is capable of operating only with a “Low Voltage” [16] electrical power source. It 
allows the user to select the MOSFETs P/N in the function of the power ratings of the E-Motor. 
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controller) acts as “Master” and each “AUAV Motor Drive” acts as “Slave”.It means that the 

central controller will enable/disable the peripherals and will dynamically set the E-Motor’s 

“Torque Demand”. 

 Electro-Mechanical Actuators – SERVO  

Previous paragraph 4.2.2 defines, for what regards the study case, the controller’s 

outputs. This paragraph goal is to dissert the “electro-mechanical actuators” hardware design. 

Although there is not a pre-defined set of requirements, the selection process of each actuator 

is influenced by four key variables: 

a) the actuator’s “accuracy”; 

b) the actuator’s “form-factor”; 

c) the actuator’s “reliability”; 

d) the actuator’s “output torque”. 

The necessity to utilize a small “form-factor” electro-mechanical actuator with a 

relatively large “torque density” suggests using the SERVO-Motor topology. A device with 

a “metal gear” is preferred to ensure the system’s reliability.  

By definition, the ailerons control requires two complementary actuators; the selection 

of the SERVO-Motor P/N is restricted by the space available for the installation inside the 

“wing’s frame”. “Form-factor” results being the primary driver and a particular “slim 

SERVO-Motor” with metal gear, specifically designed to fit inside tiny UAV wings, is 

desirable. Hitec HS-125MG slim metal gear wing SERVO-Motor is selected for the ailerons 

control because it represents a good trade-off between costs, performances, reliability and 

size. 

Elevator control may use a single or a dual actuator in the function of the UAV 

mechanical design. There are similarities with the aileron’s actuators technical requirements 

and physicals constraints (such as space available and packaging issues). In order to simplify 

the algorithms and reduce the vehicle’s BOM, the elevator will be actioned by a single 

actuator: a single “Hitec HS-125MG” slim metal gear wing SERVO-Motor.  

Although the same SERVO-Motor model controls ailerons and elevator, each function 

requires a specific gear that will act as a torque converter and actuator’s operating angle 

adapter. The following figure summarizes the “Hitec HS-125MG” technical specifications.  

 



97 
 
 

 
Figure 5.8: “Hitec HS-125MG” technical specifications summary. 

Rudder controller may use a single or a dual actuator, depending on the UAV 

mechanical design. The study case uses a dual rudder design with a single control signal 

(parallel configuration; the same control signal controls both rudders). Space constraints are 
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not so restrictive98 as for the ailerons because a high output torque is not mandatory for this 

application; a low cost oriented solution is desired. HS-65MG metal gear servo is chosen for 

the rudder control because it represents a good trade-off between costs, performances and 

reliability. 

 
Figure 5.9: “Hitec HS-65MG” technical specifications summary. 

                                                 

 
98 Technical requirements for the SERVO-Motor selection are less stringent if compared to the ailerons and the technical rudder 
requirements. 
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Both, the HS-65MG metal gear SERVO-Motor and the HS-125MG slim metal gear 

wing SERVO-Motor, although they are different SERVO-Motors, could be controlled by a 

similar PWM signal. It means that it is possible to define only one generic VHDL component 

(algorithm) replicable for each SERVO-Motor interface. The postulation is that this particular 

VHDL algorithm will be named as “SERVO Control Signal Generator VHDL component”. 

The VHDL algorithm generates an output SERVO control signal made out of two 

parameters: 

• refresh frequency of 20ms; 

• pulse width range goes from 1.5ms to 1.9ms (provided by the manufacturer). 

“Figure 5.8” and “Figure 5.9” SERVO-Motors datasheet’s extracts show that both, the 

“HS-65MG” metal gear SERVO-Motor and the HS-125MG slim metal gear wing SERVO-

Motor, have an operative angle of 40 degrees and a pulse control range of 400µs (“Figure 

5.10” presents the acceptable control waveforms; pulse fluctuating from 1500µs to 1900µs).  

 
Figure 5.10: HS-65MG and HS-125MG control waveforms. 

The acceptable resolution for the SERVO control signal (which results in the quantity of 

position SERVO-Motor can take) could be 7-bit or 8-bit, resulting in 128 or 256 positions.  

Therefore, the input clock frequency for the VHDL component “SERVO control signal 

generation” should be: 

𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,7𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = �
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
� = �

128
400𝜇𝜇𝜇𝜇

� = 320𝑘𝑘𝑘𝑘𝑘𝑘 

(Equation 37) 

or 
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𝑓𝑓𝑠𝑠𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟,8𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = �
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
� = �

256
400𝜇𝜇𝜇𝜇

� = 640𝑘𝑘𝑘𝑘𝑘𝑘 

(Equation 38) 

A 7-bit control resolution will correspond to a theoretical angle step of 0.3125 degrees 

(control pulse step width equal to 3.125µs), while the 8-bit control resolution will correspond 

to a theoretical angle step of 0.15325 degrees (control pulse step width equal to 1.5625µs).  

By definition, the “Dead Band Width” is used by the manufacturers to avoid servo 

dancing at its centre position by telling it to stay in position until the difference between new 

command and old command is greater than the “Dead Band Width”. Figure 5.8 and Figure 

5.9 datasheet’s extracts define to 5µ the SERVO’s “Dead Band Width”, increasing the 

SERVO control signals resolution from 7-bit to 8-bit most likely will not produce any 

practical improvement. It inspires the use of a VHDL component, “SERVO Control Signal 

Generator”, with a digital signal resolution of 7-bit and a clock of 320kHz (Equation 37).  

It is imperative to highlight that the proposed FPGA uses a 3V3 I/O interface, and the 

proposed SERVO-Motors logical circuits require a 5V logical level interface. It means that a 

“Not Inverting Logic Level Translator” or a “Not Inverting Gate Driver” should be installed 

between the FPGA and the “SERVO-Motor”. Therefore, the circuit design needs to protect 

the “Control Unit” (particularly the FPGA) from external events99. 

 Data Storage 

A complex system like the technical proposal of the “Thesis” requires dedicated 

memory, where to store a wide range of data. Indeed, it is indispensable a data storage 

element, accessible to the user, where to upload the flight parameters or operate the sensors’ 

calibration100. This operation results indispensable to program, time by time, the flight route. 

It is also necessary to allocate a second memory unit where to store all the flight telemetry to 

use for the controller learning/training purpose or just for a flight parametric analysis.  

The Author’s preference is to use a standard SPI interfaced memory. A wide range of 

compatible devices is capable of fulfilling the task’s requirements, although each technology 

available results optimised for a specific set of applications. The Author considers the 

EEPROM memory technology an excellent trade-off for the technical proposal, privileging 

                                                 

 
99 Such as ESD events, short to battery, short to ground, etc... 
100 For example, a place where to store the “0m” value of the redundant altimeter calibration, etc... 
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the reliability instead of larger memory sizes. The assumptions made is to use a set of two 

EEPROM devices with a memory size of 2Mbit, associable to the “ST M95M02-A125”. In 

the case will be required a larger memory size for the data storage element, the Author 

acknowledged in a standard SPI interface “NOR Flash Memory” the technological boost for 

this application. 

 Battery management and Low Voltage power supply management  

As the main goal is to create a controller in a VHDL environment able to replicate human 

decisions and behaviours in the control of a small UAV, a limited, but not negligible, 

consideration should be given to the “System Power Management”. 

At first look, “System Power Management” should be focusing primarily on the system 

protection in case of “Battery Overcharged” or “Battery Discharged”, nevertheless it is not 

limited only to these operations. Indeed, a human pilot may change the way of driving the 

vehicle by external variables in order, for instance, to save energy. The estimated SoC value 

is the crisp value of an input membership function which will be used as a secondary variable 

in the rule block for the powertrain motor throttle control.  

For the study case, it is assumed that the only vehicle source of power is the “Main 

Battery”, which is defined as “Low Voltage REESS” because it has a maximum output 

voltage below 60V [16]. From the last statement, it is possible to adapt the architecture 

described in “paragraph 3.2” for the proposal. The safety legislation and the international 

standards do not require a “galvanic isolation” between the main source of power (REESS, 

primary PSU) and the controller electronics (secondary PSU) when the primary source of 

energy is defined as “Low Voltage” (according to “Chapter 3” analysis). Dedicated power 

electronics circuitries, or “secondary PSU block”, are required to convert the “REESS 

Voltage” to several secondary low voltage power rails in order to power-up all the vehicle’s 

electronic components.  

It assumed that the “Secondary PSU Block” shall operate with an input voltage in the 

range between 24VDC and 48VDC and generate the following secondary power rails: 

• 12V ± 5%, rated to 2A; 

• 5V ± 2%, rated to 2.2A; 

• 3V3 ± 2%, rated to 2.2A; 

• 1V2± 2%, rated to 4A. 
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As well, it is assumed a “Secondary PSU Block” design compliant to the following basic 

requirements: 

• ESD (IEC 61000-4-2, level 4); 

• load dump protection (ISO 16750-2, Test A and B); 

• pulse (ISO 7637-3, Pulse 3a and 3b). 

In the automotive industries, it is common to have similar requirements for the low 

voltage power management of the vehicle’s ECUs (Electronic Control Unit). A widely used 

design strategy is shown in Figure 5.11. For the HW proposal, the Author advocates using 

slightly over-rated power supplies to increase the system’s efficiency and robustness. The 

implementation of the block diagram drawn in Figure 5.11 represents a feasible option, 

compatible with the power budget typical of a system like a vehicle’s control unit. 

 
Figure 5.11: proposed HW PSU block diagram for the control unit. 

“Paragraph 3.7” described the structure of automotive REESS (“Automotive Powertrain 

Battery Pack”) and of “Battery Management Systems”. The most common architecture 

described is based on multiple “Battery Modules” connected in parallel and in series 

accordingly to the target application. In this architecture, each “Battery Module” has a 

dedicated “EBM module” responsible for cell monitoring and balancing.  

The vehicle’s “REESS”, which is the unique system’s energy source, due to the limited 

complexity101 and due to the low voltage nature of the system, is reduced to a single battery 

module (thus a single EBM).  

                                                 

 
101 In the specific, the total number of cells in series per EBM less than 16. 
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For the proposal hardware setup, the assumptions are: 

• the use of a single EBM module (electronic battery monitor) instead of a more 

complex BMS; 

• that the EBM uses an ASIC chip (there is a wide range of devices available in 

the market);  

• the EBM is capable of enforcing several protection features and is capable of 

broadcasting the battery module parameters via an SPI interface.  

These assumptions require a dedicated “VHDL Block” to interface the FPGA’s 

controller to the EBM through an SPI protocol. As well will be necessary to pre-process the 

EBM’s information before to be transferred to the neuro-fuzzy controller.  

In this configuration, the controller entirely relies on the EBM to enforce protection and 

safety mechanisms to the REESS. Indeed, the EBM will operate the battery cell balancing, 

the battery monitoring and the battery protection functions autonomously. The practical result 

is that the vehicle’s control unit can only observe the REESS’s SoC. 

5.2 Human Remote Control  

The principles behind utilising a human remote control have their roots in the necessity 

of gathering the conditions for deep controller learning through a training process. Moving 

from the drawn hypothesis and from the strategy described in “Chapter 4”, a learning/training 

prerequisite is that an RC plane controlled by a human will generate and record the “raw 

data”. Telemetry, stored into a dedicated memory, at the end of the flight shall be opportunely 

recovered (extracted from the external physical memory to the designer PC), verified and 

then loaded to into the “GUI” that, as an ultimate outcome, will build (and export in VHDL 

language) the final “neuro-fuzzy controller algorithm”.  

This approach entails that the RC plane hardware needs to fulfil a set of technical 

requirements, such as: 

• a human pilot shall control the RC plane via a remote radio-controller; 

• the whole hardware (control unit) described in paragraph 5.1 shall be integrated 

with the remote control unit hardware; 

• the fuzzy logic controller shall be flexible enough to be opportunely modified to 

read, process and store all vehicle’s actuators and flights parameters. 

The strategy behind these requirements is based on the compulsion to elaborate a 

manoeuvre with the environmental parameters (system input parameters), with the human 
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pilot behaviours (pilot commands), the navigation monitoring parameters and, the flight’s 

parameters.  

The Author proposal solution relies on the FPGA’s flexibility and the controller’s 

hardware description language (VHDL). For these reasons, the VHDL controller’s algorithm 

shall include the following features: 

• a dedicated “Flight Parameters Memory Interface Block”, in charge of the SPI 

interface that connects the FPGA to the memory storage device (an independent 

2Mbit EEPROM); 

• a dedicated “Telemetry Memory Interface Block”, in charge of the SPI interface 

that connects the FPGA to the memory storage device (an independent 2Mbit 

EEPROM); 

• “Telemetry Memory Interface Block” receives as input the “Fuzzy Controller 

Inputs”, the “Fuzzy Controller Output”, the status of the physical actuators and 

powertrain torque demands. 

Specialised RC plane component stores offer a wide range of affordable remote control 

units, complete of actuators and actuators drivers, capable of plug and play solutions. This 

detail, in conjunction with the fact that the “PhD Thesis focus” is the research on “Neuro-

Fuzzy Controllers” to be designed using VHDL as “controller’s hardware description 

language”, make marginal a detailed description of the plug-in remote control units and their 

actuator drivers.  

Such kind of plug-in systems are easily exchangeable, and usually, users privileges 

customised solutions in order to maximise their comfort102 or their entertainment. The Author 

decision is: to do not restrict the selection process to a particular remote control system for 

the RC plane. The efforts will focus merely on the VHDL controller algorithm functionality 

since it is the only relevant research. 

 

 

 

                                                 

 
102 It may be useful to remind that the human pilot of the RC plane, perhaps is not trained to use a particular system, or he will be 
more effective with a solution on which he matured most of his expertise. 
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6 Study Case, Controller’s Design Proposal 

As previously described, the proposed work scope is to minimise the hardware design 

giving the most of the design load to the VHDL-Neuro Fuzzy controller. This design strategy 

moves by the minimisation of the sensors installed on the vehicle, seeking for a cost-effective 

compromise between mechanical constrains, electronics hardware/sensors available and 

flight control principles. 

“Chapter 2” introduced the flight’s control principles, while “Chapter 5” articulated the 

hardware proposal. “Chapter 4” described the academic and theoretical basis of the decision-

making process that leads to the adoption of basic fuzzy logic principles and neural networks 

(as a potential output of the learning process) for the “study case”. 

As previously described, the first step of the controller’s design is the identification of 

the “System’s Inputs”, as “System’s Environment Variable”103 or as “Shell Variable”104, the 

“Actuators” or “System’s Outputs” and then link them with a “Transfer Function”. As the 

proposed work targets a neuro-fuzzy controller, the “System Transfer Function” is the set of 

all MIFs, all MOFs and all Rulebases105 (FIS). [43] 

6.1 Controller’s Inputs 

Paragraph 4.2 explores the controller’s technical requirements, defining a set of 

“controller’s inputs” and “controller’s outputs”. Each controller’s input represents a 

“Physical Quantity”106, and to be utilisable by an FPGA/VHDL system shall be adequately 

expressed in a digital form. It means that for each system’s input, or output, will correspond 

a sensor, or an actuator, described in “paragraph 5.1”. The interface between the system’s 

peripheral and the neuro-fuzzy controller is implanted on a dedicated FPGA’s section by a 

“VHDL component’s algorithm”107. 

                                                 

 
103 An environment variable is a dynamic-named value that can affect the way running processes will behave on a controller. 
104 A shell variable is a variable that affects only to the current “Shell” or “Function”. In contrast, an environment variable is 
available system-wide and can interact with other functions of the controller. 
105 Each “Rulebase” rule’s weights obtained as a result of the “learning/training process”. 
106 A “Physical Quantity” is a property of a material or system that can be quantified by measurements. A “Physical Quantity” can 
be expressed as a combination of a magnitude and a unit. 
107 An appropriate algorithm capable of configuring the sensor and manipulating the sensor’s output data accordingly. 

https://en.wikipedia.org/wiki/Dynamic_name_resolution
https://en.wikipedia.org/wiki/Value_(computer_science)
https://en.wikipedia.org/wiki/Computer_process
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 VHDL Component A3G4250D 

Paragraph 5.1.3 described the hardware (ST A3G4250G) characteristics of the vehicle’s 

gyroscope and then defined the operational setting on theoretical assumptions. 

In order to implement a “Parallel Computing Controller” on an FPGA using VHDL 

algorithms, a dedicated “VHDL component” named “A3G4250D” is created. It means that a 

dedicated set of FPGA logic gates are programmed to interact only with the physical 

gyroscope, and one other set of FPGA logic gates are programmed to process and broadcast 

the gyroscope’s information.  

The hardware architecture defines the SPI protocol as a communication method and 

defines the “FPGA” as “SPI Master” and the peripheral as “SPI Slave”. VHDL component 

“A3G4250D” includes a sub-component that expresses the SPI interface and physically 

interacts with the peripheral (“SPI_Master” VHDL component). The “A3G4250D” 

component includes a second sub-component (it acts as the A3G4250D’s state machine), 

which manages the data stream108 (interfaced to the “SPI_Master Component”), the 

peripheral’s configuration and, the data digital-processing.  

 
Figure 6.1: RTL view of the “VHDL component” named as “A3G4250D”. 

For data processing of the “A3G4250D” gyroscope’s output registers, it is intended that 

the algorithm converts each 16-bit value expressed in TWO’s complement format (signed 

integer) into a 16-bit STD_LOGIC_VECTOR. The outcomes are a 16-bit yaw angle, a 16-

                                                 

 
108 At the power-up “A3G4250D’s state machine” configures the peripheral (according to paragraph 5.1.3 configuration) and then 
cyclically (cycles starts with a “Data Refresh” command) reads and processes the peripheral’s output data registers. 
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bit pitch angle and a 16-bit roll angle coming out from the “VHDL component” (as illustrated 

in Figure 6.1). It is important to remark that the input clock and the data refresh clock for the 

“A3G4250D” come from the highest hierarchal VHDL block.  

 VHDL Component LIS3DSH 

Paragraph 5.1.2 described the hardware (ST LIS3DSH) characteristics of the vehicle’s 

3-axis linear accelerometer and then defined the operational setting on theoretical 

assumptions. In order to implement a “Parallel Computing Controller” on an FPGA using 

VHDL algorithms, a dedicated “VHDL component” named as “LIS3DSH” is created. It 

means that a dedicated set of FPGA logic gates are programmed to interact only with the 

peripheral, and one other set of FPGA logic gates are programmed to process and broadcast 

the sensor’s information.  

Most of paragraph 6.1.1 analysis is valid also for the “LIS3DSH” VDHL component, 

and it is possible to reutilize the sub-component which expresses the SPI interface and 

physically interacts with the peripheral (“SPI_Master” VHDL component). The “LIS3DSH” 

component includes as well a second sub-component (it acts as the LIS3DSH’s state 

machine), which manages the data stream (interfaced to the “SPI_Master Component”), the 

peripheral’s configuration and, the data digital-processing.  

 
Figure 6.2: RTL view of the “VHDL component” named as “LIS3DSH”. 

For data processing of the “LIS3DSH” Electronic compass output registers, it is intended 

that the sub-component converts each 16-bit value expressed in TWO’s complement format 

(signed integer) into a 16-bit STD_LOGIC_VECTOR. These operations result in a set of 

outputs from the “VHDL component”: a 16-bit “DATA_X_ax”, a 16-bit “DATA_Y_ax” and 
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a 16-bit “DATA_Z_ax” (explicated by “Figure 6.2”). The input clock and the data refresh 

clock for the “LIS3DSH” come from the highest hierarchal VHDL block. 

 VHDL Component TESEO 

Paragraph 5.1.5 described the vehicle’s navigation monitor hardware characteristics (ST 

TESEO module and the redundant altimeter) and defined the operational setting on 

theoretical assumptions. In order to implement a “Parallel Computing Controller” on an 

FPGA using VHDL algorithms, a dedicated “VHDL component” named as “TESEO” is 

created. It means that a dedicated set of FPGA logic gates are programmed to interact only 

with the navigation monitor peripheral, and one other set of FPGA logic gates are 

programmed to process and broadcast the peripheral’s information.  

“VHDL component TESEO” includes three sub-components: “SPI_Master”, 

“LPS25HB” and “Process_Teseo”. The first one expresses the SPI interface and physically 

interacts with the GNSS peripheral. The second component manages the redundant altimeter 

(it acts as the LPS25HB’s state machine and peripheral SPI interface). The last sub-

component manages the GNSS data stream (interfaced to the “SPI_Master Component”), the 

peripheral’s configuration and, the data digital-processing. 

 
Figure 6.3: external RTL view of the “VHDL component” named as “Teseo”. 
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Figure 6.4: internal RTL view of the “VHDL component” named as “Teseo”. 

The input clock and the data refresh clock for the “VHDL component TESEO” come 

from the highest hierarchal VHDL block.  

 VHDL Component, Safety Sensors 

The VHDL component “Safety_Sensors” interfaces a set of vehicle’s peripherals with 

the controller’s core. The peripherals are: 

• BMS; 

• short-distance proximity sensor; 

• long-distance proximity sensor. 

 
Figure 6.5: internal RTL view of the “VHDL component” named as “Safety_Sensors”. 

6.1.4.1 BMS_VHDL Component 

The “BMS_VHDL component” directly interfaces the controller with the “EBM” (or 

BMS). The design assumption is that the “BMS_VHDL component” acts like the 

“SPI_Master” and that the “EBM” acts like the “SPI_Slave”. It allows the controller to 

interrogate the “EBM” and obtain the meaningful data associated with the battery module. 

The obtained information is digital processed and then broadcast to the controller’s core.   
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6.1.4.2 Proximity Sensor Components 

The design assumption made is: as soon as the ground will be detected, the controller 

will disable the powertrain. Due to the importance of the information, the Author’s proposal 

perseveres a redundant solution. 

Both ST VL53L1X plug-in board and VL6180X plug-in board are interfaced with an I2C 

protocol. VHDL Proposed design targets the implementation of two independent “I2C Data 

Bus”, each one dedicated to a single plug-in board (it is mandatory for a full redundant 

scheme). Since that the goal is to implement a parallel and redundant functionality, the VHDL 

component “Safety Sensor” code population highlight three different VHDL blocks allocated 

for the ground detection: 

• VHDL component “VL53L1X”; 

• VHDL component “VL6180X”; 

• proximity sensor’s logic gates.       

“VL53L1X” (as well for the “VL6180X”) VHDL sub-component firstly configures the 

peripheral and then reads the output register of the device (according to the peripheral’s 

supplier application note). If one detection is observed, the sub-component flags the detection 

through an active-high digital signal: “Detection_Flag”. 

The “proximity sensor’s logic gates” are associated with logic gates digital processing 

structure, which receives three input signals (“Enable_detection”, “VL53L1X_detection” and 

“VL6180X_detection”) and generates one output signal, the “Landing_Prox_Flag” (which 

will allow disabling the propellers). Follows the truth table of the “proximity sensor’s logic 

gates”. 

Enable_detection VL53L1X_detection VL6180X_detection Landing_Prox_Flag 

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 0 

1 0 0 0 

1 0 1 1 

1 1 0 1 

1 1 1 1 

Table 6.1:“Prox_Sensor_logic_gates” truth table.  



111 
 
 

 VHDL Component, Flight Parameters EEPROM 

A system’s operation precondition is the definition of the flight route and the sensor’s109 

calibration. This procedure results in a user uploading the flight parameters into the memory 

storage before the vehicle’s take-off manoeuvre.  

“Flight Parameters EEPROM VHDL component”, managing a dedicated SPI interface, 

reads the parameters stored and accordingly broadcast the valuable information to the 

controller. The consequent digital acceleration process achieved by the “Flight Controller” 

will translate these parameters into a flight route. The mandatory parameters to upload are: 

• final destination geographical coordinates; 

• sensor’s calibration values; 

• target flight altitude. 

 Controller’s core inputs, summary  

According to the assumptions made, the controller’s core requires the following input 

parameters: 

a) altitude; 

b) speed; 

c) pitch angle; 

d) rolling angle; 

e) yaw angle; 

f) estimated position; 

g) flight reference parameters; 

h) proximity sensor; 

i) battery’s SoC. 

6.2 Controller’s Outputs  

Paragraph 4.2 study explores the technical requirements for the “System’s Controller”, 

defining a set of “controller’s inputs” and “controller’s outputs”. Each controller’s output is 

expressed in a digital form and requires the conversion into a specific actuator’s control 

signal.  

                                                 

 
109 Such as the calibration of the redundant altimeter. 
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For each “actuator” or “motor” described in “Chapter 5” shall be defined a specific 

“VHDL component” with an appropriate algorithm able to configure and adequately control 

the electromechanical output device.   

 VHDL Component SERVO  

  Paragraph 5.1.8 described the hardware characteristics of the “SERVO Motors” (Hitec 

HS-65MG and HS-125MG) and defined the operational setting on theoretical assumptions. 

In order to control such servo motors using FPGA and VHDL algorithms, a dedicated 

“VHDL component” named “PWM_SERVO” is created. It means that a dedicated set of 

FPGA logic gates are programmed to convert a 7-bit digital value into a PWM signal with a 

frequency of 50Hz (refresh time of 20ms) and a TON time between 1500µs and 1900µs as 

previously described in paragraph 5.1.8. 

 
Figure 6.6: external RTL view of the “VHDL component” named as “PWM_SERVO”.  

 Powertrain’s VHDL Components 

Paragraph 5.1.10 described the E-Motor drivers’ hardware characteristics (ST EVAL 

BRD) and defined the operational setting on theoretical assumptions. In order to control such 

motors using FPGA and VHDL algorithms, a dedicated “VHDL component” named 

“MOTOR_INT” is created. Performing this operation a dedicated set of FPGA logic gates 

are programmed to convert 8-bit digital value information into an RS232 command which 

defines the motor’s torque demand110, as previously described in paragraph 5.1.10. 

                                                 

 
110 It is a static parameter not available to the vehicle’s controller. It is set by the user together with all the E-Motor configuration 
parameters on the motor driver. 
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Figure 6.7: external RTL view of the “VHDL component” named as “MOTOR_INT”. 

The VHDL component “MOTOR_INT” is used for both E-Motors. The vehicle’s left E-

Motor is associated with the VHDL component instance “BLDM1”, and the vehicle’s right 

E-Motor is associated with the VHDL component instance “BLDM2” (as for “Figure 6.7”). 

 VHDL Component, Flight Telemetry EEPROM 

A learning/training process assumes paramount importance for the technical proposal. 

This procedure requires the capture of the vehicle’s flight parameters while a human-being 

pilot controls the vehicle; the consequent action is the memorisation of the captured 

information into data memory storage. As well as, this operation may be taken while the 

vehicle is flying in “full autonomous mode”; although the data may not be optimal for 

learning/training purposes, it may be beneficial for data analysis aims. 

“Flight Telemetry EEPROM” VHDL component, managing a dedicated SPI interface, 

reads a wide range of system’s parameters and then accordingly writes the physical memory’s 

registers.  At the flight’s end, as soon as the system is disengaged, the user can access the 

EEPROM via the dedicated port. The presented feature allows the user to download the 

captured data.  

 Controller’s core outputs, summary 

By assumptions, the neuro-fuzzy flight controller generates the following output signals: 

• left E-Motor torque demand, (RS232 communication interface); 

• right E-Motor torque demand, (RS232 communication interface); 

• ailerons SERVO-Motor, PWM control signal; 
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• elevator SERVO-Motor, PWM control signal; 

• rudders SERVO-Motor, PWM control signal. 

6.3 Fuzzy Logic Controller Design 

From “paragraph 4.2” theoretical prospects, the controller’s heart is the “FIS” (or Rules 

Block) which utilizes a set of 5 “Rulebases” functions. Each “Rulebase” accordingly uses 

sets of MIFs crisps values to activate sets of weighted MOFs. [43] 

XFUZZY GUI encases a set of membership functions into a “Type”, which is usually 

associated with a sensor (MIF association) or with an actuator (MOF association). GUI’s 

definition of the controller physical “Input Variables” and “Outputs Variables” requires an 

existing environment “Type” to be linked with it. 

Patently, the creation of a fuzzy system in the “XFUZZY” (or “XFL3 GUI”) 

environment usually starts with the definition of the “Operator Set”. An “Operator Set” 

in “XFL3 GUI” is an object containing the mathematical functions assigned to each fuzzy 

operator. Fuzzy operators can be binary (like the T-norms and S-norms employed to represent 

linguistic variable connections, implication, or rule aggregations), unary (like the C-norms or 

the operators related with linguistic hedges), or can be associated with “defuzzification 

methods”. [38] 

The second step, in the description of a fuzzy system, is the creation of the linguistic 

variable types, using the “Type Creation Interface”. A new “Type” necessitates the 

introduction of its identifier and universe of discourse (minimum, maximum and cardinality). 

The interface includes several predefined types corresponding to the most usual partitions of 

the universes. These predefined types contain homogeneous triangular, trapezoidal, bell-

shaped and singleton partitions, shouldered-triangular and shouldered-bell partitions. Other 

predefined types are equal bells and singletons, which may be the first option for output 

variable types. When one of the aforementioned predefined types is selected, the number of 

membership function of the partition must be introduced. [38] 
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Figure 6.8: XFUZZY environment examples of types. [38] 

An XFL3 type is an object that describes a type of linguistic variable. It means to define 

its universe of discourse, to name the linguistic labels covering that universe, and to specify 

the membership function associated with each label. Linguistic labels can be defined in two 

modes: free membership functions or members of a family of membership functions. In the 

last one, the family of membership functions must be defined in advance. A free membership 

function uses its own set of parameters while the members of a family share the list of 

parameters of that family. It results helpful to reduce the number of parameters and 

representing constraints between the linguistic labels (such as the order or a fixed overlapping 

degree). [38] 

The types so defined inherit the universe of discourse and the labels of their parents 

automatically. The labels defined in the type’s body are either added to the parent labels or 

overwrote if they have the same name. 

The third step in defining a fuzzy system is the description of each “Rulebase”, 

expressing the relationship among the system variables. A dedicated GUI’s interface111 

                                                 

 
111 The contents of the rules can be displayed in three formats: free, tabular, and matricial. The free format uses three fields for 
each rule. The first one contains the confidence weight. The second field shows the antecedent of the rule. It is an auto-editable 
field, where changes can be made by selecting the term to modify (a “?” symbol means a blank term) and by using the buttons of 
the window. The third field of each rule contains the consequent description. It is also an auto-editable field that can be modified 
by clicking the “->” button. New rules can be generated by introducing values on the last row (marked with the “*” symbol). 
The button bar at the bottom of the free form allows to create conjunction terms (“&” button), disjunction terms (“|” button), 
modified terms with the linguistic hedges not (“!” button), more or less (“~” button), slightly (“%” button), and strongly (“+” 
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could be used to define the “Rulebase” (the lists of input and output variables parameters), 

and to structure the functions with the appropriate operator sets and the confidence weight to 

be used. 

The accurate definition of the “Operator Sets”, “Variable Types”, and “Rulebases” is 

propaedeutic for the fuzzy system design progress. The definition of the global input and 

output variables, using the “Variable Properties”112 interface (GUI’s window), is the 

following design step. 

The concluding operation in a fuzzy system definition is the description of its 

hierarchical structure.  

 
Figure 6.9: flight controller’s description in XFL3 GUI. 

 Type “Rudder_SERVO”, Membership Output Function 

The Type “Rudder_SERVO” contains five MOFs, each of them associated with a 

specific rudder manoeuvre that a “Human being Pilot” may perform in front of external 

conditions while a predefined route is followed. Membership functions are: 

a) Left_turn; 

                                                 

 
button), and single terms relating a variable and a label with the clauses equal to (“==”), not equal to (“!=”), greater than (“>”), 
smaller than (“<”), greater or equal to (“>=”), smaller or equal to (“<=”), approximately equal to (“~=”), strongly equal to (“+=”), 
and slightly equal to (“%=”). The “->” button is used to add a rule conclusion. The ">..<" button is used to remove a conjunction 
or disjunction term (e.g. a term “v == l & ?” is transformed into “v == l”). The free form allows the user to describe more complex 
relationships among the variables than the other forms. [32, 37 and 38] 
112 The information required to create a variable is its name and type. 
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b) Left_wind_comp; 

c) Cruise_rudder; 

d) Right_wind_comp; 

e) Right_turn. 

 
Figure 6.10: Type “Rudder_SERVO”, graphical representation.  

The MOFs design strategy is based on the rudder’s mechanical behaviour steered by the 

electromechanical actuator, which is the SERVO-Motor described in paragraph 5.1.8. 

Moving from the disserted hardware description of the “Rudder Servo”, the membership 

function “Cruise_rudder” is a conventional triangular membership function centred to the 

mechanical rudder angle equal to 0°, which corresponds to the +20° of the rudder’s SERVO-

Motor electrical angle. Depending on the SERVO-Motor control signal resolution utilised, it 

could be 7-bit or 8-bit (0 to 127 steps of 0 to 255 steps), the 0° rudder mechanical angle 

corresponds to an output value of 127 for the case of 8-bit resolution (or 63 for the case of 7-

bit resolution). 

 The proposed neuro-fuzzy controller utilises 8-bit resolution data, and then a VHDL 

component will perform the information’s digital acceleration, which will be converter in a 

PWM signal with a 7-bit resolution. 

“Right_turn” is a conventional trapezoidal membership function associated with a heavy 

rudder manoeuvre which results in a significant positive “Yaw angle” (“Left_turn” is the 

mirror/symmetrical function, associated with a heavy rudder manoeuvre which results into a 

significant negative “Yaw angle”). The resulting output control signal for the rudder’s 
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SERVO-Motor theoretically may set the electrical angle in a range between 24° and 40° 

(between 0° and 16° for the “Left_turn” function), which corresponds to a mechanical angle 

between +4° and +20° (between -4° and -20° for the “Left_turn” function).  

“Right_wind_comp” is a conventional triangular membership function associated with 

a slight rudder manoeuvre which results in a moderate positive “Yaw angle” 

(“Left_wind_comp” is the mirror/symmetrical function, associated with a slight rudder 

manoeuvre which results in a moderate negative Yaw angle). Resulting output control signal 

for the rudder’s SERVO-Motor, theoretically may set the SERVO-Motor electrical angle in 

a range between 20° and 28° (between 12° and 20° for the “Left_wind_comp” function), 

which corresponds to a mechanical angle between +0° and +8° (between 0° and -8° for the 

“Left_wind_comp” function). This function results particularly beneficial when the vehicle 

is flying through moderate turbulence or gusty winds. These conditions, both, can cause yaw 

through weather vaning and result in an undesirable vehicle rolling. “Left_wind_comp” 

function is intended to compensate undesirable yaw to the right caused by weather conditions, 

while “Right_wind_comp” function is intended to compensate undesirable yaw to the left 

caused by weather conditions. 

 
Figure 6.11: representation of the rudder working principle. 

 Type “Altitude_input”, Membership Input Function 

The Type “Altitude_input” contains four MIFs, each of them associated with a specific 

“Human being Pilot” interpretation of the altitude indicator while a predefined route is 

followed. Membership functions are: 

a) Low_ALTD; 

b) Cruise_ALTD; 

c) Soft_high; 
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d) OVER_ALTD. 

The MIFs design strategy is based on the interpretation of the “Altitude_Error” relative 

error input value113, defined by: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴__𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =
(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) − (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)

�(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) + (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)
2 �

 

(Equation 39) 

By assuming the input signal resolution is set to 8-bit (0 to 255 steps), the centre value 

is associated with an Altitude_error = 0 corresponds to an input value of 127. 

 
Figure 6.12: Type “Altitude_input”, graphical representation. 

“Low_ALTD” membership function is associated with a “Human Pilot” perception of 

an altitude below the reference route altitude value while he is interpreting the sensor’s 

feedback and the other environment variables.  

“Cruise_ALTD” membership function is associated with a “Human Pilot” perception of 

flying at the correct altitude, while the “Soft_high” membership function describes a “Human 

Pilot” behavioural, which uses the altitude as energy storage.  Seeking the altitude as energy 

storage may be a common manoeuvre when a tail-wind increases the vehicle speed or even 

favours the vehicle to act as a glider.  

                                                 

 
113 “Actual Altitude Value” is the value read by the sensor while the “Estimated Altitude Value” is the value required by the 
programmed cruise (value read from EEPROM). 
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“OVER_ALTD” membership function is associated with a “Human Pilot” perception of 

an undesirable altitude above the reference route altitude value while he is interpreting the 

sensor’s feedback and the other environment variables.  

 Type “Compass_input”, Membership Input Function 

The Type “Compass_input” contains three MIFs, each of them associated with a specific 

“Human Pilot” interpretation of the electronic compass while a route shall be followed. 

Membership functions are: 

a) Negatitive_angle_err; 

b) Cruise; 

c) Positive_agnle_err. 

The MIFs design strategy is based on the interpretation of the “Compass_Error” 

differential input value, which is: 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶__𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸.𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉) − (𝐴𝐴𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸.𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉) 

(Equation 40) 

 
Figure 6.13: Type “Compass_input”, graphical representation. 

The information “Compass_error” is the outcome, according to “Equation 40”, of a 

digital process implemented by a bespoke VHDL algorithm, which utilizes few sensors114 to 

                                                 

 
114 Accelerometer output data, Gyroscope output data and the most critical TESEO GPS module parameters. 
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obtain the optimal vehicle’s direction (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸.𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉), and the current 

vehicle’s heading angle (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸.𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉). 

 “Negatitive_angle_err” membership function is associated with the “Human being 

Pilot” perception of a plane drifting to the left from the correct direction with the result of 

pointing off-target (pointing to the left of the waypoint or final destination). As for the case 

of “Figure 6.14”. 

 

 
Figure 6.14: negative navigation angle error, graphical representation. 

“Cruise” membership function is associated with a “Human Pilot” perception of a 

vehicle that follows the correct route and flies towards the waypoint (or the final destination). 

As for the case of “Figure 6.15”. 
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Figure 6.15: cruise navigation, graphical representation. 

“Positive_agnle_err” membership function is associated with the “Human Pilot” 

perception of a plane drifting to the right from the correct direction with the result of pointing 

off-target (pointing to the right of the waypoint or final destination, according to the 

illustration of “Figure 6.16”). 

 

 
Figure 6.16: positive navigation angle error, graphical representation. 
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 Type “Energy_Status”, Membership Input Function 

The Type “Energy_Status” contains four MIFs, designed to influence115 the throttle 

management of the vehicle’s powertrain. The outcome is that manoeuvres may be affected 

by the Battery SoC to a certain degree116, depending on the environmental conditions. 

Membership functions are: 

a) Derating; 

b) Low_SOC; 

c) Healthy_SOC; 

d) Overcharged. 

 
Figure 6.17: Type “Energy_Status”, graphical representation. 

Assuming that the input signal represents the “Battery State of Charge” (SoC) is an 8-bit 

signal, where the value “0” (or “00” in hex format) represents a full discharged battery (SoC 

equal to 0%), and the value of “255” (or “FF” in hex format) represents a full charged battery 

(SoC equal to 100%). 

The membership function “derating” wants to influence the throttle control in order to 

prevent the deterioration of the battery (battery protections) during shallow SoC operations.  

                                                 

 
115 Concur to the neuro-fuzzy logic controller energy-saving future innovations. 
116  The environmental variables and the navigation (such as altitude and direction) have a primary influence for the throttle control. 
The influence of the “Battery SoC” has a secondary influence for the throttle control. 
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The membership function “Low_SOC” is associated with the “Human being Pilot” 

conservative throttle control that prioritizes the power economy on the system performances 

during low SoC operations. It may result easily associable to a “Human being Pilot” that in 

front of a low fuel level indication changes his driving style to reach his destination. 

The membership function “Healthy_SOC” has a negligible influence on the throttle 

control because this function is not associated with any safety limitation. It means that the 

weight of this membership function is overwhelmed by the weight of the other variables. 

The membership function “Overcharged” is associated with the case of a battery fully 

charged117.  It wants to influence the throttle control, boosting the power output. It results 

valuable during the “Take OFF” manoeuvre. 

 Type “Speed_Input”, Membership Input Function 

The Type “Speed_Input” contains five MIFs, each of them associated with a specific 

“Human being Pilot” interpretation of the speed indicator while a predefined route is 

followed.  

Membership functions are: 

a) Stall_speed; 

b) Low_speed; 

c) Cruise_Speed; 

d) High_Speed; 

e) Excessive_speed. 

The membership function “Stall_speed” is associated with the “Human being Pilot” 

interpretation of the speed sensor, resulting in a perception of a too low speed that may result 

in a stall. 

The membership function “Low_speed” is associated with the “Human being Pilot” 

perception of a low speed that shall be addressed before it may degenerate into a vehicle’s 

hazardous condition. 

The membership function “Cruise_Speed” is associated with the “Human being Pilot” 

perception of correct vehicle speed.  

                                                 

 
117 Depending on the technology (Chemistry) of the battery (cells) may be deteriorative to keep the battery charged above 95%. 
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Figure 6.18: Type “Speed_Input”, graphical representation. 

The membership function “High_Speed” is associated with the “Human being Pilot” 

perception of a higher speed that may be caused by tail-winds or an excessive throttle. The 

function’s goal is to increase the vehicle’s safety (minimising the risks of reaching excessive 

speeds) and reduce energy consumptions (extend the range, using, for example, the altitude 

as energy storage).  

The membership function “Excessive_Speed” is associated with the “Human being 

Pilot” perception of a very high speed that may be dangerous for the vehicle’s safety. The 

membership function’s goal is to allow a quick correction of the speed parameter, relying not 

merely on the throttle control but also on the elevator for a variation of the pitch angle. 

 Type “Pitch_angle_Input”, Membership Input Function 

The Type “Pitch_angle_input” contains three MIFs, each of them associated with a 

specific “Human Pilot” interpretation of the vehicle’s gyroscope (and of the 3-axis vehicle’s 

accelerometer) while he is following a pre-defined route. Membership functions are: 

a) descending_pitch; 

b) cruise_pitch; 

c) ascending_pitch. 
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Figure 6.19: Type “Pitch_angle_input”, graphical representation. 

 
Figure 6.20: example of an aerial vehicle’s pitch indicator instrument. 
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The membership function “descending_pitch” is associated with the “Human being 

Pilot” interpretation of the vehicle’s pitch attack angle, which results in the perception of a 

manoeuvre causing an altitude loss.  

The membership function “cruise_pitch” is associated with the “Human being Pilot” 

perception of a correct pitch attack angle and that no corrective manoeuvre shall be 

implemented. 

The membership function “ascending_pitch” is associated with the “Human being Pilot” 

interpretation of the vehicle’s pitch attack angle, which results in the perception of a 

manoeuvre causing an altitude increase.  

 Type “Yaw_angle_Input”, Membership Input Function 

The Type “Yaw_angle_input” contains three MIFs, each of them associated with a 

specific “Human Pilot” interpretation of the vehicle’s instrumentation (in this case, the 3-axis 

vehicle’s accelerometer) while he is seeking for an identified route. Membership functions 

are: 

a) Yaw_left; 

b) Yaw_stable; 

c) Yaw_right. 

 
Figure 6.21: Type “Yaw_angle_input”, graphical representation. 

The membership function “Yaw_left” is associated with the “Human being Pilot” 

perception of a vehicle’s yaw to the left. 
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The membership function “Yaw_stable” is associated with the “Human Pilot” awareness 

of negligible yaw influence on the vehicle’s flight (no additional corrective manoeuvre 

required to compensate yaw forces acting on the vehicle). The membership function 

“Yaw_right” is associated with the “Human being Pilot” perception of a vehicle’s yaw to the 

right.  

 Type “Rolling_angle_Input”, Membership Input Function 

The Type “Rolling_angle_input” contains five MIFs, each of them associated with a 

specific “Human Pilot” interpretation of the gyroscope while a route shall be followed.  

Membership input functions are: 

a) Hard_Rolling_left_angle; 

b) Soft_Rolling_left_angle; 

c) No_Rolling; 

d) Soft_Rolling_right_angle; 

e) Hard_Rolling_right_angle. 

The membership function “Hard_Rolling_left_angle” is associated with the “Human 

being Pilot” interpretation of the vehicle’s rolling angle, which results in the perception of a 

manoeuvre causing a heavy rolling to the left.  

 
Figure 6.22: : Type “Rolling_angle_input”, graphical representation. 
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The membership function “Soft_Rolling_left_angle” is associated with the “Human 

being Pilot” interpretation of the vehicle’s rolling angle, which results in the perception of a 

manoeuvre causing a light rolling to the left.  

The membership function “No_Rolling” is associated with the “Human being Pilot” 

perception of a not rolling vehicle.  

The membership function “Soft_Rolling_right_angle” is associated with the “Human 

being Pilot” interpretation of the vehicle’s rolling angle, which results in the perception of a 

manoeuvre causing a light rolling to the right.  

The membership function “Hard_Rolling_right_angle” is associated with the “Human 

being Pilot” interpretation of the vehicle’s rolling angle, which results in the perception of a 

manoeuvre causing a heavy rolling to the right.  

 Type “Aileron_SERVOs”, Membership Output Function 

The Type “Aileron_SERVOs” contains five MOFs, each of them associated with a 

specific aileron based manoeuvre that a “Human being Pilot” may perform in front of external 

conditions while a predefined route is followed. Membership functions are: 

a) Turn_left_rol;  

b) Left_wind_Rol_comp; 

c) Cruise_Rolling; 

d) right_wind_Rol_comp; 

e) Turn_right_rol. 

The MOFs design strategy is based on the mechanical behaviour of the “ailerons” steered 

by the electromechanical actuators, which are the SERVO-Motors described in paragraph 

5.1.8. Moving from the disserted hardware description of the ailerons SERVO-Motors, the 

membership function “Cruise_rolling” is a conventional trapezoidal membership function 

centred to the ailerons mechanical angle equal to 0°, which corresponds to the +20° of the 

servo electrical angle. Depending by actuator’s control signal resolution utilised could be of 

7-bit or 8-bit (0 to 127 steps or 0 to 255 steps), the 0° ailerons mechanical angle corresponds 

to an output value of 127 for the case of 8-bit resolution (or 63 for the case of 7-bit resolution). 

The proposed neuro-fuzzy controller utilises 8-bit resolution data, and then a VHDL 

component will perform a digital acceleration of the information, which will be converter in 

a PWM signal with a 7-bit resolution. 
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Figure 6.23: Type “Aileron_SERVOs”, graphical representation. 

“TURN_left_rol” is a conventional trapezoidal membership function associated with a 

heavy ailerons manoeuvre which results in a significant positive rolling angle 

(“TURN_right_rol” is the mirror/symmetrical function; it is associated to a heavy ailerons 

manoeuvre which results into a significant negative rolling angle). The resulting output 

control signals for the two ailerons’ actuators are complementary. Theoretically, it may set 

the left aileron SERVO-Motor electrical angle in a range between 0° and 11°, while the right 

aileron SERVO-Motor electrical angle will be set to the complementary value between 40° 

and 29° (for the TURN_right_Rudder function, the left ailerons SERVO-Motor electrical 

angle will be set between 40° and 29°, while the right SERVO-Motor angle will be set to the 

complementary value between 0° and 11°). The corresponding mechanical angle will be 

between +20° and +9° for the left aileron or between -20° and -9° for the right aileron 

mechanical angle (for the TURN_right_Rudder function, the corresponding mechanical 

angle will be between -20° and -9° for the left aileron or between +20° and +9° for the right 

aileron mechanical angle).  

“Left_wind_Rol_comp” is a conventional triangular Membership Function associated 

with a light ailerons manoeuvre which results in a moderate positive rolling angle 

(“right_wind_Rol_comp” is the mirror/symmetrical function, associated with a light Ailerons 

manoeuvre which results in a moderate negative rolling angle). The resulting complementary 

output control signals for the two Ailerons actuators theoretically may set the left aileron 

SERVO-Motor electrical angle in a range between 11° and 20°. In contrast, the right aileron 
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SERVO-Motor electrical angle will be set to the complementary value between 20° and 29° 

(for the right_wind_Rol_comp function, the left ailerons servo electrical angle will be set 

between 20° and 29°, while the right SERVO-Motor electrical angle will be set to the 

complementary value between 11° and 20°). The corresponding mechanical angle will be 

between +0° and +9° for the left aileron or between -0° and -9° for the right aileron 

mechanical angle (for the right_wind_Rol_comp function, the corresponding mechanical 

angle will be between -0° and -9° for the left aileron or between +0° and +9° for the right 

aileron mechanical angle).  

 Type “ELEV_SERVO”, Membership Output Function 

The Type “ELEV_SERVO” contains four MOFs, each of them associated with a specific 

elevator manoeuvre that a “Human being Pilot” may perform in front of external conditions 

while a predefined route is followed. Membership functions are: 

a) STALL 

b) Descending 

c) Cruise 

d) Climb 

 
Figure 6.24: Type “ELEV_SERVO”, graphical representation. 

The MOFs design strategy is based on the mechanical behaviour of the “elevator” steered 

by an electromechanical actuator, which is the SERVO-Motor described in paragraph 5.1.8. 

The proposed neuro-fuzzy controller utilizes 8-bit resolution data, and then a VHDL 
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component will perform a digital acceleration of the information, which will be converter in 

a PWM signal with a 7-bit resolution. 

Moving from the disserted hardware description of the elevator’s SERVO-Motor, the 

membership function “STALL” is a conventional trapezoidal membership function 

associated with a large elevator’s manoeuvre, which may cause an outsized negative pitch 

attack angle. The resulting output control signal for the elevator’s actuator theoretically may 

set the SERVO-Motor electrical angle in a range between 0° and 16°, which corresponds to 

a mechanical angle between -20° and -4°.  

“Descending” is a conventional triangular membership function associated with a 

moderate elevator’s manoeuvre, which may cause a moderate negative or neutral pitch attack 

angle. The resulting output control signal for the elevator’s actuator theoretically may set the 

SERVO-Motor electrical angle in a range between +8° and +24°, which corresponds to a 

mechanical angle between -12° and +4°. 

 
Figure 6.25: graphical representation of the effect of the elevator action on the vehicle’s pitch angle. 

“Cruise” is a conventional triangular membership function associated with a moderate 

elevator’s manoeuvre, which may establish a moderate positive pitch attack angle. The 

resulting output control signal for the elevator’s actuator theoretically may set the SERVO-

Motor electrical angle in a range between +20° and +30°, which corresponds to a mechanical 

angle between 0° and +10°. 
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Figure 6.26: graphical elevator operation description. 

“Climb” is a conventional triangular membership function associated with a substantial 

elevator’s manoeuvre, which may cause a vehicle’s large positive pitch angle. The resulting 

output control signal for the elevator’s actuator theoretically may set the Servo electrical 

angle in a range between 24° and 40°, which corresponds to a mechanical angle between +4° 

and +20°.  

 
Figure 6.27: graphical representation of the effect of the elevator action on the vehicle’s pitch angle. 

 Type “M1_THROTTLE”, Membership Output Function 

The Type “M1_THROTTLE” contains five MOFs, each of them associated with a 

specific throttle regulation of the left-wing powertrain that a “Human being Pilot” may 

execute in front of external conditions while a predefined route is followed. Membership 

Functions are: 

a) glider_1; 

b) Descending1; 

c) ECOCRUISE1; 
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d) SUPERCRUISE1; 

e) TAKE_OFF1. 

By assumption, the “Torque Demand command” resolution chosen is 8-bit (0 to 255 

steps). 

 
Figure 6.28: Type “M1_THROTTLE”, graphical representation. 

The membership function “glider_1” is a conventional trapezoidal membership function 

associated with a very low torque demand generated by the “flight controller” to the “3ph 

Motor Driver” that manages the left-wing E-Motor. This membership function aims to allow 

the vehicle to perform a flight with a minimal thrust. Theoretically, the resulting torque 

demand may be set in a range between 0% and +19.5% (0 to 50). 

“Descending1” is a conventional trapezoidal membership function associated with a low 

torque demand generated by the “flight controller” to the “3ph Motor Drive” that manages 

the left-wing E-Motor. The goal of this membership function is to help a safe descending 

manoeuvre. Theoretically, the resulting torque demand may set in a range between +9.8% 

and +39.8% (25 to 102).  

“ECOCRUISE1” is a conventional trapezoidal membership function associated with a 

steady torque demand generated by the “flight controller” to the “3ph Motor Drive” that 

manages the left-wing E-Motor. This membership function aims to define the most effective 

(encouraging the low consumption operation) torque demand for a stable cruise flight. 

Theoretically, the resulting torque demand may set in a range between 23.4% and +79.2% 

(60 to 203).  
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“SUPERCRUISE1” is a conventional trapezoidal membership function associated with 

a consistent torque demand generated by the “flight controller” to the “3ph Motor Drive” that 

manages the left-wing E-Motor. This membership function aims to achieve a “fast cruise” 

flight or support manoeuvres that require broad thrust. Theoretically, the resulting torque 

demand may set in a range between 62.5% and +99.2% (160 to 254).  

“TAKE_OFF1” is a conventional trapezoidal membership function associated with a 

full-throttle torque demand generated by the “flight controller” to the “3ph Motor Drive” that 

manages the left-wing E-Motor. The membership function is associated with particular 

manoeuvres such as the take-off manoeuvre or the stall avoiding manoeuvre, where the E-

Motor shall operate at the highest power ratings. Theoretically, the resulting torque demand 

may set in a range between 93.8% and +100 % (240 to 255).  

 Type “M2_THROTTLE”, Membership Output Function 

The Type “M2_THROTTLE” contains five MOFs, each of them associated with a 

specific throttle regulation of the right-wing powertrain that a “Human being Pilot” may 

execute in front of external conditions while a predefined route is followed. Membership 

Functions are: 

a) glider_2; 

b) Descending2; 

c) ECOCRUISE2; 

d) SUPERCRUISE2; 

e) TAKE_OFF2. 

By assumption, the “Torque Demand command” resolution chosen is 8-bit (0 to 255 

steps). 
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Figure 6.29: Type “M2_THROTTLE”, graphical representation. 

 The membership function “glider_2” is a conventional trapezoidal membership function 

associated with a very low torque demand generated by the “flight controller” to the “3ph 

Motor Driver” that manages the right-wing E-Motor. This membership function aims to allow 

the vehicle to perform a flight with a minimal thrust. Theoretically, the resulting torque 

demand may be set in a range between 0% and +19.5% (0 to 50). 

“Descending2” is a conventional trapezoidal membership function associated with a low 

torque demand generated by the “flight controller” to the “3ph Motor Drive” that manages 

the right-wing E-Motor. The goal of this membership function is to help a safe descending 

manoeuvre. Theoretically, the resulting torque demand may set in a range between +9.8% 

and +39.8% (25 to 102).  

“ECOCRUISE2” is a conventional trapezoidal membership function associated with a 

steady torque demand generated by the “flight controller” to the “3ph Motor Drive” that 

manages the right-wing E-Motor. This membership function aims to define the most effective 

(encouraging the low consumption operation) torque demand for a stable cruise flight. 

Theoretically, the resulting torque demand may set in a range between 23.4% and +79.2% 

(60 to 203).  

“SUPERCRUISE2” is a conventional trapezoidal membership function associated with 

a consistent torque demand generated by the “flight controller” to the “3ph Motor Drive” that 

manages the right-wing E-Motor. This membership function aims to achieve a “fast cruise” 

flight or support manoeuvres that require broad thrust. Theoretically, the resulting torque 

demand may set in a range between 62.5% and +99.2% (160 to 254).  
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“TAKE_OFF2” is a conventional trapezoidal membership function associated with a 

full-throttle torque demand generated by the “flight controller” to the “3ph Motor Drive” that 

manages the right-wing E-Motor. The membership function is associated with particular 

manoeuvres such as the take-off manoeuvre or the stall avoiding manoeuvre, where the E-

Motor shall operate at the highest power ratings. Theoretically, the resulting torque demand 

may set in a range between 93.8% and +100 % (240 to 255).  

6.4 Controller’s Rulebases 

By definition, to implement a parallel computational capable neuro-fuzzy controller, it 

is necessary to create a set of independent “Rulebase” for each output. As described in 

“Chapter 4”, the “controller” shall generate five independent outputs; thus, five bespoke 

“Rulebases” shall be designed. For a bespoke “Rulebase” is intended the entity which 

encloses multiple combinations of rules. Each rule combines and weights sets of independent 

membership crisp values and associates a specific membership output function to be activated 

with the corresponding elaborated value. [32, 38 and 43] 

 “ELEV_SERVO”, Rulebase 

The generation of the control signal “SERVO_ELEV” (for the “elevator’s SERVO-

Motor”) passes by the activation of the Type “ELEV_SERVO” MOFs. The rules and the 

weights for the membership functions activation are listed in the “Rulebase”: 

“ELEV_SERVO”.  The activated membership function shall be “de-fuzzified” accordingly. 

The definition of the “defuzzification method” is set selecting the “Operatorset” in the “XFL3 

GUI”. [38] 

For the study case, it is used the “SERVO_DEFUZZY” Operatorset, which uses the 

“xfl.CenterOfArea()” defuzzification function. 
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Figure 6.30: “Operatorset” GUI’s interface. 

The first step for the “Rulebase’s design” is the definition of the “Rulebase’s inputs” and 

the association of each input to a dedicated “Type”. For the “ELEV_SERVO Rulebase”, the 

inputs are: 

a) PITCH (associated with the Type “Pitch_angle_input” and its 3 MIFs - pitch 

angle feedback); 

b) ALT (associated with the Type “Altitude_input” and its 4 MIFs - altitude 

feedback);  

c) V (associated with the Type “Speed_Input” and its 5 MIFs - speed information).  
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Figure 6.31: Table form of the “ELEV_SERVO Rulebase” (GUI’s interface).   

The Rulebase’s design targets the minimisation of the number of rules (or combinations) 

in order to make more approachable the test of the controller and, more critical, the reduction 

of the FPGA logic gates requirements.  

The design process is articulated in two steps. The first step uses an implementation that 

targets the activation of only one membership function for each determined combination of 

MIFs. Indeed, it is acceptable that a specific combination of MIFs shall activate, most likely 

with different weights, different MOFs. It represents the second step of the design process, 

which focuses on the “fine-tuning”118 of the “Rulebase”. 

Current “Rulebase” incorporates “89” rules listed as a matrix of cases of “Human being 

Pilot” action-reaction behaviours, where for “action” it is intended the monitoring of the 

flight dynamic, and for “reaction” it is intended the elevator correction manoeuvres that a 

“Human Being Pilot” would most likely perform119. The level of the reaction severity is 

determined by the weight value associated with each rule. 

                                                 

 
118 It is subject to the simulation outcomes. In fact, it necessary to work on fine-tuning to achieve enough robust controller before 
to move to the learning-training process. 
119 Assumptions made by the controller’s designer. 
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 “Aileron_SERVO”, Rulebase 

The generation of the control signal “AILERONS” (for the “aileron’s SERVO-Motors”) 

passes by the activation of the Type “Aileron_SERVO” MOFs. The rules and the weights for 

the membership functions activation are listed in the Rulebase: “Aileron_SERVO”. 

As previously described, the “defuzzification method” selected in the Rulebase’s 

“Operatorset” is the “SERVO_DEFUZZY”, which uses the “xfl.CenterOfArea()” 

defuzzification function. 

For the “Aileron_SERVO Rulebase”, the inputs are: 

a) ALTD (associated with the Type “Altitude_input” and its 4 MIFs – the vehicle’s 

altitude feedback); 

b) Compass (associated with the Type “Compass_input” and its 3 MIFs - the 

vehicle’s heading angle error); 

c) ROLLING_angle (associated with the Type “Rolling_angle_input” and its 5 

MIFs - rolling angle feedback); 

d) YAW (associated with the Type “Yaw_angle_input” and its 3 MIFs - yaw angle 

feedback). 

The Rulebase’s design targets the minimisation of the number of rules (or combinations) 

in order to make more approachable the test of the controller and, more crucial, the reduction 

of the FPGA logic gates requirements.  

The design process is articulated in two steps. The first step uses an implementation that 

targets the activation of only one membership function for each determined combination of 

MIFs. As previously described (paragraph 6.4.1), the second step of the design process 

focuses on the “fine-tuning” of the “Rulebase”, adding, if necessary, a set of new weighted 

rules. 



141 
 
 

 
Figure 6.32: Table form of the “Aileron_SERVO Rulebase” (GUI’s interface).   

“Aileron_SERVO” Rulebase is built on “180” rules, listed as a matrix of cases of 

“Human Being Pilot” action-reaction behaviours, where for “action” it is intended the 

monitoring of the flight dynamic, and for “reaction” it is intended the rolling correction 

manoeuvres that a “Human Being Pilot” would most likely perform120. The level of the 

reaction severity is described by the weight value associated with each rule. 

 “RUDD_SERVO”, Rulebase 

The generation of the control signal “RUDDER” (for the “Rudder SERVO-Motor”) 

passes by the activation of Type “Rudder_SERVO” MOFs. The rules and the weights for the 

membership functions activation are listed in the Rulebase: “RUDD_SERVO”.  

As previously described, the “defuzzification method” selected in the Rulebase’s 

“Operatorset” is the “SERVO_DEFUZZY”, which uses the “xfl.CenterOfArea()” 

defuzzification function. 

For the “RUDD_SERVO Rulebase”, the inputs are: 

a) Compass (associated with the Type “Compass_input” and its 3 MIFs - the 

vehicle’s heading angle error); 

                                                 

 
120 Assumptions made by the controller’s designer. 
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b) YAW (associated with the Type “Yaw_angle_input” and its 3 MIFs - yaw angle 

feedback); 

c) ROLLING_angle (associated with the Type “Rolling_angle_input” and its 5 

MIFs - rolling angle feedback); 

d) PITCH (associated with the Type “Pitch_angle_input” and its 3 MIFs - pitch 

angle feedback). 

 
Figure 6.33: Table form of the “Rudder_SERVO Rulebase” (GUI’s interface).   

The Rulebase’s design targets the minimisation of the number of rules (or combinations) 

in order to make more approachable the test of the controller and, more critical, the reduction 

of the FPGA logic gates requirements.  

The design process is articulated in two steps. The first step uses an implementation that 

targets the activation of only one membership function for each determined combination of 

MIFs. As previously described (paragraph 6.4.1), the second step of the design process 

focuses on the “fine-tuning” of the “Rulebase”, adding, if necessary, a set of new weighted 

rules. 

 “RUDD_SERVO” Rulebase is built on “135” rules, listed as a matrix of cases of 

“Human Being Pilot” action-reaction behaviours, where for “action” it is intended the 

monitoring of the flight dynamic, and for “reaction” it is intended the yaw correction 
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manoeuvres that a “Human being pilot” would most likely perform121. The level of the 

reaction severity is described by the weight value associated with each rule. 

 “M1”, Rulebase 

The generation of the control signal for the “M1” (the “left-wing E-Motor” control 

signal) passes by the activation of Type “M1_THROTTLE” MOFs. The rules and the weights 

for the membership functions activation are listed in the Rulebase: “M1”.  

For the current “Rulebase”, the “defuzzification method” selected in the Rulebase’s 

“Operatorset” is defined as “neural”, which uses the “xfl.CenterOfArea()” defuzzification 

function. 

For the “M1 Rulebase”, the inputs are: 

a) Compass (associated with the Type “Compass_input” and its 3 MIFs - the 

vehicle’s heading angle error); 

b) YAW (associated with the Type “Yaw_angle_input” and its 3 MIFs - yaw angle 

feedback); 

c) PITCH (associated with the Type “Pitch_angle_input” and its 3 MIFs - pitch 

angle feedback); 

d) ROLLING (associated with the Type “Rolling_angle_input” and its 5 MIFs - 

rolling angle feedback); 

e) ALT (associated with the Type “Altitude_input” and its 4 MIFs - altitude 

feedback);  

f) V (associated with the Type “Speed_Input” and its 5 MIFs - speed sensor); 

g) BATTERY (associated with the Type “Energy_Status” and its 4 MIFs - Battery 

SoC information). 

 

                                                 

 
121 Assumptions made by the controller’s designer. 
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Figure 6.34: Table form of the “M1 Rulebase” (GUI’s interface). 

The Rulebase’s design targets the minimisation of the number of rules (or combinations) 

in order to make more approachable the test of the controller and, more critical, the reduction 

of the FPGA logic gates requirements. 

The presence of 7 inputs for the “Rulebase” makes it unrealistic122 to cover each possible 

combination of MIFs. The identification of a method that allows a substantial reduction of 

the “Rulebase’s” rules will require a few more design considerations.  

The strategy used for the “Rulebase” design process is articulated in two steps. The first 

design step utilizes only five of the seven inputs and targets the activation of only one MOF 

for each determined combination of MIFs.  

The second design step focuses on the definition of a set of combinations and rules from 

the most influential conditions that involve the whole set of seven inputs. This operation may 

be seen as the “fine-tuning” of the “Rulebase”, adding, where necessary, a set of new 

weighted rules. 

The generated “M1” Rulebase contains “1216” rules, listed as a matrix of cases of 

“Human Being Pilot” action-reaction behaviours, where for “action” it is intended the 

monitoring of the flight dynamic and for “reaction” it is intended the “left-wing E-Motor 

                                                 

 
122 A large number of the input combination and the potential rules will produce a negligible contribution for the definition of the 
control quality and performances, but the controller cost (the computational power required; thus FPGA logic gates, will limit the 
selection of the physical device to the higher performance family) would increase significantly. 
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Throttle” control that a “Human being pilot” would most likely perform. The level of the 

reaction severity is described by the weight value associated with each rule. As previously 

described, a specific combination of MIFs may activate, most likely with different weights, 

different MOFs.  

It is of paramount importance to highlight that the definitions of the rules and the 

associated weights does not only aim to perform a correct flight and ensure system protection 

and reliability but also targets the minimisation of the energy used. The desired outcome is 

the life extension of the system most vulnerable components: the REESS. 

 “M2”, Rulebase 

The generation of the control signal for the “M2” (the “right-wing E-Motor” control 

signal) passes by the activation of Type “M2_THROTTLE” MOFs. The rules and the weights 

for the membership functions activation are listed in the Rulebase: “M2”.  

For the current “Rulebase”, the “defuzzification method” selected in the Rulebase’s is 

the “neural” “Operatorset”, which uses the “xfl.CenterOfArea()” defuzzification function. 

For the “M2 Rulebase”, the inputs are: 

a) Compass (associated with the Type “Compass_input” and its 3 MIFs - the 

vehicle’s heading angle error); 

b) YAW (associated with the Type “Yaw_angle_input” and its 3 MIFs - yaw angle 

feedback); 

c) PITCH (associated with the Type “Pitch_angle_input” and its 3 MIFs - pitch 

angle feedback); 

d) ROLLING (associated with the Type “Rolling_angle_input” and its 5 MIFs - 

rolling angle feedback); 

e) ALT (associated with the Type “Altitude_input” and its 4 MIFs - altitude 

feedback);  

f) V (associated with the Type “Speed_Input” and its 5 MIFs - speed sensor); 

g) BATTERY (associated with the Type “Energy_Status” and its 4 MIFs - Battery 

SoC information). 
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Figure 6.35: Table form of the “M2 Rulebase” (GUI’s interface). 

The Rulebase’s design targets the minimisation of the number of rules (or combinations) 

in order to make more approachable the test of the controller and, more critical, the reduction 

of the FPGA logic gates requirements. 

The presence of seven inputs for the “Rulebase” makes it unrealistic123 to cover each 

possible combination of MIFs. The identification of a method that allows a substantial 

reduction of the “Rulebase’s” rules will require a few more design considerations.  

The strategy used for the “Rulebase” design process is articulated in two steps. The first 

design step utilizes only five of the seven inputs and targets the activation of only one MOF 

for each determined combination of MIFs.  

The second design step focuses on the definition of a set of combinations and rules from 

the most influential conditions that involve the whole set of 7 inputs. This operation may be 

seen as the “fine-tuning” of the “Rulebase”, adding, where necessary, a set of new weighted 

rules. 

The generated “M2” Rulebase contains “1216” rules, listed as a matrix of cases of 

“Human Being Pilot” action-reaction behaviours, where for “action” it is intended the 

monitoring of the flight dynamic and for “reaction” it is intended the “right-wing E-Motor 

                                                 

 
123 A large number of the input combination and the potential rules will produce a negligible contribution for the definition of the 
control quality and performances, but the controller cost (the computational power required; thus FPGA logic gates, will limit the 
selection of the physical device to the higher performance family) would increase significantly. 
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Throttle” control that a “Human being pilot” would most likely perform. The level of the 

reaction severity is described by the weight value associated with each rule. As previously 

described, a specific combination of MIFs may activate, most likely with different weights, 

different MOFs.  

It is of paramount importance to highlight that the definitions of the rules and the 

associated weights does not only aim to perform a correct flight and ensure system protection 

and reliability but also targets the minimisation of the energy used. The desired outcome is 

the life extension of the system most vulnerable components: the REESS. 

6.5 Fuzzy Controller System Structure 

“Figure 6.36” shows the high level “fuzzy controller structure” described in the previous 

paragraphs, using a hardware description layout. In the picture, it is possible to observe on 

the left-side the controller’s inputs and on the right side the controller’s output.  The internal 

connections between the controller’s blocks, where each block represents a controller’s 

“Rulebase”, demonstrate the controller’s parallel computation capability; each “Rulebase” 

operates independently and in parallel with all other “Rulebases”. 
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Figure 6.36: “Fuzzy Controller Structure” designed in the XFUZZY environment. 
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6.6 Fuzzy Controller Simulations and preliminary optimisation 

Before exporting the “fuzzy controller” in the “VHDL” language, it is recommendable 

to implement a series of simulation and, if possible, optimise the “fuzzy controller”. There 

are several options available able to perform a fuzzy controller simulation. The Author’s 

appreciates the functionalities available in the XFUZZY environment and its GUI124. The 

GUI’s functionalities used for the proposed work are: 

a) controller’s graphical representation; 

b) Type’s membership functions optimisation; 

c) Rulebase’s optimisation; 

d) fuzzy controller behaviour “Monitorization” (defines the controller’s exact 

outputs in front of a predefined set of inputs, it may be associated with a 

mathematical solution of the physical controller’s equations). 

From the listed functionalities, the Author decides to emphasise the utilisation of the 

“Inference Monitor” functionality to perform a controller’s raw simulation. The “goal” of the 

raw simulation is to check the “controller response” in certain conditions, such as take-off, 

landing, route adjustments, steady-state flight (stable flight), and gusty winds compensation 

manoeuvre. 

The proposal relies on the outcome of this set of simulations to implement an iteration 

based adjustment of the Rulebase’s “weights” and “functions” (or weighted rules) before 

exporting the “VDLH” algorithms and perform any learning processes. 

 Take-Off simulation 

Take-off and landing are the most complex tasks to be performed. Take-off simulations 

result in being very complex to simulate without a very detailed and comprehensive model 

of the vehicle dynamics behavioural125. The assumption is to identify several manoeuvre 

points and check the controller behaviour in those specific moments. Of course, as many 

points may be identified as more reliable, it will be the raw simulation outcome. 

The procedure for take-off starts with the vehicle accelerating until it reaches enough 

speed. The pilot can then rotate the vehicle, and it will start ascending. The determination of 

                                                 

 
124 The “Digital” description of the “Fuzzy Controller” built on XFUZZY3.5 (version 3.5). 
125 Parameters like aero-dynamical coefficients, vehicle acceleration behaviour, stall speed, take-off speed and etc., have paramount 
importance for very detailed simulation. 
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this particular speed called rotation speed (𝑉𝑉𝑅𝑅), is a critical factor in determining take-off 

performance126. For safety reasons, 𝑉𝑉𝑅𝑅 is usually determined as being: 

𝑉𝑉𝑅𝑅 = 1.1 ∙  𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 
(Equation 41)127 

Alternatively (whichever is greater128): 

𝑉𝑉𝑅𝑅 = 1.05 ∙  𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 
(Equation 42) 

It can be calculated based on knowledge of the aircraft take-off configuration and hence 

the maximum achievable lift coefficient 𝐶𝐶𝐿𝐿(max ). To maintain level flight, the lift produced 

must equal the weight; hence the stall speed can be calculated as: 

𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ��
2 ∙ 𝑊𝑊

𝐶𝐶𝐿𝐿(𝑚𝑚𝑚𝑚𝑚𝑚) ∙ 𝜌𝜌 ∙ 𝑆𝑆
� 

(Equation 43) 

The raw simulation aims to observe the “Controller” behaviour with particular attention 

in five critical moments of the take-off manoeuvre (the manoeuvre start in t=t0 may also not 

be considered a pivotal moment). Looking at the following pictures, Figure 6.37 and Figure 

6.38, it is possible to identify such moments as: 

a) manoeuvre start, the vehicle is going to accelerate (speed 𝑣𝑣(𝑡𝑡) = 0, at t=t0=0); 

b) the vehicle is at the acceleration’s peak, and it is moving with speed 𝑣𝑣(𝑡𝑡) = 𝑉𝑉𝑎𝑎, 

(t = t1, Figure 6.38); 

c) the vehicle is moving at speed 𝑣𝑣(𝑡𝑡) = 𝑉𝑉𝑅𝑅
√2

= 𝑉𝑉1, (t = t2, Figure 6.38); 

d) the vehicle reaches the “rotation speed”, it is moving with speed 𝑣𝑣(𝑡𝑡) = 𝑉𝑉𝑅𝑅, (t=t3, 

Figure 6.37); 

e) the vehicle is moving at speed 𝑣𝑣(𝑡𝑡) = 𝑉𝑉2, where 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ √2 ≤  𝑉𝑉2 ≤ 2 ∙ 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (t 

= t4, Figure 6.37); 

f) the vehicle moving with speed 𝑣𝑣(𝑡𝑡) = 𝑉𝑉𝑐𝑐;  𝑉𝑉2 < 𝑉𝑉𝑅𝑅 ∙ √2 ≤  𝑉𝑉𝑐𝑐 ≤ 2 ∙ 𝑉𝑉𝑅𝑅, (t = t5). 

                                                 

 
126 Take-off rules vary slightly depending on the aircraft category. Small commuter aircraft should be considered as meeting “FAR 
23” rules, and transport category aircraft should comply with “FAR 25” rules. 
127 Stall speed, Vstall, is the lowest speed that the aircraft can be flown before the airflow starts to separate from wings as the angle 
of attack becomes too great. The wing is assumed in this case to be in take-off configuration or “clean”. 
128 For a conventional aircraft, there is only a small difference between VR calculations based on stall speed or minimum control 
speed. Minimum control speed, VMin,Control is a more complex calculation and requires knowledge of the stall characteristics, of the 
tailplane and of the elevator. 
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Figure 6.37: take-off manoeuvre, graphical animation. 

 
Figure 6.38: take-off manoeuvre, acceleration vs velocity graph. 

 
Figure 6.39: Take-off manoeuvre, velocity vs time indicative graph. 

6.6.1.1 Simulation at t=t0 

For the circumstance “t = t0”, by assumption, it is used a set of controller’s input 

parameters compatible with the physical environmental parameters that a human pilot may 

observe at the moment of the take-off manoeuvre start. Those parameters are: 
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• “Pitch attack angle” is approximately 0.8 degrees (PITCH_angle); 

• “Yaw angle” is approximately 0 degrees (YAW_angle); 

• “Rolling angle” is approximately 0 degrees (ROL_angle); 

• “Navigation Heading angle error” is 0 degrees (Compass_Error)129; 

• “Vehicle’s speed” read is 0%130(Speed); 

• “Altitude relative error”131 read is approximately -67% (Altitude error); 

• “Battery’s SoC” read is 95.3% (Battery_status). 

Those parameters shall be translated into an 8-bit digital form accordingly. A human 

pilot looks at the sensors that may appear as values in the previous format. The controller 

reads 8-bit resolution digital processed input values, where for digital processing it is meant 

the data elaboration disserted in “Chapter 5”. It means that the set of input parameters, 

delivered into the “XFUZZY Inference Monitor” tool, are chosen according to the “Chapter 

5” definition of the digital processes. 

 
Figure 6.40: simulation’s outputs at t=t0. 

“Figure 6.40” represents the result of the simulation taken into a defined instant, where 

the input parameters are the previous mechanical parameters listed, opportunely translated in 

                                                 

 
129 Heading angle error, it is set “null” during the take-off manoeuvre by the “VHDL compass function”. 
130 It is used the absolute maximum rated speed of the vehicle as to the 100% reference.  
131 It may be addressed as well as “Approximation error”. Reference formulas are : 𝐸𝐸𝑟𝑟 = 𝐸𝐸𝐴𝐴

𝑦𝑦𝑚𝑚
 , where Er is the relative error, EA is 

the absolute error and ym is the average value (or reference value). The controller uses the percent error: 𝐸𝐸𝑟𝑟% = 100 ∙ 𝐸𝐸𝑟𝑟. 
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digital form, and the output values are the “fuzzy controller’s output values”. As for the input 

values, output values shall be digitally processed before becoming the physical control 

signals that could go out of the FPGA, according to the definitions of “Chapter 5”. 

Fundamentally, the “fuzzy controller” generates an 8-bit resolution digital information 

format for each output, which shall be translated into a PWM signal for the SERVO Motor 

or into a torque demand request via RS232 to the powertrain’s driver interface. The 

mechanical outcome opportunely translated from “Figure 6.40” are: 

• the mechanical angle of the “Ailerons” set to an approximately 0-degree position; 

• the mechanical angle of the “Elevator” set to approximately -4 degrees position; 

• the mechanical angle of the “Rudder” set to an approximately 0-degree position; 

• left motor torque demand set to 96.9%132;  

• right motor torque demand set to 96.9%. 

6.6.1.2 Simulation at t=t1 

The assumptions made for the controller’s behaviour simulation at the moment t=t1 is 

that the vehicle is in “full acceleration”133 (graph of Figure 6.38) and that a set of controller’s 

input parameters, compatible with the physical environmental parameters that a human pilot 

may observe at that moment, are used. Those parameters are: 

• “Pitch attack angle” is approximately +0.5 degrees (PITCH_angle); 

• “Yaw angle” is approximately 0 degree (YAW_angle); 

• “Rolling angle” is approximately 0 degree (ROL_angle); 

• “Navigation Heading angle error” is 0 degrees (Compass_Error)134; 

• “Vehicle’s speed” read is 7.8% (Speed); 

• “Altitude relative error” read is approximately -67% (Altitude error); 

• “Battery’s SoC” read is 94.9% (Battery_status). 

As previously described, the set of input parameters, delivered into the “XFUZZY 

Inference Monitor” tool, are chosen according to “Chapter 5” definition of the digital 

                                                 

 
132 It is the percentage of the absolute maximum torque achievable by the powertrain motor (it is a safety value set by the user on 
the E-Motor driver parametrisation). 
133 For “full acceleration” it is intended that the vehicle’s speed is significantly below the parameter “Vstall”, its acceleration reached 
the absolute “acceleration peak”, and the vehicle’s acceleration is going to decrease according to the graphs of Figure 6.38 and 
Figure 6.39.   
134 The vehicle’s heading angle error, it is set to “null” during the take-off manoeuvre by the VHDL SW compass function. 
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processes and according to “paragraph 6.6.1.1” consideration regarding the vehicle’s speed 

and altitude relative error. 

 
Figure 6.41: simulation’s outputs at t=t1. 

Figure 6.41 represents the result of the simulation taken under the conditions associated 

with the instant t=t1. Each value present in the simulation requires a digital process to be 

associable with a physical value (as previously described). The mechanical outcomes 

opportunely translated from “Figure 6.41” are: 

• the mechanical angle of “Ailerons” set to an approximately 0-degree position; 

• the mechanical angle of “Elevator” set to approximately -3.6 degrees position; 

• the mechanical angle of “Rudder” set to an approximately 0-degree position; 

• left motor torque demand set to 96.9%; 

• right motor torque demand set to 96.9%. 

Previously described, “paragraph 6.6.1.1”, considerations regarding the vehicle’s torque 

demand are valid for this simulation and will be valid for all following simulations. 

6.6.1.3 Simulation at t=t2 

The assumptions made for the controller’s behaviour simulation at the moment t=t2 is 

that the vehicle speed is equal to 𝑣𝑣(𝑡𝑡) = 𝑉𝑉𝑅𝑅
√2

= 𝑉𝑉1 (graph of “Figure 6.38”). Furthermore, a set 

of controller’s input parameters, compatible with the physical environmental parameters that 

a human pilot may observe at that moment, are used. Those parameters are: 

• “Pitch attack angle” is approximately 0.3 degrees (PITCH_angle); 
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• “Yaw angle” is approximately 0 degree (YAW_angle); 

• “Rolling angle” is approximately 0 degree (ROL_angle); 

• “Navigation Heading angle error” is 0 degree (Compass_Error)135; 

• “Vehicle’s speed” read is 16.4% (Speed); 

• “Altitude relative error” read is approximately -67% (Altitude error); 

• “Battery’s SoC” read is 94.5% (Battery_status). 

As previously described, the set of input parameters, delivered into the “XFUZZY 

Inference Monitor” tool, are chosen according to “Chapter 5” definition of the digital 

processes. 

Previous, “paragraph 6.6.1.1”, consideration regarding the vehicle’s speed and altitude 

relative error are valid and will be valid for all following simulations. 

 
Figure 6.42: simulation’s outputs at t=t2. 

Figure 6.42 represents the results of the simulation taken under the conditions associated 

with the instant t=t2. Each value present in the simulation requires a digital process to be 

associable to a physical value (as previously described). The mechanical outcomes 

opportunely translated from “Figure 6.42” are: 

• the mechanical angle of “Ailerons” set to an approximately 0-degree position; 

• the mechanical angle of “Elevator” set to approximately -2.5 degrees position; 

                                                 

 
135 The vehicle’s heading angle error, it is set to “null” during the take-off manoeuvre by the VHDL SW compass function. 
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• the mechanical angle of “Rudder” set to an approximately 0-degree position; 

• left motor torque demand set to 96.1%; 

• right motor torque demand set to 96.1%. 

6.6.1.4 Simulation at t=t3 

The assumptions made for the controller’s behaviour simulation at the moment t=t3 is 

that the vehicle speed is equal to 𝑣𝑣(𝑡𝑡) = 𝑉𝑉𝑅𝑅 (graphs of “Figure 6.37” and “Figure 6.38”). 

Moreover, a set of controller’s input parameters, compatible with the physical environmental 

parameters that a human pilot may observe when the vehicle reaches the “Rotational Speed”, 

are used. Those parameters are: 

• “Pitch attack angle” is approximately 0 degree (PITCH_angle); 

• “Yaw angle” is approximately 0 degree (YAW_angle); 

• “Rolling angle” is approximately 0 degree (ROL_angle); 

• “Navigation Heading angle error” is 0 degree (Compass_Error)136; 

• “Vehicle’s speed” read is 23.4% (Speed); 

• “Altitude relative error” read is -67% (Altitude error); 

• “Battery’s SoC” read is 94.1% (Battery_status). 

 
Figure 6.43: simulation’s outputs at t=t3. 

                                                 

 
136 The vehicle’s heading angle error, it is set to “null” during the take-off manoeuvre by the VHDL SW compass function. 



157 
 
 

As previously described, the set of input parameters delivered into the “XFUZZY 

Inference Monitor” tool are chosen according to the “Chapter 5” definition of the digital 

processes. 

Figure 6.43 represents the results of the simulation taken under the conditions associated 

with the instant t=t3. Each value present in the simulation requires a digital process to be 

associable with a physical value (as previously described). The mechanical outcomes 

opportunely translated from Figure 6.43 are: 

• the mechanical angle of “Ailerons” set to an approximately 0-degree position; 

• the mechanical angle of “Elevator” set to an approximately 0-degrees position; 

• The mechanical angle of “Rudder” set to an approximately 0-degree position; 

• left motor torque demand set to 93.8%; 

• right motor torque demand set to 93.8%. 

6.6.1.5 Simulation at t=t4 

The assumptions made for the controller’s behaviour simulation at the moment t=t4 is 

that the vehicle speed is equal to 𝑣𝑣(𝑡𝑡) = 𝑉𝑉2, where 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ √2 ≤  𝑉𝑉2 ≤ 2 ∙ 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (graphs of 

“Figure 6.37” and “Figure 6.38”). Then a set of controller’s input parameters, compatible 

with the physical environmental parameters that a human pilot may observe when the vehicle 

starts the ascending manoeuvre at the beginning of vehicle rotation, are used. Those 

parameters are: 

• “Pitch attack angle” is approximately +2.8 degrees (PITCH_angle); 

• “Yaw angle” is approximately 0 degree (YAW_angle); 

• “Rolling angle” is approximately 0 degree (ROL_angle); 

• “Navigation Heading angle error” is 0 degree (Compass_Error)137; 

• “Vehicle’s speed” read is 34.4% (Speed); 

• “Altitude relative error” read is -50.8% (Altitude error); 

• “Battery’s SoC” read is 93.8%. 

As previously described, the set of input parameters, delivered into the “XFUZZY 

Inference Monitor” tool, are chosen according to “Chapter 5” definition of the digital 

processes. 

                                                 

 
137 The vehicle’s heading angle error, it is set to “null” during the take-off manoeuvre by the VHDL SW compass function. 
 



158 
 
 

 

 
Figure 6.44: simulation’s outputs at t=t4. 

“Figure 6.44” represents the results of the simulation taken under the conditions 

associated with the instant t=t4. Each value present in the simulation requires a digital process 

to be associable with a physical value (as previously described). The mechanical outcomes 

opportunely translated from “Figure 6.44” are: 

• the mechanical angle of “Ailerons” set to an approximately 0-degree position; 

• the mechanical angle of “Elevator” set to approximately +5.2 degrees position; 

• the mechanical angle of “Rudder” set to an approximately 0-degree position; 

• left motor torque demand set to 80.9%; 

• right motor torque demand set to 80.9%. 

6.6.1.6 Full Climbing manoeuvre at t = t5 

The assumptions made for the controller’s behaviour simulation at the moment t=t5 is 

that the vehicle speed is equal to 𝑣𝑣(𝑡𝑡) = 𝑉𝑉𝑐𝑐, where 𝑉𝑉2 < 𝑉𝑉𝑅𝑅 ∙ √2 ≤  𝑉𝑉𝑐𝑐 ≤ 2 ∙ 𝑉𝑉𝑅𝑅 (graphs of 

“Figure 6.37” and “Figure 6.38”). Then a set of controller’s input parameters, compatible 

with the physical environmental parameters that a human pilot may observe when the vehicle 

is in the middle of the ascending manoeuvre, are used. Those parameters are: 

• “Pitch attack angle” is approximately +5 degrees (PITCH_angle); 

• “Yaw angle” is approximately 0 degree (YAW_angle); 

• “Rolling angle” is approximately 0 degree (ROL_angle); 
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• “Navigation Heading angle error” is 0 degree (Compass_Error)138; 

• “Vehicle’s speed” read is 41% (Speed); 

• “Altitude relative error” read is -43% (Altitude error); 

• “Battery’s SoC” read is 92.6% (Battery_status). 

As previously described, the set of input parameters, delivered into the “XFUZZY 

Inference Monitor” tool, are chosen according to “Chapter 5” definition of the digital 

processes. 

 
Figure 6.45: simulation’s outputs at t=t5. 

Figure 6.45 represents the result of the simulation taken under the conditions associated 

with the instant t=t5. Each value present in the simulation requires a digital process to be 

associable with a physical value (as previously described). The mechanical outcome 

opportunely translated from “Figure 6.45” are: 

• the mechanical angle of “Ailerons” set to an approximately 0-degree position; 

• the mechanical angle of “Elevator” set to approximately +8.3 degrees position; 

• the mechanical angle of “Rudder” set to an approximately 0-degree position; 

• left motor torque demand set to 68%; 

• right motor torque demand set to 68%. 

 

                                                 

 
138 The vehicle’s heading angle error, it is set to “null” during the take-off manoeuvre by the VHDL SW compass function. 
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6.6.1.7 Take-off simulation Conclusion 

The simulations outcome shows that the controller’s decisions are compatible with the 

decisions that a human pilot may take in similar environmental conditions. 

 Route adjustment Simulation 

In order to allow a smooth take-off, a high-level system assumption values the “enable” 

of the vehicle’s “heading angle correction. This design assumption complies with all other 

design requirements for the VHDL block that generates the heading angle error 8-bit data, 

which generates the “fuzzy controller” input “Compass_error”.  

 
Figure 6.46: example of the vehicle’s flight route adjustment. 
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When the vehicle wakes up and starts the take-off preparation, the “heading angle error” 

is forced to the fixed value “127” (in binary “0111 1111”), which results in a mechanical 0 

degree heading angle error. As soon as the vehicle reaches a speed close enough to the cruise 

speed, the VHDL block that implements the electronics compass, and its correlated 

functionalities, is enabled to broadcasts the actual “heading angle error” (it is not anymore 

forced the fixed value corresponding to a mechanical 0-degree error). From this point, the 

vehicle will be enabled to adjust its route and take the correct direction. 

 Design assumption is to use, as trigger parameter, the speed value 𝑣𝑣(𝑡𝑡) = 𝑉𝑉𝑥𝑥 = 112. 

The value “112” is an 8-bit parameter (value in a range between 0 and 255), corresponding 

to 44% of the absolute maximum vehicle’s speed.139 

What “Figure 6.46” illustrates is a simple vehicle’s flight operation, which may be used 

as a simplified baseline for the controller behaviour simulation and, in particular, for the route 

adjustment manoeuvre simulation. It is possible to observe the first take-off operation 

(previously described, “paragraph 6.6.1”), a series of route adjustments (it is taken merely as 

a simplified benchmark three route adjustments) and landing operation. 

6.6.2.1 Heavy negative Heading angle error adjustment, at t=t6 

The assumptions made for the controller’s behaviour simulation at the moment t=t6 is 

that the vehicle’s speed is close enough to the cruise speed (according to what stated before, 

the vehicle’s speed is: 𝑣𝑣(𝑡𝑡) ≥ 𝑉𝑉𝑥𝑥) and the heading angle error is significant (grave) as for the 

below picture. The manoeuvre aims to change the vehicle heading angle, assuming that the 

vehicle direction is off course by -63.5 degrees.   

The controller’s input parameters chosen are compatible with the physical environmental 

parameters that a human pilot may observe when, just after the take-off manoeuvre, has to 

change the vehicle direction140. Those parameters are: 

• “Pitch attack angle” is approximately +4.2 degrees (PITCH_angle); 

• “Yaw angle” is approximately 0 degrees (YAW_angle); 

• “Rolling angle” is approximately 0 degrees (ROL_angle); 

• “Navigation Heading angle error” is -63.5 degrees (Compass_Error)141; 

                                                 

 
139 The assumption that 𝑉𝑉𝑥𝑥 = 112 is subject to variations after the learning/training process. 
140 In this case, changing the vehicle’s direction means a turn to the left, as for “Figure 6.47”. 
141 The “Compass_error” value “0” corresponds to a heading angle error of -180°, a “Compass_error” value “127” corresponds 
to a heading angle error of 0-degree, a “Compass_error” value “255” corresponds to a heading angle error of +180°. A 
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• “Vehicle’s speed” read is 45.3% (Speed); 

• “Altitude relative error” read is -15.6% (Altitude error); 

• “Battery’s SoC” read is 88% (Battery_status). 

 
Figure 6.47: graphical representation of the flight route adjustment in t=t6. 

As previously described, the set of input parameters, delivered into the “XFUZZY 

Inference Monitor” tool, are chosen according to “Chapter 5” definition of the digital 

processes. 

                                                 

 
“Compass_error” input value “82” corresponds to a heading angle error in the range between -63.28° and -63.69°. By assumption, 
it is considered a value o -63.5°. 
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Figure 6.48: simulation’s outputs at t=t6. 

“Figure 6.48” represents the results of the simulation taken under the conditions 

associated with the instant t=t6. Each value present in the simulation requires a digital process 

to be associable with a physical value (as previously described). The mechanical outcome 

opportunely translated from “Figure 6.48” are: 

• the mechanical angle of “Ailerons” set to approximately +6.3 degree position; 

• the mechanical angle of “Elevator” set to approximately +4.5 degrees position; 

• the mechanical angle of “Rudder” set to approximately -6.2 degrees position; 

• left motor torque demand set to 49.6%; 

• right motor torque demand set to 53.9%. 

6.6.2.2 Mild Positive Heading angle error adjustment, at t=t7 

The assumptions made for the controller behaviour simulation at the moment t=t7 is that 

the vehicle speed is close to the cruise speed, and a heading angle error is present as illustrated 

by “Figure 6.49”. The manoeuvre aims to change the vehicle heading angle, assuming that 

the vehicle’s direction is off course by +37 degrees.   
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Figure 6.49: graphical representation of the flight route adjustment in t=t7. 

The controller’s input parameters chosen are compatible with the physical environmental 

parameters that a human pilot may observe when changing the vehicle direction142. Those 

parameters are: 

• “Pitch attack angle” is approximately +4.7 degrees (PITCH_angle); 

• “Yaw angle” is approximately -2.5 degrees (YAW_angle); 

                                                 

 
142 In this case, changing the vehicle’s direction means a turn to the right, as for Figure 6.49. 
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• “Rolling angle” is approximately +0.8 degrees (ROL_angle); 

• “Navigation Heading angle error” is +37 degrees (Compass_Error)143; 

• “Vehicle’s speed” read is 46.1% (Speed); 

• “Altitude relative error” read is -7% (Altitude error); 

• “Battery’s SoC” of 80.9% (Battery_status). 

As previously described, the set of input parameters, delivered into the “XFUZZY 

Inference Monitor” tool, are chosen according to “Chapter 5” definition of the digital 

processes. 

 
Figure 6.50: simulation’s outputs at t=t7. 

“Figure 6.50” represents the results of the simulation taken under the conditions 

associated with the instant t=t7. Each value present in the simulation requires a digital process 

to be associable with a physical value (as previously described). The mechanical outcomes 

opportunely translated from “Figure 6.50” are: 

• the mechanical angle of “Ailerons” set to approximately -2.7 degree position; 

• the mechanical angle of “Elevator” set to approximately +5.2 degrees position; 

• the mechanical angle of “Rudder” set to approximately +4.8 degrees position; 

• left motor torque demand set to 52%; 

                                                 

 
143 The “Compass_error” value “0” corresponds to a heading angle error of -180°, a “Compass_error” value “127” corresponds 
to a heading angle error of 0-degree, a Compass_error value “255” corresponds to a heading angle error of +180°. A heading angle 
error of +37° corresponds to a Compass_error input value of “161”.   
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• right motor torque demand set to 49.4%. 

6.6.2.3 Moderate Negative Heading angle error adjustment, at t=t8 

The assumptions made for the controller’s behaviour simulation at the moment t=t8 is 

that the vehicle speed is close to the cruise speed, and a moderate heading angle error is 

present, as for the below picture. The manoeuvre aims to change the vehicle heading angle, 

assuming that the vehicle direction is off course by -20 degrees.   

 
Figure 6.51: graphical representation of the flight route adjustment in t=t8. 
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Input controller parameters chosen shall be compatible with the physical environmental 

parameters that a human pilot may observe when, just after the take-off manoeuvre, has to 

change the vehicle direction144. Those parameters are: 

• “Pitch attack angle” is approximately +5 degrees (PITCH_angle); 

• “Yaw angle” is approximately +1.9 degrees (YAW_angle); 

• “Rolling angle” is approximately -1.6 degrees (ROL_angle); 

• “Navigation Heading angle error” is -20 degrees (Compass_Error)145; 

• “Vehicle’s speed” read is 46.5% (Speed); 

• “Altitude relative error” read is -12.5% (Altitude error); 

• “Battery’s SoC” read is 75% (Battery_status). 

As previously described, the set of input parameters, delivered into the “XFUZZY 

Inference Monitor” tool, are chosen according to “Chapter 5” definition of the digital 

processes. 

 
Figure 6.52: simulation’s outputs at t=t8. 

“Figure 6.52” represents the results of the simulation taken under the conditions 

associated with the instant t=t8. Each value present in the simulation requires a digital process 

                                                 

 
144 In this case, changing the vehicle direction means a turn to the left. 
145 The “Compass_error” value “0” corresponds to a heading angle error of -180°, a “Compass_error” value “127” corresponds 
to a heading angle error of 0-degree, a “Compass_error” value “255” corresponds to a heading angle error of +180°. A heading 
angle error of -20° corresponds to a Compass_error input value “113”.   
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to be associable with a physical value (as previously described). The mechanical outcomes 

opportunely translated from “Figure 6.52” are: 

• the mechanical angle of “Ailerons” set to approximately +1.6 degree position; 

• the mechanical angle of “Elevator” set to approximately +5 degrees position; 

• the mechanical angle of “Rudder” set to approximately -0.9 degrees position; 

• left motor torque demand set to 49.2%; 

• right motor torque demand set to 49.6%. 

6.6.2.4 Conclusion, route adjustment simulation 

Simulations outcomes show that the controller’s decisions are compatible with the 

decisions that a human pilot may take in front of similar environmental conditions. 

 Steady-state simulation 

The assumptions made for the controller’s behaviour simulation at the moment t=t9 is 

that the vehicle moves at the cruise speed and the cruise altitude (or close enough). An 

insignificant heading angle error is present. The manoeuvre’s goal is to assure that the 

controller will keep the vehicle in a stable flight path under such conditions.   

The simulation takes as an assumption a set of controller’s input parameters associable 

with a steady-state flight. The physical environmental parameters taken as baseline, which a 

human pilot may use as a reference, are the following: 

• “Pitch attack angle” is approximately +5 degrees (PITCH_angle); 

• “Yaw angle” is approximately +0.2 degrees (YAW_angle); 

• “Rolling angle” is approximately -0.3 degrees (ROL_angle); 

• “Navigation Heading angle error” is approximately -3.9 degrees 

(Compass_Error); 

• “Vehicle’s speed” set to 46.9% (Speed); 

• “Altitude relative error” read is +13.3% (Altitude error); 

• “Battery’s SoC” read is 62.5% (Battery_status). 

Such parameters are translated into an 8-bit digital form accordingly. A human pilot 

looks at the sensors that may appear as values in the previous format. The controller reads an 

8-bit resolution digital processed input values, where for digital processing it is intended the 

data elaboration disserted in “Chapter 5”.  



169 
 
 

Figure 6.53: simulation’s outputs, at t=t9. 

“Figure 6.53” represents the results of the simulation taken into a defined instant, where 

the input parameters are the previous mechanical parameters listed opportunely translated in 

digital form, and the output values are the fuzzy controller’s output values. The “fuzzy 

controller” generates an 8-bit resolution digital information for each output, which shall be 

then translated into a PWM signal for the SERVO-Motor or into a torque demand request via 

an RS232 interface to the powertrain’s driver interface.  

The mechanical outcomes opportunely translated from “Figure 6.53” are: 

• the mechanical angle of “Ailerons” set to a 0-degree position; 

• the mechanical angle of “Elevator” set to approximately +5.8 degrees position; 

• the mechanical angle of “Rudder” set to a 0-degree position; 

• left motor torque demand set to 50.2%; 

• right motor torque demand set to 50.2%.  

  Simulations outcomes show that the controller decisions are compatible with the 

decisions that a human pilot may take in similar environmental conditions. 

 Adjustment due to gusty winds simulation 

The assumptions made for the controller’s behaviour simulation at the moment t=t10 is 

that the vehicle is approaching the descending manoeuvre and that a gusty wind suddenly 

hits the vehicle. The gusty wind may introduce a consequent heading angle error. The 
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manoeuvre aims to observe how the controller will react to keep the vehicle in a stable flight 

path under such conditions.  

The physical environmental parameters taken as study cases are associable with a gusty 

wind that impacts the vehicle from left to right. Alternatively, a gusty wind may impact the 

vehicle from right to left. 

6.6.4.1 Case of a gusty wind that impacts on the vehicle from the right to the left 

The simulation assumes a set of controller’s input parameters associated with a steady-

state flight perturbed by gusty winds from the right that causes a vehicle to drift to the left. 

This results in environmental parameters like the following: 

• “Pitch attack angle” is approximately 4.1 degrees (PITCH_angle); 

• “Yaw angle” is approximately -2.8 degrees (YAW_angle); 

• “Rolling angle” is approximately +2.1 degrees (ROL_angle); 

• “Navigation Heading angle error” is approximately +11.3 degrees 

(Compass_Error); 

• “Vehicle’s speed” read is 44.1% (Speed); 

• “Altitude relative error” read is -4.7% (Altitude error); 

• “Battery’s SoC” read is 46.1% (Battery_status). 

As previously described, the set of input parameters, delivered into the “XFUZZY 

Inference Monitor” tool, are chosen according to “Chapter 5” definition of the digital 

processes. 

 
Figure 6.54: simulation’s outputs at t=t10. 
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“Figure 6.54” represents the results of the simulation taken under the conditions 

associated with the instant t=t10. Every value present in the simulation requires a digital 

process to be associable with a physical value (as previously described). The mechanical 

outcomes opportunely translated from “Figure 6.54” are: 

• the mechanical angle of “Ailerons” set to approximately -1.9 degree position; 

• the mechanical angle of “Elevator” set to approximately +4.4 degrees position; 

• the mechanical angle of “Rudder” set to approximately +1.7 degrees position; 

• left motor torque demand set to 47.3%; 

• right motor torque demand set to 47.3%. 

6.6.4.2 Alternative case, gusty wind from the left to the right that influences the flight 

Alternatively, to the previous case, the simulation takes as assumption a set of 

controller’s input parameters associable to a steady-state flight perturbed by gusty winds from 

the left that causes a vehicle drift to the right. This results in environmental parameters like 

the following: 

• “Pitch attack angle” is approximately 4.1 degrees (PITCH_angle); 

• “Yaw angle” is approximately +6 degrees (YAW_angle); 

• “Rolling angle” is approximately -3.5 degrees (ROL_angle); 

• “Navigation Heading angle error” is approximately -25.3 degrees 

(Compass_Error); 

• “Vehicle’s speed” read is 45.3% (Speed); 

• “Altitude relative error” read is -4.7% (Altitude error); 

• Battery SoC read is 44.2% (Battery_status). 

As previously described, the set of input parameters, delivered into the “XFUZZY 

Inference Monitor” tool, are chosen according to “Chapter 5” definition of the digital 

processes. 
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Figure 6.55: alternative simulation’s outputs at t=t10. 

“Figure 6.55” represents the results of the simulation taken under the alternative 

conditions associated with the instant t=t10. Each value present in the simulation requires a 

digital process to be associable with a physical value (as previously described). The 

mechanical outcomes opportunely translated from “Figure 6.55” are: 

• the mechanical angle of “Ailerons” set to approximately a +3.6 degree position; 

• the mechanical angle of “Elevator” set to approximately a +4.8 degrees position; 

• the mechanical angle of “Rudder” set to approximately a -3 degrees position; 

• left motor torque demand set to 46.1%; 

• right motor torque demand set to 47.3%. 

6.6.4.3 “Controller Behavior” under gusty wind conclusions  

Simulations outcomes show that the controller decisions are compatible with the 

decisions that a human pilot may take in similar environmental conditions. 

 Landing Simulation  

Vehicle’s landing simulation results being a challenging manoeuvre to simulate without 

a very detailed and comprehensive model of the vehicle’s dynamic behavioural146; it results 

                                                 

 
146 Parameters like the aero-dynamical coefficient, vehicle acceleration behaviour, stall speed, take-off speed and etc., have 
paramount importance for very detailed simulation. 
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evident after the study of “Chapter 2”. The assumption made is to identify several manoeuvre 

points147 and check the controller behaviour in those specific moments (similar to the strategy 

used to simulate the take-off manoeuvre).  

For the proposed work, the landing simulation targets the controller’s behaviour in six 

key points of the manoeuvre. The first step is the landing approach148 and, then the 

descending manoeuvre will begin. The conclusion of the descending manoeuvre is associated 

with the vehicle touch-down with the ground. Between the descending manoeuvre start and 

its conclusion (in this case is the so-called touch-down), there are two more crucial points. 

The first one is associated with the start of the vehicle’s deceleration, where a pitch 

manoeuvre increases drag and decelerate the aircraft (usually achieves this during the flare 

portion of the approach, ideally to a minimum flying speed). The other crucial point is when 

the powertrain motors are disabled, it happens before the touch-down (according to the theory 

elaborated in “paragraph 5.1.4).  

The “touch-down velocity” (𝑉𝑉𝑇𝑇𝑇𝑇), ideally, is as close as possible to the stall speed 

(slightly superior) of the aircraft in landing configuration. The deceleration on the landing 

roll from 𝑉𝑉𝑇𝑇𝑇𝑇 to 𝑉𝑉0 could be accomplished by braking and reverse thrust, but the system 

assumption made is to leave the vehicle passively decelerate, keeping the powertrain 

disabled. Looking at “Figure 6.56”, it is possible to identify such moments as: 

a) the vehicle is approaching the landing manoeuvre, and it is moving with speed 

𝑣𝑣(𝑡𝑡) = 𝑉𝑉𝐹𝐹𝐹𝐹, (t=t11, “Figure 6.56”); 

b) the vehicle begins the descending manoeuvre (t=t12, “Figure 6.56”), and it is 

moving with speed 𝑣𝑣(𝑡𝑡) = 𝑉𝑉𝑆𝑆𝑆𝑆; 

c) the vehicle is executing the descending manoeuvre with speed 𝑣𝑣(𝑡𝑡) = 𝑉𝑉𝐷𝐷, (t=t13, 

“Figure 6.56”); 

d) the vehicle is executing a deceleration149 before disengaging the powertrain, and 

it is moving with speed 𝑣𝑣(𝑡𝑡) = 𝑉𝑉𝐹𝐹𝐹𝐹, (t = t14, “Figure 6.56”); 

e) the vehicle is proxy to the touch-down, it is moving with speed 𝑣𝑣(𝑡𝑡) = 𝑉𝑉𝑇𝑇𝑇𝑇, 

where (1.1 ∙ 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) ≤  𝑉𝑉𝑇𝑇𝑇𝑇 ≤ �𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ √2�, (t = t15, “Figure 6.56”). 

                                                 

 
147 Obviously, as many points may be identified as more reliable will be the outcome of the raw simulation. 
148 Vehicle’s alignment to the target at a sustainable speed. At this point, the assumption is that the vehicle is moving with speed 
close enough to the vehicle’s optimal cruise speed. 
149 It is expected a pitch manoeuvre during the flare portion of the approach which will increase drag and decelerate the aircraft to 
minimum flying speed. 
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f) End of manoeuvre, 𝑣𝑣(𝑡𝑡) = 0, (t = t16, Figure 6.56). 

 
Figure 6.56: landing manoeuvre, graphical animation. 

6.6.5.1 Preliminary Landing Approach, simulation at t=t11 

The landing manoeuvre starts at “t = t11” when the vehicle performs the final alignment 

and begins to engage the descending approach. By assumption, are used a set of controller’s 

input parameters compatible with the physical environmental parameters that a human pilot 

may observe just before starting the landing manoeuvre. Those parameters are: 

• “Pitch attack angle” is approximately +3.8 degrees (PITCH_angle); 

• “Yaw angle” is approximately -0.9 degrees (YAW_angle); 

• “Rolling angle” is approximately +0.6 degrees (ROL_angle); 

• “Navigation Heading angle error” is approximately +12.7 degrees 

(Compass_Error); 

• “Vehicle’s speed” read is 43.4% (Speed); 

• “Altitude relative error” read is +39.1% (Altitude error); 

• “Battery’s SoC” read is 41.1% (Battery_status). 

Those parameters are translated into an 8-bit digital form accordingly. A human pilot 

looks at the sensors that may appear as values in the previous format. The controller reads 8-

bit resolution digital processed input values, where for digital processing it is meant the data 

elaboration disserted in “Chapter 5”. It means that the set of input parameters, delivered into 

the “XFUZZY Inference Monitor” tool, are chosen according to the “Chapter 5” definition 

of the digital processes. 
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Figure 6.57: simulation’s outputs at t=t11. 

“Figure 6.57” represents the simulation results taken into a defined instant, where the 

input parameters are the previous mechanical parameters listed opportunely translated in 

digital form, and the output values are the fuzzy controller output values. According to the 

definitions of “Chapter 5”, those output values are digitally processed before becoming the 

physical control signals broadcasted by the FPGA. The “fuzzy controller” generates an 8-bit 

resolution digital information format for each output, which is translated into a PWM signal 

for the SERVO-Motor or into a torque demand request via RS232 to the powertrain’s E-

Motor driver interface.  

The mechanical outcome opportunely translated from “Figure 6.57” are: 

• the mechanical angle of “Ailerons” set to approximately -1.1 degree position; 

• the mechanical angle of “Elevator” set to approximately +0.3 degrees position; 

• the mechanical angle of “Rudder” set to approximately +0.3 degree position. 

• left motor torque demand set to 41%; 

• right motor torque demand set to 40.6%. 

6.6.5.2 Landing Descending Approach, simulation at t=t12 

When the landing manoeuvre begins, the vehicle shall start to change the pitch attack 

angle; it is assumed to observe a null pitch angle at “t = t12”, and the vehicle may be still 

performing the final alignment to the target. By assumption, are used a set of controller input 
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parameters compatible with the physical environmental parameters that a human pilot may 

observe at the beginning of the landing manoeuvre. Those parameters are: 

• “Pitch attack angle” is approximately 0-degree (PITCH_angle); 

• “Yaw angle” is approximately +0.3 degrees (YAW_angle); 

• “Rolling angle” is approximately -0.9 degrees (ROL_angle); 

• “Navigation Heading angle error” is approximately +3 degrees 

(Compass_Error); 

• “Vehicle’s speed” read is 47.3% (Speed); 

• “Altitude relative error” read is +43.8% (Altitude error); 

• “Battery’s SoC” read is of 39.9% (Battery_status). 

As previously described, the set of input parameters, delivered into the “XFUZZY 

Inference Monitor” tool, are chosen according to “Chapter 5” definition of the digital 

processes. 

 
Figure 6.58: simulation’s outputs at t=t12. 

“Figure 6.58” represents the result of the simulation taken under the alternative 

conditions associated with the instant t=t12. Each value present in the simulation requires a 

digital process to be associable with a physical value (as previously described). 

The mechanical outcome opportunely translated from “Figure 6.58” are: 

• the mechanical angle of “Ailerons” set to approximately +0.5 degree position; 

• the mechanical angle of “Elevator” set to approximately -0.6 degrees position; 
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• the mechanical angle of “Rudder” set to a 0-degree position; 

• left motor torque demand set to 37.1%; 

• right motor torque demand set to 37.1%. 

6.6.5.3 Descending simulation at t=t13 

In the middle of the landing manoeuvre, the vehicle is full descending and most likely 

with a negative pitch attack angle, which might accentuate a vehicle speed increase. For the 

study case “t = t13”, the vehicle is most likely aligned to the target, under acceleration (this 

behaviour may be typical for RC plane manoeuvres due to their extreme lightweight), and 

the vehicle might start manoeuvres150 to reduce the speed. By assumption, are used a set of 

controller’s input parameters compatible with the physical environmental parameters that a 

human pilot may observe when during the vehicle descent has to reduce the vehicle’s speed. 

Those parameters are: 

• “Pitch attack angle” is approximately -2.6 degrees (PITCH_angle); 

• “Yaw angle” is approximately -0.7 degrees (YAW_angle); 

• “Rolling angle” is approximately +0.4 degrees (ROL_angle); 

• “Navigation Heading angle error” is approximately -2.8 degrees 

(Compass_Error); 

• “Vehicle’s speed” read is +53.9% (Speed); 

• “Altitude relative error” read is +39.1% (Altitude error); 

• “Battery’s SoC” read is 36.8% (Battery_status). 

As previously described, the set of input parameters delivered into the XFUZZY 

Inference Monitor tool are chosen according to “Chapter 5” definition of the digital 

processes. 

“Figure 6.59” represents the results of the simulation taken under the alternative 

conditions associated with the instant t=t13. Each value present in the simulation requires a 

digital process to be associable with a physical value (as previously described).  

The mechanical outcome opportunely translated from “Figure 6.59” are: 

• the mechanical angle of “Ailerons” set to a 0-degree position; 

• the mechanical angle of “Elevator” set approximately to +2.8 degrees position; 

                                                 

 
150 By presumption, it is the point where the vehicle needs to change the pitch angle sign, from negative to positive. 
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• the mechanical angle of “Rudder” set to a 0-degree position; 

• left motor torque demand set to 34.4%; 

• right motor torque demand set to 34.4%. 

 
Figure 6.59: simulation’s outputs at t=t13. 

6.6.5.4 Descending simulation at t=t14 

When the vehicle is approaching the end of its descent, it most likely has a positive pitch 

attach angle, and it is decelerating. A pitch manoeuvre is expected during the flare portion of 

the approach, which increases the vehicle’s drag and decelerates the aircraft (up to the touch-

down velocity).  

For the study case “t = t14”, the vehicle is aligned to the target within an acceptable error, 

and it is close to detect the “ground” with the proximity sensor. According to the “Chapter 

5” avowals, after that the take-off is performed, as soon as the proximity sensor detects the 

ground, both E-Motors (left and right) will be disabled. The vehicle’s altitude is slightly 

above the detection altitude (proximity sensors did not detect the ground yet), and E-Motors 

are still active. 

By assumption, are used a set of controller’s input parameters compatible with the 

physical environmental parameters that a human pilot may observe when the vehicle 

approaches the end of the descent. Those parameters are: 

• “Pitch attack angle” is approximately +1.3 degrees (PITCH_angle); 

• “Yaw angle” is approximately -0.5 degrees (YAW_angle); 
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• “Rolling angle” is approximately +0.2 degrees (ROL_angle); 

• “Navigation Heading angle error” is approximately -2.8 degrees 

(Compass_Error); 

• “Vehicle’s speed” read is 43.4% (Speed); 

• “Altitude relative error” read is -16.5% (Altitude error); 

• “Battery’s SoC” read is 35.5%. 

As previously described, the set of input parameters delivered into the XFUZZY 

Inference Monitor tool are chosen according to “Chapter 5” definition of the digital 

processes. 

 
Figure 6.60: simulation’s outputs at t=t14. 

“Figure 6.60” represents the results of the simulation taken under the alternative 

conditions associated with the instant t=t14. Each value present in the simulation requires a 

digital process to be associable to a physical value (as previously described). 

The mechanical outcome opportunely translated from “Figure 6.60” are: 

• the mechanical angle of “Ailerons” set to a 0-degree position; 

• the mechanical angle of “Elevator” set approximately to +5.2 degrees position; 

• the mechanical angle of “Rudder” set to a 0-degree position. 

• left motor torque demand set to 51.2%; 

• right motor torque demand set to 51.2%. 
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6.6.5.5 Descending simulation at t=t15 

As soon as the vehicle detects the proximity of the ground, both motors are disabled. A 

pitch manoeuvre is still expected during the flare portion of the final approach to the ground, 

which increases drag and decelerate the aircraft to minimum flying speed.  

For the study case “t = t15”, the vehicle is aligned to the target within an acceptable error, 

and it is in the “touch-down” proximity. The vehicle’s altitude is below the ground detection 

altitude (as “Figure 6.56” illustrates) but higher than “0m”. 

By assumption, are used a set of controller’s input parameters compatible with the 

physical environmental parameters that a human pilot may observe a moment before touching 

the ground. Those parameters are: 

• “Pitch attack angle” is approximately +4.3 degrees (PITCH_angle); 

• “Yaw angle” is approximately -0.5 degrees (YAW_angle); 

• “Rolling angle” is approximately +0.2 degrees (ROL_angle); 

• “Navigation Heading angle error” is approximately -2.8 degrees 

(Compass_Error); 

• “Vehicle”s speed” read is +36.8% (Speed); 

• “Altitude relative error” read is -28.9% (Altitude error); 

• “Battery’s SoC” read is 34.4%. 

As previously described, the set of input parameters delivered into the XFUZZY 

Inference Monitor tool are chosen according to “Chapter 5” definition of the digital 

processes.  

“Figure 6.61” represents the results of the simulation taken under the alternative 

conditions associated with the instant t=t15. Each value present in the simulation requires a 

digital process to be associable to a physical value (as previously described). 

The mechanical outcome opportunely translated from “Figure 6.61” are: 

• the mechanical angle of “Ailerons” set to a 0-degree position; 

• the mechanical angle of “Elevator” set approximately to +8.2 degrees position; 

• the mechanical angle of “Rudder” set to a 0-degree position. 

• although left motor torque demand set to 51.6%, Motor is disabled; 

• although right motor torque demand set to 51.6%, Motor is disabled. 
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Figure 6.61: simulation’s outputs at t=t15. 

6.6.5.6 Descending simulation at t=t16 

After that, the vehicle touches the ground, is achievable a very limited controllability of 

the vehicle since it is left passively decelerating until the “End of Manoeuvre”, which  is 

associated with 𝑣𝑣(𝑡𝑡) = 0, (t = t16). 

6.6.5.7 Landing simulation, Conclusions 

Moving by the outcome of the previous simulation and using as reference the landing 

paths of below “Figure 6.62”, it is feasible to state that the controller most likely will replay 

a human pilot behaviour while performing the landing manoeuvre151.  

In fact, at t=t11 controller begins to slowly move the vehicle’s nose down, decreasing the 

powertrain power demand and then slowly decreasing the elevator’s attack angle.  At t=t12, 

the vehicle reaches a null pitch attach angle, and the controller continues to decrease the pitch 

attach angle and the power demand for the motors. At t=t13, the vehicle has a negative pitch 

angle and is accelerating, and the controller reacts, continuing to decrease the motors’ power 

and moving up the elevator. At t=t14, the vehicle’s pitch is going up, and the speed is 

decreasing; the controller’s reaction is to continue increasing the elevator attack angle and 

                                                 

 
151 It is essential to highlight that the environmental conditions of the simulations are not taking into account heavy 

meteorological interference. 
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increase the motor power demand because the vehicle crossed the reference altitude. As soon 

as the proximity sensor detects the ground, according to “Chapter 5” design system 

requirements, both motors are disabled, and the vehicle is moving passively. The 

controllability of the vehicle after t=t14 is limited to the SERVO-Motors. Between t14 and t15, 

the controller performs a pitch manoeuvre during the flare portion of the approach, which 

increases drag and decelerates the aircraft. As soon as the vehicle hits the ground in t15, the 

vehicle passively decelerates until it reaches the terminal speed 𝑣𝑣(𝑡𝑡) = 0 in t = t16. 

 
Figure 6.62: reference landing manoeuvre altitude against a vehicle’s manoeuvre position, graphical animation. 

6.7 Controller 

Previous paragraphs have paramount importance for the physical preliminary controller 

design (the controller’s algorithm core of the learning/training process152). The physical 

VHDL controller design has a multi-layer structure, associable to any hierarchical hardware 

schematics design.  

The “Top Layer” describes the peripherals interfaces and the interaction between the 

peripherals with the flight controller’s core. A typical VHDL schematics RTL view, 

generated after the algorism’s synthesis, allows the user to observe the whole system as an 

array of blocks connected each other with data bus and independent digital signals. “Figure 

6.63” exposes the RTL view of the complete system’s VHDL algorithm, generated after the 

main algorithm’s synthesis (through the SW “Synplify Pro”).  

                                                 

 
152 The definition of a correct set of preliminary parameters capable of performing the essential tasks is beneficial for a reliable 
learning/training process. 



183 
 
 

The consequent step is the VHDL code population for each block. Since the previous 

paragraphs describe the peripherals interface blocks, the focus moves on the core of the flight 

controller, which is the VHDL component called by the Author “NEURAL” (VHDL 

component instance: “N0”). The VHDL component “NEURAL” code represents a second 

hierarchical layer of the algorithm’s structure and, as “Figure 6.64” illustrates, is divided into 

a few sub-components:  

a) “Digital_Processing” (it accordingly computes the input data in order to establish 

the correct digital connection between the heart of the controller and its 

peripherals); 

b) “Fuzzy” (it contains the neuro-fuzzy flight controller); 

c) “Neural_Block_StateMachine” (it accordingly coordinates the system’s 

peripherals with the heart of the controller);  

d) “Neural_enable” (it manages the system’s safety routines and peripheral’s 

enables). 

The first two components merit an exhaustive analysis due to their algorithms’ 

complexity, while the last two components scrutiny results irrelevant for the dissertation. 
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Figure 6.63: RTL view, the outcome of the main VHDL algorithm’s synthesis.  
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Figure 6.64: RTL view, the outcome of the “NEURAL” VHDL component algorithm’s synthesis. 
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 Digital_Processing VHDL component 

The VHDL component “Digital_Processing” receives a large amount of raw data from 

the vehicle’s sensors (from the VHDL components defined in “paragraph 6.1”). The raw data 

to be utilizable require an appropriate manipulation of the information. “Figure 6.65” 

expresses the RTL view of the VHDL component “Digital_Processing”153. Eight bespoke 

VHDL components, listed below, implement this operation. 

a) ANGLE_input; 

b) SPEED_input; 

c) ALTITUDE_input; 

d) ENERGY_input; 

e) ROLLING_input; 

f) YAW_input; 

g) PITCH_input; 

h) COMPASS_input. 

The VHDL code population of these blocks embodies a third hierarchical layer of the 

physical controller structure.  

 

                                                 

 
153 Obviously, the RTL view is an outcome of the “Digital_Processing” VHDL component algorithm’s synthesis, which is encased 
within the main algorithm. Thus it is an operation subsequent to the synthesis of the system’s entire algorithm. 
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Figure 6.65: RTL view, the outcome of the “Digital_Processing” VHDL component algorithm’s synthesis. 

6.7.1.1 “ANGLE_input”, VHDL component 

The VHDL component “ANGLE_input” receives an array of multiple 16-bit 

independent information from the VHDL components: “A3G4250D”, “LIS3DSH”, and 

“TESEO”. It also receives an array of logic signals: enable, primary clock, secondary clock 

and take-off enable. “Compass_angle” is the component’s 8-bit output, which will be used 

by “Telemetry EEPROM” and by a few more sub-components within the 

“Digital_Processing” VHDL component. The output expresses the vehicle’s heading angle. 

Component’s safety mechanisms analysis are irrelevant for the dissertation. 

6.7.1.2 “SPEED_input”, VDHL component 

The VHDL component “SPEED_input” receives a 16-bit “DATA_IN” input information 

from the VHDL component “TESEO” and an array of logic signals (primary clock, secondary 

clock, operation enable, and take-off enable). Component’s algorithm generates an 8-bit 

“Speed” output value in a form utilizable by the neuro-fuzzy controller. 

In fact, the 16-bit input information expresses an absolute measure of the vehicle’s speed 

in meter per second, while the neuro-fuzzy controller needs 8-bit information that expresses 

a relative vehicle’s speed. For relative vehicle speed, it is intended that given a scale between 

0 and 255 (8-bit resolution), the vehicle’s maximum allowed speed would correspond to 

“255” while the vehicle’s null speed will correspond to “0”. It allows expressing the vehicle’s 

speed in percentage in order to adapt the control algorithm to other vehicles efficiently.  



188 
 
 

Component’s safety mechanisms analysis are irrelevant for the dissertation. 

6.7.1.3 “ALTITUDE_input”, VHDL component 

The VHDL component “ALTITUDE_input” receives an array of multiple 16-bit 

independent information from the VHDL components: “COMPASS_input”, 

“Flight_Parameters_EEPROM” and “TESEO”. It also receives an array of logic signals: 

enable, primary clock, secondary clock and take-off enable. Component’s algorithm 

generates an 8-bit “Altitude_error” output value in a form utilizable by the neuro-fuzzy 

controller. 

The first component’s algorithm operation is the calculation of a weighted average 

between the 16-bit information obtained by the GPS module (from VHDL component 

“Process_Teseo”) with the 16-bit information obtained by the redundant altimeter (from 

VHDL component “LPS25HB”), according to the following equation: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
35 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 65 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿25𝐻𝐻𝐻𝐻𝑑𝑑 

100
 

(Equation 44) 

The second operation performed is to check the “take-off enable” logical input, then in 

parallel read the “landing information” broadcasted by the VHDL component 

“COMPASS_input” (DATA_OUT_Landing) and the reference altitude value broadcasted by 

the VHDL component “Flight_Parameters_EEPROM” (“TARGET_ALT”). In the case of 

active “take-off enable” (it acts like an automotive KL30 logic signal more than an 

automotive KL15 logic signal), a bespoke multiplier coefficient will accordingly modify the 

“DATA_OUT_Landing” value154, else the “DATA_OUT_Landing” value will be 

untouched.  

Consequently, the resulting altitude reference value is calculated according to: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝐴𝐴𝐴𝐴𝐴𝐴 ∙ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷_𝑂𝑂𝑂𝑂𝑂𝑂_𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 

65535
 

(Equation 45) 

Then, obtained values 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 are used to solve the 

“Equation 34” (paragraph 5.1.5).  

                                                 

 
154 The value of the bespoke multiplier coefficient depends on the vehicle’s flights dynamic, its mechanical design and its typical 
take-off requirements. 
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The final operation is to digital process the calculated solution of the “Equation 34” in 

order to deliver to the neuro-fuzzy controller (“Altitude_error” information) 8-bit information 

that expresses a compatible relative vehicle’s altitude error. For compatible relative altitude 

error, it is intended that given a scale between 0 and 255 (8-bit resolution), the vehicle’s 

relative altitude error will correspond to a spectrum of values within the following 

boundaries: 

• “0” in case of a relative error ≤ −100%; 

• between “1” and “126” in case of −100% < 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 < 0; 

• “127” in case of null relative error;  

• between “128” and “254” in case of 0 < 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 < +100%; 

• “255” in case of a relative error ≥ +100%. 

It allows expressing the vehicle’s altitude relative error in percentage in order to 

comfortably adapt the control algorithm to other vehicles and various flight plans. 

Component’s safety mechanisms analysis are irrelevant for the dissertation. 

6.7.1.4 “ENERGY_input”, VHDL component 

The VHDL component “ENERGY_input” receives an 8-bit “DATA_IN” input 

information from the component “BMS_VHDL” and an array of logic signals (primary clock, 

secondary clock, operation enable, and take-off enable). Component’s algorithm generates 

an 8-bit “Battery_status” output value in a form utilizable by the neuro-fuzzy controller. 

Given a scale between 0 and 255 (8-bit resolution), for compatible 8-bit “Battery_status” 

output, it is intended that the vehicle’s REESS SoC will correspond to a spectrum of values 

within the following boundaries: 

• “0” in case of 𝑆𝑆𝑆𝑆𝑆𝑆 = 0%; 

•  between “1” and “254” in case of 0% < 𝑆𝑆𝑆𝑆𝑆𝑆 < +100%; 

• “255” in case of 𝑆𝑆𝑆𝑆𝑆𝑆 = 100%. 

Component’s safety mechanisms analysis are irrelevant for the dissertation. 

6.7.1.5 ROLLING_input, VHDL component 

The VHDL component “ROLLING_input” receives an array of multiple 16-bit 

independent information from the VHDL components: “A3G4250D” and “LIS3DSH”. 

Therefore, it receives 8-bit information from the VHDL component “ANGLE_input”, 

representing the vehicle’s heading angle. It also receives an array of logic signals: enable, 

primary clock, secondary clock and take-off enable.  
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“ROL_angle” is the component’s 8-bit output information generated by the 

“ROLLING_input” VHDL component algorithm. This output information is used by the 

“neuro-fuzzy controller” and the “Flight Telemetry EEPROM” VHDL component. The 8-bit 

resolution output signal expresses the vehicle’s rolling angle in a bespoke arrangement, 

according to the following guidelines: 

• “0” in case of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≤ −20°; 

•  between “1” and “126” in case of 20° < 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 < 0°; 

• “127” in case of a null rolling angle; 

• between “128” and “254” in case of 0° < 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 < +20°; 

• “255” in case of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≥ 20°. 

Component’s safety mechanisms analysis are irrelevant for the dissertation. 

6.7.1.6 YAW_input, VHDL component 

The VHDL component “YAW_input” receives an array of multiple 16-bit independent 

information from the VHDL components: “A3G4250D” and “LIS3DSH”. Therefore, it 

receives 8-bit information from the VHDL component “ANGLE_input”, representing the 

vehicle’s heading angle. It also receives an array of logic signals: enable, primary clock, 

secondary clock and take-off enable.  

“YAW_angle” is the component’s 8-bit output information generated by the 

“YAW_input” VHDL component algorithm. This output information is used by the “neuro-

fuzzy controller” and the “Flight Telemetry EEPROM” VHDL component. The 8-bit 

resolution output signal expresses the vehicle’s YAW angle in a bespoke arrangement, 

according to the following guidelines: 

• “0” in case of 𝑌𝑌𝑌𝑌𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≤ −20°; 

•  between “1” and “126” in case of 20° < 𝑌𝑌𝑌𝑌𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 < 0°; 

• “127” in case of a null yaw angle; 

• between “128” and “254” in case of 0° < 𝑌𝑌𝑌𝑌𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 < +20°; 

• “255” in case of 𝑌𝑌𝑌𝑌𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≥ 20°. 

Component’s safety mechanisms analysis are irrelevant for the dissertation. 

6.7.1.7 PITCH_input, VHDL component 

The VHDL component “PITCH_input” receives an array of multiple 16-bit independent 

information from the VHDL components: “A3G4250D” and “LIS3DSH”. Therefore, it 
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receives 8-bit information from the VHDL component “ANGLE_input”, representing the 

vehicle’s heading angle. It also receives an array of logic signals: enable, primary clock, 

secondary clock and take-off enable.  

“PITCH_angle” is the component’s 8-bit output information generated by the 

“PITCH_input” VHDL component algorithm. This output information is used by the “neuro-

fuzzy controller” and the “Flight Telemetry EEPROM” VHDL component. The 8-bit 

resolution output signal expresses the vehicle’s PITCH angle in a bespoke arrangement, 

according to the following guidelines: 

• “0” in case of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≤ −20°; 

•  between “1” and “126” in case of 20° < 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 < 0°; 

• “127” in case of a null pitch angle; 

• between “128” and “254” in case of 0° < 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 < +20°; 

• “255” in case of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≥ 20°. 

Component’s safety mechanisms analysis are irrelevant for the dissertation. 

6.7.1.8 COMPASS_input, VHDL component 

The VHDL component “Compass_input” is the most complex sub-component within the 

VHDL component “Digital_Processing”. 

The VHDL component “Compass_input” receives an array of multiple 16-bit 

independent information from the VHDL components: “A3G4250D”, “LIS3DSH”, 

“Flight_Parameters_EEPROM” and “TESEO”. Therefore, it receives 8-bit information from 

the VHDL component “ANGLE_input”, representing the vehicle’s heading angle. It also 

receives an array of logic signals: enable, primary clock, secondary clock and take-off enable. 

The VHDL component “Compass_input” reads the vehicle’s current position (from the 

VHDL component “TESEO”) and reads the vehicle’s target position (from the VHDL 

component “Flight_Parameters_EEPROM”), then computes the captured data. This data 

computation produces the ideal vehicle’s heading angle and the distance between the vehicle 

and the target position. Obtained data is the input of a new data manipulation process. The 

ideal vehicle’s heading angle is compared with the actual vehicle’s heading angle (current 

vehicle’s heading angle) read from the VHDL component “ANGLE_input”. The outcome is 

a simple differential value, which allows the neuro-fuzzy controller to adjust its routes 

accordingly. 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖′𝑠𝑠_𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖′𝑠𝑠_𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 

(Equation 46) 
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 “Compass_error” is an 8-bit information output signal that the VHDL components 

“Compass_input” broadcasts to the neuro-fuzzy controller. The resulting 8-bit information 

expresses the vehicle’s heading angle error in a bespoke arrangement, according to the 

following guidelines: 

• “0” in case of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = −180°; 

•  between “1” and “126” in case of −180° < 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 < 0°; 

• “127” in case of a null heading angle error; 

• between “128” and “254” in case of 0° < 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 < +180°; 

• “255” in case of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 180°. 

The second output generated by the VHDL component “Compass_input” is the 

“DATA_OUT_Landing”, which is a piece of 16-bit resolution information transmitted to the 

VHDL component “ALTITUDE_input”. This information has paramount importance during 

the landing operation because it defines the reference flight altitude’s correction factor that 

the VHDL component “ALTITUDE_input” shall use to calculate the “Altitude_error”.  

This parallel computation performed by the VHDL component “Compass_input” starts 

with the reading of the input information “DATA_LANDING”, received from the VHDL 

component “Flight_Parameters_EEPROM, which sets the distance155 to the final position 

that the controller will use to start the landing manoeuvre. As shorter the distance will be as 

more severe reference altitude correction will be requested to the VHDL component 

“ALTITUDE_input”. When the Distancereference (input value “DATA_LANDING” read) is 

larger than the Distanceread (actual vehicle’s distance to the target), it is valid the “Equation 

47”. 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷_𝑂𝑂𝑂𝑂𝑂𝑂_𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
∙ 65535 

(Equation 47) 

The resulting 16-bit “DATA_OUT_Landing” information generated by VHDL 

component “Compass_input” provides a piece of landing information to the VHDL 

component “ALTITUDE_input” in a bespoke arrangement, as following: 

• “0” in case of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 0; 

• between “1” and “65534” according to “Equation 47”; 

                                                 

 
155 The distance between the target landing position and the instantaneous vehicle’s position expressed in meters. 
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• “65535” in case of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. 

  “Fuzzy”, VHDL component 

“Xfuzzy environment” contains the tool “xfvhdl”, which uses the high-level hardware 

description language VHDL to facilitate the hardware implementation, through FPGAs or 

ASICs, of inference systems. The “tool”156 allows the direct synthesis of complex fuzzy 

systems composed of different inference modules and crisp blocks. [44] 

The GUI’s “FPGA implementation section” collects information regarding the definition 

options157 for FPGAs.  For the rule memory, it can be chosen to implement them with ROM, 

RAM or logical blocks.  Once all “Rulebases” and crisp blocks of the system are defined, it 

is possible to generate the VHDL code of the components associated with the fuzzy system. 

The generation of a “testbench” file, also described in VHDL, follows the fuzzy system 

VHDL code generation and allows verifying its functionality.  

For hierarchical systems, each “Rulebase” requires a VHDL description, as well as a 

“testbench” that allows obtaining the control surface corresponding to each of them. In this 

case, a VHDL file corresponding to the upper level of the hierarchy is also generated, which 

describes the interconnection of the different “Rulebases” and crisp blocks that make up the 

system, as well as a “testbench” that allows simulating the whole system.[38] 

What described impacts on the final VHDL assembly directly. By definition, proposal 

work uses a hierarchical design (“Figure 6.63” and “Figure 6.64”) and the final VHDL code 

constructions strategy targets a parallel computation for each independent “Rulebase”.  

Using the “xfvhdl” tool of the “XFuzzy” environment, a set of five independent, code 

populated VHDL components are exported. Those components are encased in the central 

“flight controller”, and the interconnections between the different “Rulebases” and the 

corresponding upper hierarchical level input/output ports are defined and then refined. 

The “Rulebases” parallel computational design relies on the allocation of the hardware 

described by the VHDL code will be implemented in a sheathed area of the physical FPGA. 

“Figure 6.66” demonstrates such concepts.  

                                                 

 
156 The tool allows the generation of standardised membership functions of triangular, sh_triangular, and trapezoid types by means 
of arithmetic techniques. If input membership functions are not normalised, the arithmetic calculation option for antecedents is 
disabled. 
157 Among them, the type of RAM and ROM to be used. 
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Figure 6.66: RTL view, the outcome of the “Fuzzy” VHDL component algorithm’s synthesis. 

The study case application VHDL algorithm encases the VHDL components associable 

to the five “Rulebases” into the VHDL component “Fuzzy”, as it is possible to observe in the 

RTL view of “Figure 6.66”; which is the outcome of the “Fuzzy” VHDL component 

algorithm’s synthesis. An array of three more sub-components are created and encased within 

the VHDL component “Fuzzy”, those are: 

a) AILERON_output 

b) ELEVATOR_output 

c) RUDDER_output. 

The first subcomponent converts a single 8-bit resolution signal into two complementary 

7-bit resolution signals, according to what previously described (“paragraph 4.2.2”, 

“paragraph 5.1.8” and “paragraph 6.3.9”). The second and third subcomponents merely 

convert 8-bit resolution information into 7-bit resolution information. 

6.8 Data Capture for the learning Process 

Data collection is generally achieved as the vehicle is guided via remote control (RC) 

through an area defined as the “selected environment”, which simulates the environment and 

the flight conditions in which the vehicle will most likely operate. Therefore, appropriate 
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hardware is required to provide the RC features of the learning process, according to the 

assumptions and the choices described in “paragraph 5.2”. 

The operator guides the vehicle through a series of flight pre-defined route, simulating 

as many as possible manoeuvres to establish a base and bias pattern for the algorithm. A 

dedicated on-board data collection algorithm is compulsory, and it results in a spin-off 

functionality of the controller described in the previous paragraph. As a benchmark, the 

VHDL algorithm shall capture the flight sensors data, the flight actuators output and the 

torque demand for the E-Motors, during the allocated learning period Tlearn (or time available 

for the flight telemetry monitor), during which time the on-board memory chip retains the 

received data. By definition, Tlearn must not exceed MOB maximum as in “Equation 48” 158 

(which is a bespoke adaptation of “Equation 29” of “paragraph 2.5.1”).  

𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 < �
𝑀𝑀𝑀𝑀𝑀𝑀

𝑁𝑁𝑁𝑁𝑁𝑁 ∙ 𝑆𝑆𝑝𝑝𝑝𝑝
� 

(Equation 48) 

Where: 

𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 → maximum run time expressed in seconds 

𝑀𝑀𝑀𝑀𝑀𝑀 → on-board memory expressed in bytes 

𝑁𝑁𝑁𝑁𝑁𝑁  → Number of Registers Read for each sample (1 Register = 1 byte) 

𝑆𝑆𝑝𝑝𝑝𝑝 → samples per second 

For the proposed configuration, a vehicle diagnostics and monitor VHDL bespoke 

algorithm is designed to read all the vehicle’s parameters and store the data on external 

memory, with a sampling frequency of 8Hz. It is assumed that the external memory is a 

standard 2Mbit EEPROM (as for “paragraph 5.1.9”, an alternative159 may be a NOR FLASH 

memory with a standard SPI interface) connected with the FPGA using an SPI BUS160. The 

integration of the external memory, and its related functionalities, within the main VHDL 

algorithm is achieved via the VHDL component “Telemetry_EEPROM” (as shown in the 

RTL view of Figure 6.63). Selected SPI BUS clock161 shall compile with the equation: 

                                                 

 
158 Because it will result in corrupted data, due to the undesirable registers overwriting. 
159 Especially in the case of a larger data storage shall be guaranteed. 
160 It is assumed that the FPGA is the “SPI MASTER” and the memory is the “SPI SLAVE”. 
161 It is assumed the value of 1 MHz as an upper limit because the maximum SPI clock allowed may change with the memory P/N 
(it is recommended to use a value that may be accepted by a large number of devices) and, the potential distance between the FPGA 
and the memory may affect the robustness of the data stream when a higher clock frequency is used. 
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𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆 > (8 ∙ 𝑁𝑁𝑁𝑁𝑁𝑁) ∙ �8 ∙ 𝑆𝑆𝑝𝑝𝑝𝑝� ≤ 1𝑀𝑀𝑀𝑀𝑀𝑀 
(Equation 49) 

According to “Equation 49”, the VHDL component “Telemetry_EEPROM” utilizes an 

SPI BUS communication clock of 512KHz. 

 
Figure 6.67: macro of the  RTL view outcome of the main VHDL algorithm’s synthesis (macro of Figure 6.63). 
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Reference Description Num. of Registers 
AILERON SERVO Input and Output Value – SERVO angle 4 

ELEVATOR SERVO Input and Output Value – SERVO angle 2 

RUDDER SERVO Input and Output Value – SERVO angle 2 

M1 Input and Output Value – L. motor torque  2 

M2 Input and Output Value – R. motor torque  2 

Gx Input – X axle angular acceleration sensor  2 

Gy Input – Y axle angular acceleration sensor  2 

Gz Input – Z axle angular acceleration sensor  2 

Lx Input – X axle linear acceleration sensor 2 

Ly Input – Y axle linear acceleration sensor 2 

Lz Input – Z axle linear acceleration sensor 2 

YAW Input – digitally processed YAW feedback 1 

PITCH Input – digitally processed Pitch feedback 1 

ROLLING Input – digitally processed Rolling feedback 1 

BATTERY  Input – digitally processed Battery SoC  1 

COMPASS Input – digitally processed compass error 1 

HEADING ANGLE Input – digitally processed compass error 1 

ALTITUDE Input – absolute altitude value 2 

ALTITUDE_ERR Input – digitally processed altitude error 2 

GPS Module SPEED Input – absolute speed value 2 

SPEED Input – digitally processed speed value 1 

GPS Position Input – digitally processed position value 4 

STATUS_Register Input  – System monitoring register 1 

Timing Output Value – Sampling Timing value 2 

Table 6.2: VHDL component “Telemetry_EEPROM” registers map. 

According to “Table 6.2”, VHDL algorithm requires to write 44 memory registers for 

each sampling (NRR=44), making it possible to estimate the maximum data memorisation 
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time (or maximum run time) according to the “Equation 48”, since the assumed EEPROM 

(or Flash) memory size is of 2Mbit (or 256kB as described in the “paragraph 5.1.9”). The 

result is a maximum run time of 727.27 seconds (approximately 12 minutes). It means a 

second training flight time limitation after the limitation of the battery’s energy. The Author’s 

recommendation is to operate training data mining (RC driving) for not more than 10 minutes. 

Particular attention requires the data capture algorithm of the VHDL component 

“Telemetry_EEPROM”. By definition, the algorithm is a bespoke added functionality to the 

primary “Flight Controller”. The “Telemetry_EEPROM” VHDL component is designed to 

operate in both circumstances: in case the system is working in “autonomous mode” or in 

“training mode” (with a “Human Pilot”). 

The Author’s technical requirements definition of the data mining operation implies 

ensuring that the following rules are respected: 

• The “Telemetry_EEPROM” VHDL component encase a set of new VHDL sub-

components capable of reading a PWM control signal (the SERVO-Motors PWM 

control signal generated directly by the RC equipment and the powertrain’s 

feedback PWM signals generated by each E-Motor Driver); 

• for the “training mode” operation, it is necessary to ensure the hardware 

separation of the SERVO-Motors FPGAs outputs with the actuators control 

signal feedback (it may happen within the FPGA with an algorithm variant or 

externally with the depopulation of the resistor between the FPGA’s output pin 

and the SERVO-Motor driver circuit); 

• The “Telemetry_EEPROM” VHDL  requires a sub-component that will read an 

array of eight logic signals and will associate its value to a particular bit of the 

“STATUS Register”162. 

Implementing these operations allows obtaining all the information needed since all the 

data described in “Table 6.2” will be associated with a defined time. 

                                                 

 
162 “STATUS_Register” map: Helth_Prox_sensor [BIT_0], Ground_detection_Flag [BIT_1], ESTOP_Monitoring [BIT_2], 
SFTY_SENSOR_RST [BIT_3], Operation_EN_monitoring [BIT_4], Take_OFF_Sig_monitoring [BIT_5], SERVO_RESET_EN 
[BIT_6], SYSTEM_EN_monitoring [BIT_7].       
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6.9 Learning/Training Process Description 

The tuning stage is usually one of the most complex tasks when designing fuzzy systems. 

The system behaviour depends on the logic structure of its “Rulebases” and the membership 

functions of its linguistic variables. The tuning process focuses on adjusting the different 

membership function parameters that appear in the system definition. The simulations’ 

outcome shows that the preliminary systems can perform basic tasks and behave according 

to what is expected from a “human being pilot” facing the same environmental conditions. 

In conclusion, the preliminary tuning is successful. 

Since the number of parameters to simultaneously modify is high, advanced manual 

tuning is undoubtedly a cumbersome, and automatic techniques may be required. The two 

learning mechanisms most widely used are “supervised learning” and the “reinforcement 

learning”.  

In supervised learning techniques, the desired system behaviour is given by a set of 

training (and test) input/output data, while in reinforcement learning, what is known is not 

the exact output data but the effect that the system has to produce on its environment, thus 

making necessary the monitoring of its on-line behaviour. [38] 

Both techniques are appropriate to the Thesis principles, although the Author privileges 

the “supervised learning techniques” because more congenial to the work mindset. 

“Xfuzzy 3” GUI is used as a baseline; the software environment includes four tools for this 

design stage:  

• “xfdm” allows obtaining the structure of inference systems used as fuzzy 

approximators or classifiers; 

• “xftsp” focuses on time series prediction applications163 [45]; 

                                                 

 
163 The tool xftsp generates fuzzy inference systems that implement autoregressive models for the short- and long-term prediction 
of time series. To do this, it applies a methodology based on the use of non-parametric noise or residual variance estimates (to 
select the optimal number of input variables) in combination with Xfuzzy supervised learning and identification tools (to determine 
the structure of the systems). This methodology responds to a direct prediction strategy, which implies the construction of an 
autoregressive model for each of the terms of the desired prediction horizon. In each case, the optimal subset of inputs is selected 
a priori by a non-parametric noise estimate (for example, the Delta Test). The specification of the fuzzy system corresponding to 
each prediction horizon is then obtained through an iterative process in which successive identification and adjustment phases are 
carried out, increasing the number of linguistic labels of the inputs, until the system error enters the previously estimated range. 
xftsp can be executed in graphic mode, using the option “Time Series Prediction” of the “Tuning Menu” or the corresponding 
icon in the main window of the environment, or from the command line using a configuration file. [38] 
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• “xfsl” is a parameter adjustment tool based on the use of supervised learning 

algorithms164; 

• “xfsp” is a simplification tool that allows reducing the number of membership 

functions and compacting the rules bases of a fuzzy system to facilitate its 

software or hardware implementation and to increase its linguistic 

interpretability.  

[38] 

 Knowledge acquisition tool (“xfdm” tool) 

It is noteworthy to highlight that the tool “xfdm” facilitates the identification of fuzzy 

systems from numerical data through the use of different algorithms grouped into two 

categories.   

Structure-oriented algorithms165 represent the first group. These algorithms perform a 

fixed or variable partition of the input variables’ universes discourse and analyse the 

numerical data that describe the system’s behaviour to assign a rule for each line of the input 

file. Subsequently, they resolve the conflicts that may have occurred while selecting the fuzzy 

system rules based on their activation degrees and the configuration parameters defined by 

the user. “xfdm” includes three identification algorithms that work with fixed partitions 

(Wang & Mendel, Nauck and Senhadji) and one that includes a variable number of partitions 

(Incremental Grid). Additionally, the “Flat System” option allows the generation of fuzzy 

system specifications with a flat I/O behaviour that can be useful as input to the training tool 

or other Xfuzzy facilities. 

The specific options and parameters of these algorithms are: 

a) Nauck: 

o Number of rules: number of rules to identify 

o Type of selection: “Best rules” or “Best per class 

b) Sendhadji: 

o Number of rules: number of rules to identify 

c) Incremental Grid: 

                                                 

 
164 In supervised learning techniques, the desired behaviour of the system is described by a set of training (and test) patterns. 
Supervised learning attempts to minimise an error function that evaluates the difference between the actual system behaviour and 
its desired behaviour defined by the set of input/output patterns. [38] 
165 Matrix partitioning (Grid Partitioning). 
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o Limit of MFCs, Limit of Rules, Limit of RMSE (the execution of the 

algorithm ends when one of these limits is reached) 

o Learning option, activated/not activated 

[38] 

Cluster-oriented algorithms166 represent the second classification group. “xfdm” tool 

includes other algorithms to generate a fuzzy system from a series of data using clustering 

techniques. By grouping sets of points in clusters represented by prototype points, it is 

possible to reduce the algorithm’s information load and allowing fuzzy systems with fewer 

rules. The tool includes four algorithms that use a fixed number of clusters (Hard C-Means, 

Fuzzy C-Means, Gustafson-Kessel and Gath-Geva) and two algorithms that allow iteratively 

varying the number of clusters until the limit defined by the user is reached (Incremental 

Clustering and ICFA). 

The specific options and parameters of these algorithms are: 

a) Incremental Clustering: 

o Neighbourhood radius 

o Maximum number of clusters 

b) Fixed Clustering: 

o Clustering algorithm167 

o Number of clusters 

o Limit on iterations 

o Fuzziness index 

o Limit on cluster variation 

o Learning option, activated/not activated 

c) ICFA (Incremental Clustering for Function Approximation): 

o Number of clusters 

o Maximum Iterations 

o Fuzziness index 

o Limit on cluster variation 

o Activate migration, activated/not activated 

[38] 

                                                 

 
166 Data grouping (Cluster Partitioning) techniques. 
167 Hard C-Means, Fuzzy C-Means, Gustafson-Kessel and, Gath-Geva. 
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 The supervised learning 

Supervised learning algorithms aim to reduce the error function that defines the 

deviation between the actual and the desired system behaviour; they can be considered 

optimisation algorithms.  

The supervised learning tool “xfsl”168 allows applying supervised learning algorithms 

to adjust (training process) fuzzy systems into the design flow of “Xfuzzy 3.5”. The learning 

process configuration starts with the (it is the first step) selection of a training file that 

contains the input/output data of the desired behaviour (a test file, whose data check the 

generalisation of the learning, is discretionary to the end-user169). [46] 

The second step in the tuning process configuration is the selection of the learning 

algorithm (“xfsl” admits many learning algorithms170). Once the algorithm is selected, an 

error function must be chosen. The tool offers several error functions171 capable of 

expressing the deviation between the actual and the desired behaviour. 

“xfsl” contains two processing algorithms to simplify the designed fuzzy system. The 

first algorithm prunes the rules and reduces the membership functions that do not reach 

a significant activation or membership degree. There are three versions of the algorithm: 

a) pruning all rules that are never activated over a certain threshold; 

b) pruning the worst N-rules; 

c) pruning all rules except the best N-ones.  

The second algorithm clusters the membership functions of the output variables. 

The number of clusters can be fixed to a certain quantity or computed automatically. These 

two processing algorithms are applicable to the system before the tuning process (pre-

processing option) or after it (post-processing option). An end condition172 has to be 

specified to finish the learning process.  

                                                 

 
168 “xfsl” contains many different supervised learning algorithms. 
169 The format of these two patterns files is just an enumeration of numeric values that are assigned to the input and output variables 
in the same order that they appear in the definition of the system module in the “XFL3 description”. 
170 Regarding gradient descent algorithms, it admits Steepest Descent, Backpropagation, Backpropagation with Momentum, 
Adaptive Learning Rate, Adaptive Step Size, Manhattan, QuickProp and RProp. Among conjugate gradient algorithms, the 
following are included: Polak-Ribiere, Fletcher-Reeves, Hestenes-Stiefel, One-step Secant and Scaled Conjugate Gradient. The 
second-order algorithms included are: Broyden-Fletcher-Goldarfb-Shanno, Davidon-Fletcher-Powell, Gauss-Newton and 
Mardquardt-Levenberg. Regarding algorithms without derivatives, the Downhill Simplex and Powell’s method can be applied. 
Finally, the statistical algorithms included are Blind Search and simulated annealing (with linear, exponential, classic, fast, and 
adaptive annealing schemes). 
171 By default, the Mean Square Error is selected. 
172 This condition is a limit imposed over the number of iterations, the maximum error goal, or the maximum absolute or relative 
deviation (considering both the training and the test error). 
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“xfsl” can be applied to any fuzzy system described by the XFL3 language, even to 

systems that employ particular functions defined by the user. Vital is the scrutiny of the 

system’s feature that may impose limitations over the learning algorithms to apply (for 

instance, a non-derivative system cannot be tuned by a gradient-descent algorithm). [38] 

6.9.2.1 Gradient Descent Algorithms 

The similarity between fuzzy systems and neural networks led to apply the neural 

learning processes to fuzzy inference systems. Under these circumstances, a well-known 

algorithm employed in fuzzy systems is the “Back Propagation algorithm”, which adjusts the 

parameter values proportionally to the gradient of the error function in order to reach a local 

minimum. Since this algorithm’s convergence speed is slow, several modifications could be 

beneficial, like using a different learning rate for each parameter or adapting the control 

variables of the algorithm heuristically. An exciting modification that improves the 

convergence speed takes into account the gradient value of two successive iterations. It makes 

available information about the curvature of the error function. The algorithms QuickProp 

and RProp follow this idea. “xfsl” admits: 

a) Backpropagation; 

b) Backpropagation with Momentum; 

c) Adaptive Learning Rate; 

d) Adaptive Step Size; 

e) Manhattan; 

f) QuickProp; 

g) RProp. 

[38] 

6.9.2.2 Conjugate Gradient Algorithms 

The gradient-descent algorithms generate a change step in the parameter values that is a 

function of the gradient value at each iteration (and possibly at previous iterations). Since the 

gradient indicates the direction of maximum function variation, it may be convenient to 

generate not only one step but several steps, which minimise the function error in that 

direction. The illustrated strategy, which is the basis of the steepest-descent algorithm, has 

the detriment of producing a zig-zag advancing because the optimisation in one direction may 

deteriorate previous optimisations. The solution is to advance by conjugate directions that do 
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not interfere with each other. The several conjugate gradient algorithms reported in the 

literature differ in the equations used to generate the conjugate directions. 

The main drawback of the conjugate gradient algorithms is the implementation of a 

linear search in each direction, which may be costly in terms of function evaluations. It is 

possible to avoid the linear search by using second-order information, that is, by 

approximating the second derivative with two close first derivatives. Illustrated idea defines 

the basis of the scaled conjugate gradient algorithm. Among conjugate gradient algorithms, 

“xfsl” includes the following:  

a) Steepest Descent; 

b) Polak-Ribiere; 

c) Fletcher-Reeves; 

d) Hestenes-Stiefel; 

e) one-step Secant; 

f) Scaled Conjugate Gradient. 

[38] 

6.9.2.3 Second-Order Algorithms 

A valid approach capable of speeding up the convergence of learning algorithms 

considers the second-order information of the error function, that is, of its second derivatives 

or, in matricial form, of its Hessian. Considering complicated the computation of the second 

derivatives may be beneficial to approximate the Hessian employing the gradient values of 

successive iterations. It is the idea of Broyden-Fletcher-Goldarfb-Shanno and Davidon-

Fletcher-Powell algorithms. 

A meaningful case is when the function to minimise is a quadratic error because the 

Hessian can be approximated by only the first derivatives of the system outputs, as done by 

the Gauss-Newton algorithm. Since this algorithm can lead to instability when the 

approximated Hessian is not-positive defined, the Marquardt-Levenberg algorithm solves 

this problem by introducing an adaptive term.  The second-order algorithms included in the 

tool are:  

a) Broyden-Fletcher-Goldarfb-Shanno; 

b) Davidon-Fletcher-Powell; 

c) Gauss-Newton; 

d) Mardquardt-Levenberg. 

[38] 
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6.9.2.4 Algorithms Without Derivatives 

The gradient of the error function is not always obtainable (calculated) because it 

can be too costly or not defined. In these cases, it is possible to employ optimisation 

algorithms without derivatives. An example is the “Downhill Simplex algorithm”, which 

considers a set of function evaluations to decide a parameter change. Another example is 

Powell’s method, which implements linear searches by a set of directions that evolve to be 

conjugate. The algorithms of this kind are too much slower than the previous ones. An 

optimal solution could be to estimate the derivatives from the secants or to employ not the 

derivative value but its sign (as RProp does), which allows the estimations from small 

perturbations of the parameters. [38] 

All the above-commented algorithms do not reach the global but a local minimum of the 

error function. The statistical algorithms can discover the global minimum because it is 

possible to generate different system configurations that spread the search space. One way of 

broadening the space explored is to generate random configurations and choose the best one. 

It applies the “Blind Search algorithm”, whose convergence speed is plodding. Another way 

is to perform small perturbations in the parameters to find a better configuration, such as the 

iterative improvements algorithm. A better solution is to employ “simulated annealing 

algorithms”. The strategy exploits the analogy between the “learning process”173 and the 

evolution of a “physical system”174. Simulated annealing provides good results when the 

number of parameters to adjust is low. When it is high, the convergence speed can be so slow; 

beneficial could be the generation of random configurations, apply gradient descent 

algorithms and select the best solution. 

There are applicable algorithms without derivatives: the Downhill Simplex and Powell’s 

method. As well are available statistical algorithms: “blind search” and “simulated 

annealing” (with linear, exponential, classic, fast, and adaptive annealing schemes). 

When optimising a differentiable system, Broyden-Fletcher-Goldarfb-Shanno and 

Mardquardt-Levenberg algorithms are the most adequate. If it is not possible to compute the 

system derivatives, as in hierarchical fuzzy systems, the best choice is to use these algorithms 

with the option of estimating the derivative. Simulated annealing is recommendable when 

                                                 

 
173 The “learning process” is intended to minimise the error function. 
174 The  “physical system” tends to lower its energy as its temperature decreases. 
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there are a few parameters to tune, and the second-order algorithms drive the system to a non-

optimal minimum. 

[38] 

 Error function 

The error function expresses the deviation between the actual behavior of the fuzzy 

system and the desired one by comparing the input/output patterns with the output of the 

system for those input values. “xfsl” defines seven error functions: 

a) mean_square_error (MSE); 

b) weighted_mean_square_error (WMSE); 

c) mean_absolute_error (MAE); 

d) weighted_mean_absolute_error (WMAE); 

e) classification_error (CE); 

f) advanced_classification_error (ACE); 

g) classification_square_error (CSE). 

Listed functions are normalised by the number of patterns, the number of output 

variables, and the range of each output variable so that the error function's range is between 

0 and 1. MSE, WMSE, MAE and WMAE are eligible for systems with continuous output 

variables. While CE, ACE and CSE are the best fit for classification systems. These are the 

equation for the first functions: 

𝑀𝑀𝑀𝑀𝑀𝑀 < 𝑆𝑆𝑆𝑆𝑆𝑆�
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[38] 

The output of a fuzzy classification system is the linguistic label that has the most 

significant activation degree. A common way of expressing these systems’ deviation is the 

number of classification failures (classification_error, CE). It is not an optimal choice for 

tuning because many system configurations produce the same number of failures. A valid 

improvement adds a term that measures the selected label’s distance to the desired one 

(advanced_classification_error, ACE). These two error functions are not differentiable, so 

they cannot be used with derivative-based learning algorithms (which are the fastest). A 

better choice is to consider each linguistic label’s activation degree as the actual output and 

the desired output as “1” for the correct label and “0” for the others. The error function 

estimation may use the system’s square error (classification_square_error, CSE), which is 

differentiable and functional with derivative-based learning algorithms. [38] 

 The Simplification tool - Xfsp 

The tool “xfsp” allows applying simplification algorithms, both to the membership 

functions and to the neuro-fuzzy system “Rulebases”, to obtain a more forthright description 

or one that is easier to comprehend from the linguistic point of view. [47] 

6.9.4.1 Membership functions simplification 

There are several Membership functions simplification methods available in the 

scientific literature; the proposed work uses as baseline three simplification processes:  

a) “Purge”;  

b) “Clustering”; 

c) “Similarity”.  

The “Purge Mechanism” looks for those membership functions which are not used in 

any “Rulebase” and eliminates them. It may happen not only as a consequence of previous 

simplification processes but also with a fuzzy system definition based on translating heuristic 

knowledge. 

The “Clustering Method” uses the “Hard C-Means algorithm” to search for a small 

number of clusters (prototype membership functions) that allow grouping several of the 
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original functions. The clusters’ evaluation occurs in the space formed by the different 

parameters that define the membership functions, being possible to apply weights to each one 

of them. The user can define the final number of prototypes, or in the alternative 

automatically calculated by applying different validity indices: Dunn separation index, 

Davies-Bouldin index and Dunn generalised indexes. 

The third technique examines a merging process based on the similarity between the 

different functions. This process iteratively searches for the pair of most similar functions 

and replaces them with a single function if the degree of similarity exceeds a threshold 

defined by the user. The process ends when it is not possible to merge more functions. [38] 

6.9.4.2 Rulebases simplification 

There are several “Rulebases” functions simplification methods accessible in the 

scientific literature; there are four applicable processes to the “Ruleset”:  

a) compress; 

b) pruning; 

c) expand; 

d) tabular simplification. 

The “compression method” combines all the rules that share the same consequent, 

connecting their antecedents by disjunctions (“or” connective).  

The “expansion method” implements the process complementary to compression. Both 

methods can help the user to visualize better and understand the “Rulebase”, but in reality, 

they do not perform an adequate simplification. The simplification operation can perform the 

pruning method and (or) the tabular simplification. 

The “pruning process”175 is usually a pre-processing method applied ere any 

simplification. This process evaluates the degree of activation of the rules to eliminate:  

a) the “n” worst rules;  

b) all rules except the “n” best rules; 

c) all rules whose degree of activation is below a threshold (the user sets both the 

number “n” and the threshold).  

The last of the simplification mechanisms examined is the “tabular simplification 

method” of the “Rulebases” on an extension of the Quine-McCluskey algorithm. This 

                                                 

 
175 Pruning allows reducing the number of rules by selecting the most important in the context of a particular application. 
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method performs an ordered linear search176 to find all combinations of logically adjacent 

minterms of the n-variable function to be simplified. [38] 

6.10 Proposed Learning Tool Configuration  

Moving from the hardware assumptions made in “paragraph 5.2” and using as baseline 

the theoretical studies of “paragraph 6.9”, it is possible to operate the proposed “learning 

tool” configuration.   

A preliminary condition is the utilisation of a training file compatible with the “learning 

tool”. It requires that the raw data stored in the external memory shall be transferred on the 

user PC and then processed in order to ensure the conformation of the input/output 

information pattern with the “learning tool” standards (as well shall be given to the file the 

extension “.trn”).  

Configuration starts with the selection of the learning technique. The Author justifies its 

predilection for supervised learning techniques because this technique focuses on the 

system behaviour given by a set of training input/output data (physical information captured). 

It matches the training file goals and its generation’s modality because the “data 

collection177” outcome allows replicating a human being pilot flight behaviours under certain 

flight conditions. 

The successive configuration step is the selection of the learning algorithm. The Author 

proposes to opt for “Gradient Descent algorithms”, which are well-known algorithms 

employed in fuzzy systems learning processes. Although the most common variant is the 

“Back Propagation algorithm”, it is preferred to use the “Manhattan algorithm”. The root 

of the decision is in the principles behind the algorithms. “Back Propagation algorithm” 

modifies the parameter values proportionally to the gradient of the error function in order to 

reach a local minimum. Since this algorithm’s convergence speed is slow, modifications such 

as a different learning rate for each parameter or adapting, heuristically, the control variables 

of the algorithm are beneficial. “RProp algorithm” follows this strategy and improves 

significantly the convergence speed taking into account the gradient value of two successive 

iterations providing information about the curvature of the error function. The “Manhattan 

                                                 

 
176 It begins with a list of all the minterms of the function to later obtain successively lists with (n-1)-, (n-2)-, ..., variable implicants 
until no more implicants can be formed, thus obtaining the so-named “prime implicants” of the function. The last step is to select 
the minimum number of prime implicants that cover all the minterms. [38] 
177 It is achieved as the vehicle is guided via remote control (RC) through an area defined as the “selected environment”. 
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algorithm” is chosen because it represents a good trade-off between the algorithm’s accuracy 

and the computational power required. 

The subsequent configuration step is the selection of the error function. The Author 

assumes the default function, “Mean Square Error” function, as an appropriate option. The 

decision’s aim attempts to avoid the unnecessary heavy computational process. 

Following configuration tool selection is the identification of the best processing 

algorithm to use for the designed fuzzy system simplification. Since the processing 

algorithms can be applied to the system before the tuning process (pre-processing option) or 

after it (post-processing option). 

The Author’s choice is to use the “post-processing option”. In order to complete the 

process, it is necessary to select the pruning algorithm that prunes the rules and reduces the 

membership functions. Author preference is for the method of pruning the worst “N”178 

rules.  

The last configuration step is the definition of the end condition179; it is mandatory to 

specify how shall conclude the learning process. This condition limits the number of 

iterations, the maximum error goal, or the maximum absolute or relative deviation 

(considering both the training and the test error). The end condition can be one of the 

following:  

a) Limit on Iterations; 

b) Limit on Training Error; 

c) Limit on Training RMSE; 

d) Limit on Training MXAE; 

e) Limit on Training Rel. Variation;  

f) Limit on Test Error; 

g) Limit on Test RMSE; 

h) Limit on Test MXAE;  

i) Limit on Test Rel. Variation. 

                                                 

 
178 Each “Rulebase” has a different number of functions; Author targets a reduction in the range between 10% and 20% of the 
“Rulebase” number of functions. 
179 This condition is a limit imposed over the number of iterations, the maximum error goal, or the maximum absolute or relative 
deviation (considering both the training and the test error). 
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The Author preliminary “end condition” setup imposes a limit of 25 iterations. Further 

Author researches may focus on the enhancements quantification of more complex and 

application customised application’s setups. 

Not mandatory tool configurations are not considered in this dissertation, although 

they may potentially be used in further investigation. 
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7 Conclusions and Further Researches 

The “Thesis” consists of three parts; the first part, which covers the first three chapters, 

introduces the work and describes a comprehensive picture that frames the Thesis (defines 

the technical proposal’s background) and Author’s researches. The second part includes 

“Chapter 4” and defines the theoretical framework of the technical proposal strategy. The 

third part consists of the “Chapter 5” and “Chapter 6” and debates the technical proposal.  

Work’s introduction starts with a quick overview of Unmanned Vehicles currently 

available technologies and future technological evolutions. The first introductive Chapter 

concludes with the analysis of the Author’s investigations, where are exposed: 

• Dissertation’s Topicality; 

• Dissertation’s primary “hypothesis” and “intentions”; 

• Methods of Research and Development; 

• Dissertation’s scientific novelty; 

• Dissertation’s practical application of research results; 

• Dissemination of research results. 

The second Chapter gives a short exposition of conventional UVs control techniques 

with a focus on UAVs. Besides, the final introduction’s stage scrutinises the current 

integration of autonomous technologies on next-generation automotive vehicles. Particular 

attention is given to the electrification process of automotive technologies and the contextual 

evolution of the functional safety requirements with the relative international legislation. The 

“Thesis” introduction produces the following avowals: 

• AV’s (autonomous vehicle) technology is developing extremely fast; 

• AV’s technology is the centre of enormous investments; 

• a large number of big corporations are allocating a consistent part of their budget 

for AV’s R&D; 

• currently, a critical industrial effort is the validation180 of the autonomous vehicle 

technology and the cost reduction of the system built with a large variety of 

“ECUs” (electronic control units); 

• software development represents the highest R&D cost for AV’s architecture. 

                                                 

 
180 In fact, considerable risks are associated with future autonomous vehicles technology, in particular, the incomplete international 
legislation and international standards currently available; 
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The second part of the work builds up a theoretical framework for the application 

proposal associated with the Thesis. This section clearly defines the goals of the work and 

draws the strategy to achieve them. Significant attention is given to the academic research 

analysis of “fuzzy logic controllers” and “neuro-fuzzy controllers” applications and 

implementations. Efforts aim to construct the fundaments on which to build the controller’s 

design strategy proposal. The outcomes of this preliminary study are: 

• the final goal of the proposed work is to implement a controller capable of 

replaying the behaviour of a human pilot while he is driving a small RC 

aeroplane; 

• a second target of the proposed work is to create a controller capable of being 

tuned in the function of the hardware (the small physical UAV, or RC aeroplane 

capable of autonomous operations); 

• a “neuro-fuzzy controller”181 is the control strategy aimed for the small UAV; 

• the assumptions made is that the “neuro-fuzzy controller” has seven inputs and 

five outputs;  

• a detailed study of the academic literature suggests the use of an FPGA to process 

the controller;  

• the choice of FPGA is driven by its flexibility and by its capability to process 

multiple functions in parallel (parallel computation capability); 

• VHDL will be used as the working platform for the systems182, although the 

VHDL language imposes some limitations if compared with the flexibility and 

expressiveness of other fuzzy logic oriented languages; 

• in order to achieve behavioural modelling, the Author’s suggestion is to use a 

VHDL description style where the system’s structure description (fuzzy sets, rule 

base) and the operator’s description (connectivity, fuzzy operations) are defined 

separately (This makes it possible to describe both the fuzzy system structure and 

the processing algorithm independently); 

• the description format makes it possible the use of linguistic hedges in order to 

compact the rules defining the system behaviour (A significant advantage of 

                                                 

 
181 The ideal “neuro-fuzzy controller” shall be capable of parallel computation. 
182 It implies that the fuzzy system description must be synthesisable (a synthesisable VHDL algorithm requires to adapt and tune 
the characteristics of the controller) to the physical hardware implementation (FPGA printing). 
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using this approach is the availability of a tool able to translate a fuzzy logic 

oriented language with a GUI interface into a VHDL code); 

• proposed work, to describe the fuzzy logic controller and then translate this 

description into a valid VHDL code, utilises the “XFUZZY XFL3.5” GUI (or 

XFL3) developed by Instituto de Microelectrónica de Sevilla (IMSE-CNM); [38] 

• XFL3 description language is a development environment that eases the 

specification, verification and synthesis of fuzzy inference systems;   

• a set of essential functions, called the XFL library, performs the parsing and 

semantic analysis of XFL specifications and stores them using an abstract syntax 

tree183.  

The third Thesis section moves from the hardware description of a small RC plane 

transformable into a small AUAV. The Hardware description covers the electronics hardware 

description and marginally the mechanical hardware description. The mechanical description 

includes the description of a simple RC plane powered by a low voltage REESS (according 

to “Reg.100” definition of low voltage REESS) and a set of two independent low voltage 

BLCD E-Motors. The description of the electronic systems results comprehensive due to the 

efforts made for the definition. The proposal’s primary goal, which targets to move the 

design’s load from the mechanical design to the controller’s design, is the use of the neuro-

fuzzy controller to adapt itself to the vehicle’s characteristics, allowing the simplified 

mechanical design of the drone (or RC plane). 

The core of the research work and of the technical proposal is the controller’s design 

based on a multi-layer structure. The design starts with the identification of the “system’s 

inputs”, the “actuators”, or “system outputs”, and then links them with a “Transfer Function”. 

Since that the proposed work is oriented on a neuro-fuzzy controller, the “System Transfer 

Function” is implemented by a specific set of MIFs, MOFs, FIS (“Rulebases”) and a learning 

process from a training file184. 

The VHDL controller’s multi-layer structure is associable with any hierarchical 

hardware schematics design. The “Top Layer” describes the peripherals interfaces and the 

interaction between the peripherals with the core of the flight controller. 

                                                 

 
183 This format is used inside the environment when handling system descriptions. 
184 A simplified “Hedge Block” with rules and weights obtainable following a “Learning Process” and “Optimisation Process”. 
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The first VHDL “Top Layer” section is populated with a set of independent blocks 

specifically designed to process the “System’s Inputs”. Each block, independently (in 

parallel), manages a determined sensor and then digital process the relative information 

before broadcasting the data to the “neuro-fuzzy controller” (the core of the controller).  

The second section of the VHDL “Top Layer” algorithm incorporates the VHDL 

algorithms exported from the “XFUZZY GUI”. The neuro-fuzzy flight controller is encased 

in a bespoke VHDL component called “NEURAL” (from Figure 6.63, VHDL component 

instance: “N0”), and its VHDL code represents a second hierarchical layer of the algorithm’s 

structure. The “NEURAL” VHDL component” utilises a set of five sub-components, each of 

them built on a specific “Rulebase”. For hierarchical systems, a VHDL description185 is 

generated for each “Rulebase”, which acts independently, and populates the linked sub-

component. The VHDL code population of these sub-components embodies a third 

hierarchical layer of the physical controller structure. 

The third VHDL “Top Layer” algorithm’s section is populated with a set of independent 

components specifically designed to process the “system’s outputs”. Each VHDL component 

is associated with a single neuro-fuzzy controller’s output. Each block, independently (in 

parallel), is interfaced with the neuro-fuzzy controller and digital processes the relative 

information before broadcasting to the electro-mechanical actuators the control signals. 

The primary focus of the controller design is the “neuro-fuzzy unit”. For this design, the 

XFUZZY GUI results exceptionally effective for the controller description, design, 

simulation, optimisation and the learning/training process. The technical proposal pre-

requisites are: 

• by assumption, a significant hardware design simplification (mechanical and 

electronic) is pursued; 

• the final goal is to compensate the hardware simplification with a controller 

capable of being easily tuned and capable of learning; 

• it is defined the mechanical hardware architecture as a baseline for the controller 

design; 

• it is defined the electronic hardware architecture as a baseline for the controller 

design. 

                                                 

 
185  It is the outcome of the translation in VHDL of the XFUZZY GUI neuro-fuzzy controller description. 
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“Chapter 6” investigations deliver the following significant results: 

• the RTL views of the synthesisable system’s VHDL code (Figure 6.63); 

• a full description of the “neuro-fuzzy” controller; 

• an optimisation strategy for the “Controller”; 

• a controller’s learning/training execution strategy; 

• a detailed simulation analysis of the raw, fuzzy flight controller.  

With the presented researches and the derivative “neuro-fuzzy” controller’s design, the 

Author aims a precise final delivery: demonstrate the feasibility of a flexible and cost-

effective controller able to mimic the driving behaviour of a human pilot and also be capable 

of behaviours corrections with learning/training processes.  

The Author relies on the simulation analysis presented in “Chapter 6” to demonstrate the 

controller’s basic behaviours, flexibility, robustness, and potential future developments. 

Although the simulation analysis covers a wide range of cases, a particular emphasis is given 

to the controller behaviours during complex manoeuvres such as the take-off and the landing.  

Take-off and landing due to the manoeuvres’ complexity require a set of assumptions 

due to the absence of the physical model of the RC plane used. These assumptions are 

associated with a set of unique physical parameters that may be obtained from a 

learning/training process or from the mechanical hardware manufacturers datasheet.  

For each analysed manoeuvre, the analysis describes a controller that takes time by time 

the expected decision, the expected decision that a human being pilot may most likely take if 

facing similar environmental conditions. It results remarkable that a controller not yet 

optimised and not yet trained can produce such results. Although the outcome is in line 

with the theoretical research done, it may be expectable that a series of learning/training 

operations may be necessary before establishing a system capable of performing a fully 

autonomous flight.  

The description made gives all the information necessary to progress with the project 

and obtain the necessary economic resources required for the high development cost of such 

systems. The sourcing of all components required for the complete system’s physical 

realisation is not the only cause of the delay, ensuring the proper testing environment and 

facilities allocation results being significant braking elements for physical tests 

implementation. Physical installation of the system in a real-world environment is currently 

underway and is a consequence of the Thesis work.  

An Analysis and Conclusions of the proposed Control Strategy Quality: 
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the appraisal of the proposed “controller’s quality” in the field of AUAV constructed on 

an adapted small RC plane is both varied and subjective. Many claims are made regarding 

the “controller’s quality” to perform individual manoeuvres outside sets of pre-defined 

environmental conditions. The learning/training process limitation is that in front of 

unpredictable conditions, a learning/training process, by definition, is not applicable (by 

definition, it is not possible to define training for unpredictable conditions). It means that the 

Author cannot rely entirely on the learning process’s contribution, although it is an important 

strategic asset. 

So far as relates to the controller ability to perform manoeuvres under pre-defined 

environmental conditions where the landscape is known, where the vehicle position in the 

space is under control, and the target manoeuvre is known (it is intended a manoeuvre that 

a human being is capable of defining and then mimicking), it is possible to expect that the 

controller will, with a reasonably good margin of error, react accordingly.  

 The controller efficiencies may be affected by the accuracy/reliability of the particular 

type of sensors, the quality of the information associate with the “system’s environmental 

variables” (or “global environmental information”). The learning/training process quality 

targets to mitigate such risk. With future researches is expected a “characterisation” of this 

mitigation factor. 

Future research will involve the addition of a fully neural network fruit of the availability 

of a “physical vehicle”186 and the results of a learning/training process described in “Chapter 

6”. Supplementary plans are to adapt different models of RC planes to carry the electronic 

hardware described in “Chapter 5” and then verify the flexibility of the controller and its 

capability to adapt to new mechanical characteristics using the learning/training process.   

Future research including but not limited to: 

• industrial applications of the “Neuro-Fuzzy Controller” built on FPGA; 

• Cloud-based neural networks for industrial applications; 

• Cloud-based neural networks for environment safety-critical monitoring; 

• automotive application of “neuro-fuzzy controller” built on FPGA; 

• FPGA automotive applications for ADAS; 

• FPGA automotive applications for powertrain; 

                                                 

 
186 It was not possible to implement due to the absence of an RC place capable of being modified to act as AUAV, and 
simultaneously capable of being driven by remote and store the flight diagnostics. 



218 
 
 

• automotive applications for Artificial Intelligence; 

• self-driving system for automotive applications; 

• data collection for pseudo-memory applications; 

• practical applications for swarm robotics manipulation through memory 

harvesting; 

• long-range exploration technologies for fully autonomous vehicles; 

• safety modelling for closed environment robotics; 

• an investigation into appropriate control methods for data access, including 

MOB, cloud or other access methods for single robots, swarm robots or remote 

exploration robots. 
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APPENDICES 

A. Abbreviations 

 
ABC → Artificial Bees Colony 
ACE → Advanced Classification Error 

ADAS → Advanced Driver Assistant 

Ah → Ampere-hours 

AI → Artificial Intelligence 

Al2O3 → Aluminium Oxide 

AlN → Aluminium Nitride 

AMB → Active Metal Brazing 

ANN → Artificial Neural Network 

ARB → Assessment Rules Block 

ARMA → Autoregressive Moving Average 

ASIC → Application-Specific Integrated Circuit 

AR → Autonomous Robots 

AUAV → Autonomous Unmanned Arial Vehicle 

AUV → Autonomous Underwater Vehicles 

AV → Autonomous Vehicles 

BDU → Block Data Update 

BLDC → Brushless DC Electric Motor 

BMS → Battery Management System 

CE → Classification Error 

CEP → Circular error probable 

CLB → Configurable Logic Block 

CPWL → Continuous Piecewise Linear Approximation 

COG → Centroid Method (Fuzzy Logic) 
CSE → Classification Square Error 

CTDs → Conductivity-Temperature-Depth sensors 

CVT → Continuously Variable Transmission  

DBC → Direct bonded copper 



226 
 
 

DC  → Direct Current 

DCU → Drive Control Unit 

DES  → Decentralized Control System 

DM → Distance Modes 

DPS → Degree Per Second 

DSP  → Digital Signal Processor 

EBM → Electronic Battery Monitor 

ECU → Electronic Control Unit 

EDA → Electronic Design Automation tools 

e.g. → exempli grata - the abbreviation of a Latin phrase meaning: “for example”  

E-Motor → Electric Powertrain’s Motor 

ESD → Electro-Static Discharge 

EV → Electric Vehicle 

FAR → Federal Aviation Regulations 

FFT → Fast Fourier Transform 

FIR → Finite Impulse Response 

FIS → Fuzzy Inference System 

FMEA → Failure Modes and Effects Analysis 

FOB  → Fuzzy Output Block 

FoV → Field of View 

FPD → Field Programmable Device 

FPAA → Field Programmable Analog Array 

FPGA → Field Programmable Gate Array 

FR → Front Engine – Rear-Wheel Drive 

FR4 → Flame Retardant, glass-reinforced epoxy laminate material 

GA → Genetic Algorithms 

GaN → Gallium Nitride 

GBP → Gain Bandwidth Product 

GNSS → Global Navigation Satellite System 

GUI → Graphical User Interface 

HEV → Hybrid Electric Vehicle 

HLGA → Holed Land Grid Array 
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HSD → TOYOTA’s Hybrid Synergy Drive  

HV → Hybrid Vehicle 

HW → Hardware 

ICA → Independent Component Analysis 

ICNN → Independent Component Neural Network 

ICE → Internal Combustion Engine  

I2C → Inter-Integrated Circuit, serial communication protocol 

IC → Integrated Circuit 

i.e. → id est - the abbreviation of a Latin phrase meaning: “in other words” 

IGBT → Insulated-Gate Bipolar Transistor 

iPM  → Intelligent Power Management 

ISA → International Society of Automation - Standard 

ISH → Industrial Service Hybrid Robots 

ITAR → International Traffic in Arms Regulations 

KL15 → Terminal 15 or “run bus” which corresponds to the ignition position 1 

KL30 → Terminal 30 or “battery bus” which corresponds to the ignition position 2 

LBC → Learning-Based Control 

LGA → Land Grid Array 

Li-Ion → Lithium-ion 

LMI → Linear Matrix Inequalities  

LNA → Low-Noise Amplifier 

LPV → Linear Parameter Varying 

LST → Least Significant Bit 

LTI → Linear Time-Invariant 

MAE → Mean Absolute Error 

MCU → Microprocessor Control Unit 

MEMS → Microelectromechanical Systems 

MFC → Membership Functions Circuits. 

MHEV → Mild Hybrid Electric Vehicle 

MIF → Membership Input Function  

MLP → Multilayer Perceptron 

MOA → Midpoint of Area 
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MOB → on-board memory size expressed in bytes 

MOF  → Membership Output Function 

MOM → Medium of Maxima 

MPPT → Maximum Power Point Tracker 

MSB → Most Significant Bit 

MSE → Mean Square Error 

MXAE → Maximum Absolute Error 

NiMH → Nickel-Metal Hydride Battery 

NMEA → National Marine Electronics Association 

NN  → Neural Network 

NRR → Number of Registers Read 

OA  → Obstacle Avoidance 

ODR → Output Data Rate 

OEM → Original Equipment Manufacturer  

OMF  → Output Membership function 

OR  → Obstacle Recognition 

PC → Personal Computer 

PCB → Printed Circuit Board 

PHEV → Plug-In Hybrid Electric Vehicle 

PID  → Proportional-Integral-Derivative controller 

PFC → Power Factor Correction 

PIR  → Pyroelectric Infrared Radiation Sensor 

PP → Polypropylene Film capacitor 

PMSM → Permanent Magnetic Synchronous Motor 

PSU → Power Supply Unit 

PV-module → Photo-Voltaic cells mounted in a frame for work installation 

PWL → Piece Wise Linear models  

PWM → Pulse Width Modulation 

P/N → Manufacturer’s Part Number 

RC → Radio-Controlled 

REESS → Rechargeable Energy Storage System 

REOMP → Reconfigurable Orthogonal Multi-processor Memory 
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RMSE → Root Mean Square Error 

ROI → Region of Interest 

ROM → Remotely Operated Machine 

ROUV → Remotely Operated Underwater Vehicles  

ROV → Remotely Operated Vehicle 

RTL → Register-Transfer Level (VHDL schematics view) 

R&D → Research and Development 

Si → Silicon 

Si3N4 → Silicon Nitride 

SiC → Silicon Carbide 

SIM → Serial Interface Mode  

SM → State Machine 

SoC → State of Charge 

SoF → State of Function 

SoH → State of Health 

STNFC → Self-Tuning Non-linear Function Control 

SW → Software 

ToF → Time-of-Flight 

ToV → Field of view 

UAV → Unmanned Arial Vehicle 

UART → Universal Asynchronous Receiver-Transmitter 

UGV            → Unmanned Ground Vehicle 

USAF → The United States Air Force 

UUGV → Utility Unmanned Ground Vehicle 

UUV → Unmanned Underwater Vehicles 

UV → Unmanned Vehicle  

Va → Vehicle’s Velocity in the moment of maximum take-off acceleration  

VAR → Variable Resistor 

VLSI → Very Large Scale Integration  

VMC → Minimum control speed,  

VHDL → Very High-Speed Integrated Circuit Hardware Description Language 

VFC → Final Cruise  Velocity  



230 
 
 

VSD → Starting Descending Velocity (during the landing manoeuvre) 

VTD → Touch-down Velocity 

WBG → Wide Band Gap 

WMAE → Weighted Mean Absolute Error 

WMSE → Weighted Mean Square Error 

ZTA → Zirconia Toughened Alumina 

3ph → 3 phase (electric motor) 
 

B. Non-Linear System Linearization Technique 

A common approach could be to achieve a “Non-Linear Controller” by approximating 

the “Non-Linear System” with a linear one. To reach this goal could be helpful the use the 

Hartman-Grobman Theorem, which states that:  

If the Jacobian of the system 𝑋̇𝑋(𝑡𝑡) = 𝑓𝑓(𝑋𝑋) possess no pure complex or zero eigenvalues, 

and the system can be locally represented by a linear approximation (Guckenheimer-

Holmes). 

One method could be utilising a linear system to design the control law for the non-linear 

one. For example, for a system: 

 𝑋̇𝑋(𝑡𝑡) = �
𝑥̇𝑥(𝑡𝑡)
𝑦̇𝑦(𝑡𝑡)
𝑧̇𝑧(𝑡𝑡)

� = �
𝑐𝑐𝑐𝑐𝑐𝑐(𝜗𝜗) ∙ 𝑢𝑢1
𝑠𝑠𝑠𝑠𝑠𝑠(𝜗𝜗) ∙ 𝑢𝑢1

𝑢𝑢2
� , 𝑈𝑈(𝑡𝑡) = [𝑢𝑢1,𝑢𝑢2] 

(Equation 54) 

Could be approximated to a new System, such as: 

𝑋𝑋�̇(𝑡𝑡) = 𝐴𝐴 ∙ 𝑋𝑋�(𝑡𝑡) = 𝐵𝐵 ∙ 𝑈𝑈�(𝑡𝑡) 
(Equation 55) 

The new system should guarantee the necessary accuracy for the correct “System 

Working”, the accuracy is inversely proportional to the value “ε”, and it is defined as: 
𝑋𝑋(𝑡𝑡) −𝑋𝑋�(𝑡𝑡) ≤ 𝜀𝜀 

(Equation 56) 

The problem could be to understand if the vector fields are close enough to ensure the 

right trajectory bound. Practically: 

 𝑋𝑋(𝑡𝑡) = 𝑓𝑓(𝑋𝑋,𝑈𝑈)
𝐹𝐹(𝑋𝑋,𝑈𝑈) − (𝐴𝐴 ∙ 𝑋𝑋 + 𝐵𝐵 ∙ 𝑈𝑈) ≤ 𝜀𝜀      ⇔        𝑋𝑋(𝑡𝑡) −𝑋𝑋�(𝑡𝑡) ≤ 𝜀𝜀 

(Equation 57) 
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The problem is that with the traditional Jacobian approximation, there is no general rule 

that can determine an accurate region of validity. An approach could be to use only the vector 

field information (not considering the trajectories). 
𝑋𝑋(𝑡𝑡) = 𝑓𝑓(𝑋𝑋,𝑈𝑈) 

(Equation 58) 

𝐹𝐹(𝑋𝑋,𝑈𝑈) − (𝐴𝐴 ∙ 𝑋𝑋 + 𝐵𝐵 ∙ 𝑈𝑈) ≤ 𝜀𝜀 
(Equation 59) 

Then could be used the Theorem of Taylor, which says: given a function of several 

variables 𝑓𝑓(𝑋𝑋,𝑈𝑈) the polynomial vector field that better approximate 𝑓𝑓 in a set point 

(𝑋𝑋∗,𝑈𝑈∗) is given by:  

𝑓𝑓(𝑋𝑋∗,𝑈𝑈∗) +
𝜕𝜕𝜕𝜕(𝑋𝑋,𝑈𝑈) 

𝜕𝜕𝜕𝜕
∙ (𝑋𝑋 − 𝑋𝑋∗) +

𝜕𝜕𝜕𝜕(𝑋𝑋,𝑈𝑈)
𝜕𝜕𝜕𝜕

∙ (𝑈𝑈 − 𝑈𝑈∗) + 𝜊𝜊(2) 
(Equation 60) 

In a general linear system, there are some points of particular interest, called equilibrium 

points; where for equilibrium point is intended: 

𝑋̇𝑋(𝑡𝑡) = 0 = 𝑓𝑓(𝑋𝑋∗,𝑈𝑈∗) 
(Equation 61) 

The equilibrium point research is vital to define a correct approximation function; 

indeed, at the equilibrium point, the states and controls reach the reference. In the specific 

are researched the matrices: 
 

𝐴𝐴 =
𝜕𝜕𝜕𝜕(𝑋𝑋,𝑈𝑈) 

𝜕𝜕𝜕𝜕
�
𝑋𝑋∗,𝑈𝑈∗

  

(Equation 62) 

𝐵𝐵 =
𝜕𝜕𝜕𝜕(𝑋𝑋,𝑈𝑈) 

𝜕𝜕𝜕𝜕
�
𝑋𝑋∗,𝑈𝑈∗

  

(Equation 63) 

It is expected that the matrix 𝐴𝐴 is null and to obtain valuable matrices for the research of 

the equilibrium points, could be necessary to operate a change of coordinate, as could be new 

variables as 𝑒𝑒(𝑡𝑡), 𝑈𝑈�(𝑡𝑡) 
 
and 𝑈𝑈�𝑟𝑟(𝑡𝑡) . Thus the new system could be written as: 

𝑒̇𝑒(𝑡𝑡) = 𝐴𝐴 ∙ 𝑒𝑒(𝑡𝑡)  + 𝐵𝐵 ∙ 𝑈𝑈�(𝑡𝑡) 
(Equation 64) 

 Then the following matrices are defined: 
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𝐴𝐴∗ =
𝜕𝜕𝑓𝑓(𝑒𝑒,𝑈𝑈�) 

𝜕𝜕𝑒𝑒
�
𝑒𝑒∗=0,𝑈𝑈�∗=0

 

(Equation 65) 

𝐵𝐵∗ =
𝜕𝜕𝑓𝑓(𝑒𝑒,𝑈𝑈�) 
𝜕𝜕𝑈𝑈�

�
𝑒𝑒∗=0,𝑈𝑈�∗=0

 

(Equation 66) 

Once it is defined, an LTI system could utilise the pole placement (for instance):  
𝑈𝑈� = 𝐾𝐾 ∙ 𝑒𝑒 

(Equation 67) 

Thus it is possible to rewrite the system, according to the relation: 
𝑒̇𝑒(𝑡𝑡) = [𝐴𝐴∗  + 𝐵𝐵∗ ∙ 𝐾𝐾] ∙ 𝑒𝑒(𝑡𝑡) 

(Equation 68) 

Then it is possible to define the Matrix 𝐴𝐴𝑙𝑙𝑙𝑙 = [𝐴𝐴∗  + 𝐵𝐵∗ ∙ 𝐾𝐾]  and recall that in order to 

find 𝐾𝐾, in that way it is necessary to calculate the eigenvalues of 𝐴𝐴𝑙𝑙𝑙𝑙. To anticipate the 

existence of the matrix 𝐾𝐾, could be used the “Kalman Theorem” which states that: the pole-

placement problem (find matrix 𝐾𝐾) possesses a solution if the matrix “𝐶𝐶” has full-rank. 

Practically the Theorem states that: 
𝑋𝑋(𝑡𝑡) = (𝐴𝐴 + 𝐵𝐵 ∙ 𝐾𝐾) ∙ 𝑋𝑋  ⇔    𝐶𝐶 =  [𝐵𝐵 𝐴𝐴 ∙ 𝐵𝐵 𝐴𝐴2 ∙ 𝐵𝐵    𝐴𝐴3 ∙ 𝐵𝐵 ⋯ 𝐴𝐴𝑛𝑛−1 ∙ 𝐵𝐵] , 𝐴𝐴 ∈ §𝑛𝑛 𝑥𝑥 𝑛𝑛  

(Equation 69) 

Which matrix 𝐶𝐶 is called the controllability matrix. “Matlab” allows tools to check 

controllability, and a way to realize that could be to lose rank through taking both reference 

controls null. 

C. Lyapunov Theorem 

Supposing an autonomous non-linear dynamic system: 𝑥̇𝑥 = 𝑓𝑓�𝑥𝑥(𝑡𝑡)� and, 𝑥𝑥(0) = 𝑥𝑥0. 

Where, 𝑥𝑥(𝑡𝑡) ∈ 𝔻𝔻 ⊆ ℝ𝑛𝑛  denotes the system state vector, 𝔻𝔻  an open set containing the origin 

and, 𝑓𝑓:𝔻𝔻 → ℝ𝑛𝑛  continuous on  𝔻𝔻.  

Presuming that  𝑓𝑓 has an equilibrium at 𝑥𝑥𝑒𝑒 so that  𝑓𝑓(𝑥𝑥𝑒𝑒) = 0,  then this equilibrium is 

alleged to be Lyapunov stable, if, for every 𝜀𝜀 > 0, there exists a 𝛿𝛿 = 𝛿𝛿(𝜀𝜀) > 0, such that, 

if ‖𝑥𝑥(0) − 𝑥𝑥𝑒𝑒‖ < 𝛿𝛿  for every 𝑡𝑡 > 0,  will result ‖𝑥𝑥(𝑡𝑡) − 𝑥𝑥𝑒𝑒‖ < 𝜀𝜀. 

The equilibrium of the above system is said to be asymptotically stable if it is Lyapunov 

stable and if there exists, 𝛿𝛿 > 0   such that if,  ‖𝑥𝑥(0) − 𝑥𝑥𝑒𝑒‖ < 𝛿𝛿 , then lim
𝑡𝑡→∞

‖𝑥𝑥(𝑡𝑡) − 𝑥𝑥𝑒𝑒‖ = 0. 

http://en.wikipedia.org/wiki/State_space_representation
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The equilibrium of the above system is said to be exponentially stable if it is 

asymptotically stable and if there exists, 𝛼𝛼,𝛽𝛽, 𝛿𝛿 > 0  such that if,  ‖𝑥𝑥(0) − 𝑥𝑥𝑒𝑒‖ < 𝛿𝛿, 

then, ‖𝑥𝑥(0) − 𝑥𝑥𝑒𝑒‖ < 𝛼𝛼 ∙ ‖𝑥𝑥(0) − 𝑥𝑥𝑒𝑒‖ ∙ 𝑒𝑒−𝛽𝛽𝛽𝛽 for 𝑡𝑡 ≥ 0. 

  Practically, the meanings of the above terms are the following: Lyapunov stability of 

at an equilibrium means that solutions starting “close enough” to the equilibrium (within a 

distance 𝛿𝛿 from it) remain “close enough” forever (within a distance 𝜀𝜀 from it)187. 

Asymptotic stability means that solutions that start close enough, not only remain close 

enough but also eventually converge to the equilibrium. Exponential stability means that 

solutions not only converge but converge faster than or at least as fast as a mainly known 

rate 𝛼𝛼 ∙ ‖𝑥𝑥(0) − 𝑥𝑥𝑒𝑒‖ ∙ 𝑒𝑒−𝛽𝛽𝛽𝛽 .  

Designates 𝑦𝑦(𝑡𝑡) the system output, the consequent trajectory 𝑥𝑥 is (locally) attractive if 

‖𝑦𝑦(𝑡𝑡) − 𝑥𝑥(𝑡𝑡)‖ → 0 for 𝑡𝑡 → ∞ for all trajectories that start close enough, and globally 

attractive if this property holds for all trajectories. 

That is, if 𝑥𝑥 belongs to the interior of its stable manifold, it is asymptotically stable if it 

is both attractive and stable.  

D. Lyapunov Stability Technique 

The first step to describe the Lyapunov Stability Techniques is to describe the Lyapunov 

Functions and Theorems. The first Lyapunov function is called “Weak Lyapunov Function”, 

and the function 𝑉𝑉(𝑋𝑋) is addressable as a “Weak Lyapunov Function” only if: 
𝑉𝑉(0) = 0 

(Equation 70) 

𝑉𝑉(𝑋𝑋) > 0,∀𝑋𝑋 ≠ 0 
(Equation 71) 

𝑉𝑉(𝑋𝑋) ∈ §1 (𝐵𝐵𝑟𝑟) 
(Equation 72) 

𝜕𝜕𝜕𝜕(𝑋𝑋)
𝜕𝜕𝜕𝜕

 ∙ 𝑓𝑓(𝑋𝑋) ≤ 0, ∀ 𝑋𝑋 ∈ (𝐵𝐵𝑟𝑟) 
(Equation 73) 

                                                 

 
187 It must be true for any 𝜀𝜀 chosen. 

http://en.wikipedia.org/wiki/State_space_representation
http://en.wikipedia.org/wiki/Stable_manifold
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Moreover, the equilibrium point is zero where 𝐵𝐵𝑟𝑟  is the “ball” of radius 𝑟𝑟, described 

according to the following relation: 
𝐵𝐵𝑟𝑟 = {𝑋𝑋 ∶  ‖𝑋𝑋‖ ≤ 𝑟𝑟} 

(Equation 74) 

To be valid the last statements, the function 𝑉𝑉(𝑋𝑋)  should be semi-definite negative along 

trajectories of the system 𝑋̇𝑋(𝑡𝑡) = 𝑓𝑓(𝑋𝑋), it means that: 

𝑉̇𝑉(𝑡𝑡) ≤ 0 
(Equation 75) 

Similarly, it is possible to define the “Lyapunov Function”, which differs from the 

“Weak Lyapunov Function” described by the system of Equations built with the Equations 

70, 71, 72 and 73. The “Lyapunov Function” differs by a strict inequality of “Equation 73”, 

which is replaced with “Equation 76”.  
𝜕𝜕𝜕𝜕(𝑋𝑋)
𝜕𝜕𝜕𝜕

 ∙ 𝑓𝑓(𝑋𝑋) < 0, ∀ 𝑋𝑋 ∈ (𝐵𝐵𝑟𝑟) 
(Equation 76) 

Once that are defined the Lyapunov functions, it is possible to analyse the Lyapunov 

theorems. The “First Lyapunov Theorem” says that: if exists a Lyapunov function smooth 

and weak, then the system is “Lyapunov Stable”. It means that finding 𝑋̇𝑋(𝑡𝑡) = 𝑓𝑓(𝑋𝑋), it 

ensures stability but not asymptotic stability. In order to guarantee the asymptotic stability, it 

is necessary to use the “Second Theorem of Lyapunov, which states that: if there exists a 

“Lyapunov Function” smooth, then the system 𝑋̇𝑋(𝑡𝑡) = 𝑓𝑓(𝑋𝑋) is asymptotically stable. This 

powerful theorem does not indicate how to obtain the function 𝑉𝑉(𝑋𝑋); therefore, a system 

might be stable without the “Lyapunov Function”. In the study case for the instance: 

�𝑥̇𝑥1
(𝑡𝑡) = −𝑥𝑥1(𝑡𝑡) − 𝑥𝑥1(𝑡𝑡)𝑥𝑥2(𝑡𝑡)2

𝑥̇𝑥2(𝑡𝑡) = −𝑥𝑥2(𝑡𝑡) − 𝑥𝑥2(𝑡𝑡)𝑥𝑥1(𝑡𝑡)2
 

(Equation 77) 

If the origin is an equilibrium point, 𝑥𝑥1∗ = 0 and 𝑥𝑥2∗ = 0, it will be possible to state that: 

�0 = −𝑥𝑥1∗ − 𝑥𝑥1∗ ∙ 𝑥𝑥2∗2

0 = −𝑥𝑥2∗ − 𝑥𝑥2∗ ∙ 𝑥𝑥1∗2
 

(Equation 78) 

Then be considered the “Lyapunov Function” 𝑉𝑉(𝑥𝑥1, 𝑥𝑥2) that should satisfy the relations 

of the “Lyapunov Function” (Equations 70, 71, 72 and 76). It means that: 
𝜕𝜕𝜕𝜕(𝑋𝑋)
𝜕𝜕𝜕𝜕

∙ 𝑓𝑓(𝑋𝑋) = 2𝑥𝑥1(−𝑥𝑥1(𝑡𝑡) − 𝑥𝑥1(𝑡𝑡) ∙ 𝑥𝑥2(𝑡𝑡)2) + 2𝑥𝑥2(−𝑥𝑥2(𝑡𝑡) − 𝑥𝑥2(𝑡𝑡) ∙ 𝑥𝑥1(𝑡𝑡)2) 
(Equation 79) 
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Thus it will be possible to write: 
𝜕𝜕𝜕𝜕(𝑋𝑋)
𝜕𝜕𝜕𝜕

∙ 𝑓𝑓(𝑋𝑋) = −2(𝑥𝑥1(𝑡𝑡)2 + 𝑥𝑥2(𝑡𝑡)2 − 𝑥𝑥1(𝑡𝑡)2 ∙ 𝑥𝑥2(𝑡𝑡)2) < 0,∀ (𝑥𝑥1,𝑥𝑥2)  ≠ (0, 0) 
(Equation 80) 

If the last relation is verified, it will affirm that the System is “asymptotically stable”. A 

helpful way to produce the “Lyapunov Function” could be to redefine the system, through 

mathematical artifices, in order to redesign the system in a way that could fit with the 

definition of the “Lyapunov Function” and “Lyapunov Theorem”. 

E. CPWL Function introduction 

A piecewise linear function is a function composed of some number of linear segments 

defined over an equal number of intervals, usually of equal size. The process-model output 

using the CPWL approximation is defined as: 

𝑦𝑦𝑚𝑚𝑚𝑚 ≤ ℎ�𝑚𝑚𝑚𝑚�𝜗𝜗(𝑡𝑡)� = Θ𝑇𝑇Λ�𝜗𝜗(𝑡𝑡)� 
(Equation 81) 

Where, 𝛩𝛩𝑇𝑇 ∈ ℜ 𝜎𝜎+1  and 𝛬𝛬 ∈ ℜ 𝜎𝜎+1. 

Using the CPWL approximation, any non-linear function “h” can be uniquely 

represented by the segmentation of its input domain. Let consider the segmentation into 𝜎𝜎 

segments by the parameters 𝛼𝛼𝑖𝑖  , with 𝛼𝛼0 ≤ 𝛼𝛼1 ≤ . . .≤ 𝛼𝛼𝜎𝜎. Additionally, the elements of the 

primary function can be expressed as:  

𝛬𝛬 =

⎣
⎢
⎢
⎢
⎢
⎡

1
1
2
∙ (𝜗𝜗 − 𝛼𝛼0 + |𝜗𝜗 − 𝛼𝛼0|)

⋮
1
2
∙ (𝜗𝜗 − 𝛼𝛼𝜎𝜎−1 + |𝜗𝜗 − 𝛼𝛼𝜎𝜎−1|)⎦

⎥
⎥
⎥
⎥
⎤

 

(Equation 82) 

At the same time, the parameters’ vector is : 𝛩𝛩𝑇𝑇 = [𝜗𝜗0,𝜗𝜗1, . . .  ,𝜗𝜗𝜎𝜎]. Clustering 

algorithms choose the segments’ locations, and the vector of the parameters can be calculated 

using standard least-square algorithms. 

F. Fuzzy logic Introduction 

The Author of the fuzzy logic was usual to describe his invention with the phrase: 

<<…computing with words…>>. It was easy to understand, by that definition of fuzzy logic, 

that this kind of logic is exciting and innovative because it uses qualitative inferences in the 

design of artificial systems (control or decision support) when the mathematical model is 
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unknown or does not exist or is too complex to run appropriately in real-time. The main target 

of fuzzy logic was to find solutions to problems, even complex, through the use of empirical 

and qualitative rules that affect a world of “grey” or “fuzzy” (hence the term fuzzy logic) 

actions, instead of the logic “white” or “black”. In practice, the traditional logic is 

characterised by a “bivalent logic”, which associates with each element a value that can be 

“0” or “1”, so that indicates that belonging to a given set is true or false. In contrast, the fuzzy 

logic is “polyvalent”, i.e. the degree of membership (Membership) MI (X) of an element “X” 

to a fuzzy set “I” can assume any value in the range between 0 and 1. “Membership Function” 

is defined as the relation that represents this kind of memberships. Those functions are 

designed upon expert’s recommendations or, in the most elementary case, using accessible 

empirical functions dictated by common sense. These functions could take many forms, but 

for less complicated cases are preferable to use only triangles and trapezoids. [43] 

Usually, the design of fuzzy algorithms is achieved in three steps: 

a) acknowledgement of “Membership Input Functions” (“MIF” - fuzzification); 

b) acknowledgement of the “FIS”; 

c) acknowledgement of “Membership Output Functions” (“MOF” - 

defuzzification). 

Fuzzy Logic Membership Input Functions 

The “Membership Input Functions” (MIFs) are most commonly associated with physical 

and sometimes non-physical variables and therefore are not strictly “fuzzified values”, but 

almost undoubtedly, numerical values can be referred to as “crisp parameters”. It is necessary 

to convert each numeric value to the corresponding input fuzzy sets, or in other words, 

convert to an input fuzzification.  

By an input with a generic value 𝑥𝑥0 and a fuzzy set 𝐴𝐴, there is an establishment of a 

degree of truth of 𝐴𝐴 not exceeding 𝑀𝑀𝐴𝐴(𝑥𝑥0) and with a sub-set  𝐴𝐴′ of  𝐴𝐴  having as a maximum 

ordinate 𝑀𝑀𝐴𝐴(𝑥𝑥0); as illustrated in [43]. 

𝑀𝑀𝐴𝐴′(𝑥𝑥) = 𝑀𝑀𝑀𝑀𝑀𝑀�𝑀𝑀𝐴𝐴(𝑥𝑥0),𝑀𝑀𝐴𝐴(𝑥𝑥)� 
(Equation 83) 

What this means is that if the membership function input is a triangle 𝑀𝑀𝐴𝐴(𝑥𝑥0) , then 

𝑀𝑀𝐴𝐴′(𝑥𝑥) will be a trapezoid, and this trapezoid will have a maximum value 𝑀𝑀𝑀𝑀𝑀𝑀�𝑀𝑀𝐴𝐴(𝑥𝑥0)� 

which is valid if 0 ≤ 𝑀𝑀𝑀𝑀𝑀𝑀�𝑀𝑀𝐴𝐴(𝑥𝑥0)� ≤ 1. 
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Figure F.1: General purpose fuzzy controller flow chart. [43] 

In a standard process, the received crisp values will be the generic values and the input 

membership functions 𝐴𝐴 that return fuzzy sets triggered by those values 𝐴𝐴′. In practice, rather 

than activated sets 𝐴𝐴′ it is preferable to use their maximum degree of truth 𝑀𝑀𝑀𝑀𝑀𝑀�𝑀𝑀𝐴𝐴′(𝑥𝑥0)�, 

which incidentally coincides with 𝑀𝑀𝑀𝑀𝑀𝑀�𝑀𝑀𝐴𝐴(𝑥𝑥0)�, with the last result being defined as the 

fuzzy input. [43] 

Fuzzy Hedges 

In front of a fully defined fuzzy input set, those values can be computed within a block 

of assessment rules where each combination of fuzzy input activates a particular rule. To 

every single rule corresponds a particular degree of activation (weight). This value could be 

equal to the minimum degree of truth of the fuzzy input sets that define the combination. 

What illustrated describes a truth table, where to each combination of the fuzzy sets is 

associated with a unique weight value, which in turn activates a fuzzy set for each type of 

output with a certain degree of truth. What described is called “Fuzzy Inference”, precisely 

defined as the process that receives the fuzzy controller’s inputs and, through the use of the 

“Fuzzy Rules”, returns the fuzzy output sets inferred [43]. 

In the fuzzy logic environment design tool Xfuzzy 25th (V. 3.5), the “Fuzzy Inference” 

(FIS) is described by a, or by an assembly of many, “Rulebase”. 

Fuzzy Output Defuzzification 

The union of all output sets defines the “Membership Output Functions” (MOFs). The 

“Fuzzy Output Block” (FOB) elaborates the output data of the “Assessment Rules Block” 

(ARB), according to a specific method. Whatever is the method used, in the case of a set 
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associated with more degrees of truth, by definition, the target is to maximise the values. 

Generally, most popular approaches used are: the “composition method”, where the fuzzy 

output sets obtained are the subject of a logical “OR operation”, and the “sum composition 

method”, where the fuzzy output sets obtained are, simply, added together. 

There is a final step required to get a usable output function, and this is called 

defuzzification. In this step, a determination is made in establishing the numerical value most 

representative of the whole final output through the use of a specific method. The most 

common methods are: 

• the “Centroid method” (COG) where the defuzzification takes as output value 

the centroid abscissa of the solid figure bounded by all fuzzy output; 

• the “MAX method” where the defuzzified output value corresponds with the 

maximum of the output; 

• the “Medium of Maxima method” (MOM), where the defuzzified output value 

is the average of the values corresponding to the maximum of the output. 

[43] 

G. Fuzzy Logic applications in smart electrical systems 

Nowadays, there are ceaseless applications of fuzzy logic in endless fields because this 

control approach is giving excellent feedbacks, especially for applications on which the 

process is not available or not modelled (in part or in full), or it is affected by disturbs due to 

external variables that can influence the model. In fact, in order to achieve an accurate, 

reliable and stable control for a complex system, the mathematical model 𝑃𝑃(𝑠𝑠) that describes 

the physical system process could be not appropriate; because it is based on a specific set of 

hypothesis, and, usually, it is calculated with approximation under specific environmental 

conditions. It means that should be used for the control design the process: 

𝑃𝑃𝐷𝐷(𝑠𝑠) = �𝑃𝑃
~

(𝑠𝑠) = 𝑃𝑃(𝑠𝑠)�1 + 𝛱𝛱(𝑠𝑠)∆(𝑆𝑆)�, �∆(𝑆𝑆)�∞ ≤ 1� 
 (Equation 84) 

 where 𝛱𝛱(𝑠𝑠) is a weight function and ∆(𝑆𝑆) is an adaptive function with a resonance peak  

≤ 1; both functions could have only negative poles and zeros. 

It is easy to understand how it could be useful to use fuzzy logic when 1 + 𝛱𝛱(𝑠𝑠)∆(𝑆𝑆) is 

not very small. Therefore, the control theory and stability theory are based on the LTI 

hypothesis. Discussed particulars result in a primary advantage of the fuzzy logic control 

method, making the fuzzy logic a competitive choice when the “Lyapunov Theorem” results 
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too complicated to comply, or there is not enough information available for the 

implementation of the “Lyapunov Stability Technique”. In this case, fuzzy logic is very 

useful for values of 𝜀𝜀 that are not extremely small. 

Some interesting examples of fuzzy logic applications are: 

• fuzzy control design for gas absorber system; 

• large scale fuzzy controller (Appliances); 

• PFC; 

• trending and prediction; 

• biomedical applications; 

• ground vehicle engineering; 

• smart modelled fuzzy logic “Maximum Power Point Tracker” (MPPT) for 

photovoltaic applications; 

• application of fuzzy logic in smart distributed power systems or micro-grids with 

a high penetration of renewable energy. 

H. Neuro-Fuzzy introduction 

Artificial neural systems’ interpretation may concur to simplified mathematical models 

of brain-like systems, functioning as parallel distributed computing networks. Nevertheless, 

creatively to traditional computers, which are programmed to perform a specific task, most 

neural networks must be prepared or trained. They can acquire new associations, new 

functional boundaries and new patterns. Although computers outclass both biological and 

artificial neural systems for tasks based on well-defined and fast arithmetic operations, 

artificial neural systems express the promising new generation of information processing 

networks. [48] 

The modern techniques of artificial intelligence have potential applications in almost all 

fields of human knowledge. Despite a great emphasis given to the fundamental sciences, 

perhaps the most noticeable explanation of the success of these techniques is in the 

engineering field. Combining the two techniques, neural networks and fuzzy logic, is often 

preferred for solving engineering problems where the traditional techniques do not provide a 

comfortable and accurate solution. The neuro-fuzzy term was born by the fusing of these two 

techniques. As each researcher combines these two tools differently, some confusion occurs 

on the terminology meaning. Still, there is no absolute consensus, but in general, the neuro-

fuzzy term means a type of system characterised for a similar structure of a fuzzy controller 
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where the fuzzy sets and rules are adjusted using neural networks iteratively tuning 

techniques with data vectors (input and output system data). The before-mentioned systems 

show two well-defined behaviours. In the first phase, called the learning phase, it behaves 

like neural networks that learn their internal parameters offline. Later, in the execution phase, 

it behaves like a fuzzy logic system. Separately, each of these techniques possesses 

advantages and disadvantages that, when combined, their cooperage provides better results 

than the ones achieved using each isolated technique. 

After that, the fuzzy systems become successful in industrial applications; the common 

perception was of a complicated development for designing a fuzzy system with good 

performance. The problem of finding membership functions and appropriate rules is 

frequently a tiring process of attempt and error. This lead to the idea of applying learning 

algorithms to fuzzy systems. The neural networks that have efficient learning algorithms had 

been presented as an alternative to automate or to support the development of tuning fuzzy 

systems. The earliest significant studies of the neuro-fuzzy systems date back to the 

beginning of the 90’s decade, and the most significant examples are Jang, Lin and Lee in 

1991, Berenji in 1992 and Nauck from 1993. The majority of the first applications were in 

process control. Gradually, its application spread for all the areas of human knowledge, and 

in particular to data analysis, data classification, imperfections detection and support to 

decision-making. Neural networks and fuzzy systems can be combined to join their 

advantages and to cure their defectiveness. Neural networks introduce its computational 

characteristics of learning in the fuzzy systems and receive from them the interpretation and 

clarity of systems representation. The capacities of the neural networks compensate for the 

disadvantages of the fuzzy systems. These techniques are complementary, making practical 

concurrent use. [49] 

Definition of Neuro-Fuzzy modules 

Fuzzy logic controllers’ tuning methods are an evolution of fuzzy logic. The neuro-fuzzy 

controller uses the neural network learning techniques to tune the membership functions 

while keeping the semantics of the fuzzy logic controller intact. Neural networks offer the 

possibility of solving the problem of tuning. Although a neural network can learn from the 

given data, the trained neural network resembles a black box. Neither can it be possible to 

extract structural information from the trained neural network, nor can it integrate certain 

information into the neural network to simplify the learning procedure.  
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Contrariwise, a fuzzy logic controller, by assumption, has to work with structured 

knowledge in the form of rules, and nearly everything in the fuzzy system remains highly 

transparent and easily interpretable. However, there exists no formal framework for the 

choice of various design parameters and optimisation of these parameters generally is done 

by trial and error. [48 and 50] 

A combination of neural networks and fuzzy logic offers the possibility of solving tuning 

problems and design difficulties of fuzzy logic. The resulting network will be more 

transparent and observable in the form of fuzzy logic control rules or semantics. This 

approach combines the well-established advantages of both methods and avoids the 

drawbacks of both. [48] 

In general, all the combinations of techniques based on neural networks and fuzzy logic 

can be called neuro-fuzzy systems. The different combinations of these techniques could be 

classified, as illustrated by [51], in the following classes: 

• Cooperative Neuro-Fuzzy System, where there is a pre-processing phase where 

the neural networks mechanisms of learning determine some sub-blocks of the 

fuzzy system; 188  

• Hybrid Neuro-Fuzzy System, in this category, a neural network is used to learn 

a wide range of parameters of the fuzzy system (parameters of the fuzzy sets, 

fuzzy rules and weights of the rules); 189 

• Concurrent Neuro-Fuzzy System, where the neural network and the fuzzy 

system work continuously together (in general, the neural networks pre-

processes the inputs, or post-processes the outputs, of the fuzzy system). 

Definition of Genetic Algorithm  

“Genetic Algorithms” (GA) were invented to mimic some of the processes observed in 

natural evolution. Many people, biologists included, are astonished that life at the complexity 

level that we observe could have evolved in the relatively short time suggested by the fossil 

                                                 

 
188 For instance, the fuzzy sets and (or) fuzzy rules (fuzzy associative memories [52] or the use of clustering algorithms to determine 
the rules and fuzzy sets position [53]).  Networks pre-process the inputs (or post-processes the outputs) of the fuzzy system. In 
effect, after that, the fuzzy sub-blocks are calculated, the neural network learning methods are taken away, executing only the fuzzy 
system. [50] 
189 The majority of the researchers uses the neuro-fuzzy term to refer only hybrid neuro-fuzzy system. After that, the fuzzy sub-
blocks are calculated the neural network learning methods are taken away, executing only the fuzzy system. [50] 
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record. The idea with GA is to use this power of evolution to solve optimisation problems. 

The father of the original GA was John Holland, who invented it in the early 1970s. [54] 

The definition of “Genetic Algorithm” is:  

 <<… a method for solving both constrained and unconstrained optimisation problems 

based on a natural selection process that mimics biological evolution. The algorithm 

repeatedly modifies a population of individual solutions. At each step, the genetic algorithm 

randomly selects individuals from the current population and uses them as parents to produce 

the children for the next generation. Over successive generations, the population “evolves” 

toward an optimal solution…>. 

Indeed, the aim is to achieve an adaptive heuristic search algorithm based on the 

evolutionary ideas of natural selection and genetics (they represent an intelligent exploitation 

of a random search used to solve optimisation problems). Although randomised, GAs are by 

no means random; instead, they employ authentic information to instruct the search into the 

area of better performance within the search space. Conventional techniques of the GAs aim 

to replicate natural systems processes necessary for the evolution, especially those that follow 

the principles first laid down by Charles Darwin of “survival of the fittest”. Considering the 

nature, competition among individuals for scarce resources results in the fittest individuals 

dominating over the weaker ones. 

I. TYPES OF NEURO-FUZZY SYSTEMS 

Cooperative Neuro-Fuzzy Systems 

A cooperative system employs the neural networks only in an initial phase. In this case, 

the neural network regulates the fuzzy system’s sub-blocks using training data; consequently, 

the neural networks are removed, and only the fuzzy system is executed. “Figure I.1” 

illustrates an example of a cooperative neuro-fuzzy system. 

 
Figure I.1: cooperative system. [52] 
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Concurrent Neuro-Fuzzy Systems 

A concurrent system, by definition, is not a neuro-fuzzy system in strict terms. Because 

the neural network works in symbiosis with the fuzzy system, it implies that the inputs 

inflowing the fuzzy system are pre-processed, and then the neural network processes the 

concurrent system’s outputs (or in a reverse way). “Figure I.2” shows a “concurrent neuro-

fuzzy system” architecture’s example.  

 
Figure I.2: Concurrent system. [52] 

Hybrid Neuro-Fuzzy Systems 

In Nauck [57] definition: “A hybrid neuro-fuzzy system is a fuzzy system that uses a 

learning algorithm based on gradients or inspired by the neural networks theory (heuristical 

learning strategies) to determine its parameters (fuzzy sets and fuzzy rules) through the 

pattern’s processing (input and output)”. 

It is possible to identify a neuro-fuzzy system as a set of fuzzy rules. This system can be 

total created from input-output data or initialised with human knowledge (the same principles 

of the fuzzy rules). The resultant system by fusing fuzzy systems and neural networks has as 

advantages of learning through patterns and the straightforward interpretation of its 

functionality. 

There are several distinctive approaches capable of developing hybrid neuro-fuzzy 

systems; therefore, being a recent research subject, each researcher has defined its particular 

models. These models are similar, but they present fundamental differences. 

Many types of neuro-fuzzy systems are represented by neural networks that implement 

logical functions. It is not necessary for the application of a learning algorithm in a fuzzy 

system; however, the representation through a neural network is more convenient because it 

allows us to visualize the flow of data through the system and the error signals that are used 

to update its parameters. The additional benefit is to allow the comparison of the different 
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models and visualize their structural differences. There are several neuro-fuzzy architectures, 

including: 

• Fuzzy Adaptive Learning Control Network 

o (FALCON) C. T. Lin and C. S. Lee [58] 

• Adaptive Network-based Fuzzy Inference System 

o (ANFIS) R. R. Jang  [59] 

• Generalized Approximate Reasoning based Intelligence Control 

o (GARIC) H. Berenji  [60] 

• Neuronal Fuzzy Controller  

o (NEFCON) D. Nauck & Kruse [61] 

• Fuzzy Inference and Neural Network in Fuzzy Inference Software 

o (FINEST) Tano, Oyama and Arnould [62] 

• Fuzzy Net  

o (FUN) S. Sulzberger, N. Tschichold and S. Vestli [63] 

• Self Constructing Neural Fuzzy Inference Network 

o (SONFIN) Juang and Lin [64] 

• Fuzzy Neural Network 

o (NFN) Figueiredo and Gomide [65] 

• Dynamic/Evolving Fuzzy Neural Network  

o (EFuNN and dmEFuNN) Kasabov and Song [66] 

J. ARTIFICIAL NEURAL SYSTEMS 

Artificial neural systems, or neural networks, are (physically) identified as cellular 

systems which can acquire, store, and utilize experimental knowledge. The knowledge is in 

the form of stable states or mappings embedded in networks that, in response to the 

presentation of cues [55], is recallable. 
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Figure J.1: Multi-layer feed-forward NN. 

The primary processing elements of neural networks are called artificial neurons or 

purely neurons or nodes. Each processing unit has a unique activity level (representing the 

state of polarization of a neuron), an output value (representing the firing rate of the neuron), 

a set of input connections (representing synapses on the cell and its dendrite), a bias value 

(representing an internal resting level of the neuron), and a set of output connections 

(representing a neuron’s axonal projections). Each of these unit’s characters is 

mathematically defined (by real numbers); thus, each connection has a unique intrinsic 

weight (synaptic strength), which determines the effect of the incoming input on the unit’s 

activation level. The weights may be positive (excitatory) or negative (inhibitory). 

 
Figure J.2: Processing element with a single output connection. [56] 

The signal flow from neuron’s inputs, 𝑥𝑥𝑗𝑗, is considered unidirectional as indicated by 

arrows, as it is the neuron’s output signal flow. The following relationship gives the neuron 

output signal: 
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𝜊𝜊 = 𝑓𝑓(< 𝑤𝑤, 𝑥𝑥 >) = 𝑓𝑓(𝑤𝑤𝑇𝑇𝑥𝑥) = 𝑓𝑓 ��𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗

𝑛𝑛

𝑗𝑗=1

� 

(Equation 85) 

Where the weight vector is: 
𝑤𝑤 = (𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑛𝑛) ∈ ℝ𝑛𝑛 

(Equation 86) 

The function 𝑓𝑓(𝑤𝑤𝑇𝑇𝑥𝑥) is often referred to as an activation (or transfer) function. Its 

domain is the set of activation values, net, of the neuron model, we thus often use this function 

as 𝑓𝑓(𝑛𝑛𝑛𝑛𝑛𝑛). The variable 𝑛𝑛𝑛𝑛𝑛𝑛 is a scalar product of the weight and input vectors, according to 

“Equation 87”. 
𝑛𝑛𝑛𝑛𝑛𝑛 =< 𝑤𝑤, 𝑥𝑥 >= 𝑤𝑤𝑇𝑇𝑥𝑥 = 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 + ⋯  +  𝑤𝑤𝑛𝑛𝑥𝑥𝑛𝑛 

(Equation 87) 

In the simplest case, the output value 𝜊𝜊 is computed as: 

𝜊𝜊 = 𝑓𝑓(𝑛𝑛𝑛𝑛𝑛𝑛) = � 1     𝑖𝑖𝑖𝑖  𝑤𝑤𝑇𝑇𝑥𝑥 ≥ 𝜃𝜃
 0     𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 
(Equation 88) 

where 𝜃𝜃 is called threshold-level, and this type of node is called the linear threshold unit. 

[56] 

K. Automotive trend interpretation for EV, PHEV and HEV  

At the 2019 Geneva auto show, Gerald Killmann, Toyota’s vice president of research 

and development for Europe, enlightened why the automaker has not embraced EVs yet: 

battery production capacity. Now, Toyota is not strictly limited in its battery production, 

although its capacity is significantly lower than Tesla’s. It is how Toyota is allocating that 

production that matters. According to Killmann, Toyota can produce enough batteries for 

28,000 electric vehicles each year or 1.5 million HEVs and PHEVs. 

For Toyota, selling 1.5 million HEVs and PHEVs reduces carbon emissions by a third 

more than selling 28,000 EVs. It allows the company to generate a more positive 

environmental impact by selling many times more HEVs cars than it would be selling far 
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fewer EVs (consequently far more conventional ICE vehicles) while also providing its 

customers more practical vehicles190 at more affordable prices.  

The previously enunciated statement does not go more in-depth in mathematical models 

(for example, details around those carbon emissions calculations). It is difficult to say 

whether the logic aims to explain away Toyota’s irrelevant EV offerings or if it has been 

Toyota’s vision all along to take a pragmatic approach to reduce new-vehicle carbon 

emissions globally. Nevertheless, results in a significant explanation for understanding the 

strategy behind distributing Toyota’s battery capacity among a more significant number of 

HEVs (and PHEVs) vehicles than a smaller number of full-electric models. Although Toyota 

does not target the EVs market now, it does not mean Toyota cannot mass produce EVs. It is 

merely taking its usual careful, calculated approach to a long game, and hybrids are a vital 

bridge to that future.  

It is essential to highlight that many other automotive OEMs privilege other business 

models and their interpretations are valid, although they are diverging. The Author’s decision 

to propose Toyota’s vision has its roots in the Author’s personal beliefs, aligned with 

Toyota’s automotive trends interpretations. 

L. ANCILLARY RESULTS FROM THE THESIS WORK 

Though not explicitly relating to the proposal’s construction, the following annexure outlines 

a few Author’s research that might be worthy of disclosing in the function of potential future 

researches. 

UAV Motor Drive Doctoral Research 

The research attempted to eliminate active or heavy passive cooling from the high power 

density inverter for small UAV BLDC Motor Drive, achieving high efficiency and dissipating 

generated heat via the inverter PCB and the mechanical structure of the UAV itself. [17] 

In an attempt to reduce the inverter’s form-factor and weight, the Author attempted to 

use the first technological generation of “GaN power MOSFETs” on the inverter’s “power 

stage”. The use of GaN power MOSFETs requires particular attention because of their well 

know fragility. A technical overview for this particular WBG technology is briefly covered 

in [17]. 

                                                 

 
190 Vehicles capable of avoiding charging anxieties and guarantee high reliability at low fuel consumption. 
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The research had a focus on the reliability of the whole system and the relative 

comparison with conventional “Si” based alternatives, investigating the “Power Electronics 

Packages” and the relative cooling contributions for achieving high reliability and small 

form-factors; addressing the PCB design principles to follow to minimise problems related 

to EMI/EMC (a WBG Power MOSFETs typical design challenge).  

Particular attention was given to what inherent to the “Gate Driver Circuitry 

optimisation”. GaN MOSFET’s Gate related issues during the experiments demonstrated to 

be the principal limitation for reliable and durable operation, especially involving safety-

critical applications based on this type of converter technology. Such issues could be 

associated with the early samples technology used and to the absence, at the time, in the 

market of a specifically designed “Gate Driver Device for GaN Power MOSFETs”, and in 

this regard, experiments pursued the adaptation of standard “Si” MOSFET’s “Gate Drivers” 

in line with recommendations of the GS61008T “GaN Power MOSFET 

Datasheet/Application Note”.  

UAV Motor Drive Doctoral Research Conclusion 

The conclusion of [17] shows that: 

a) GaN MOSFET GS61008T is definitively an exciting device, as impressive as is 

the GaN Technology; 

b) GaN Technology has been demonstrated within several academic works to be 

extremely interesting for DC/DC applications since they are capable of work at 

very high frequencies; 

c) Doctoral Researches focused on a precise application (powertrain driver for UAV 

applications), marked up a critical issue referenced either directly or indirectly, 

to the MOSFET’s Gates;  

d) At that time, investigations address to the GaN Technology that they are not yet 

mature enough for this specific application as there are no optimised gate driver 

devices currently available on the market;  

e) Optimisation of the gate driver circuitry represents a future research opportunity 

and will be the focus of future works with GaN.  

Concerning the selection of the Motor Drive for a UAV application, it is possible to 

confirm that, although the GaN technology in future will no doubt be the King of WBG 

technology and will in time improve and grow its quota within the market, at this moment 

the most reliable option is still the conventional “Si” Technology.  



249 
 
 

Mechanical Advantages introduced by the GS61008T package are possible to obtain 

using: 

• for low power/low form-factor applications, the new dual cool packages 

introduced by Fairchild/ONSEMI (such as FDMT800120DC) and nowadays also 

by ST (such as STLD125N4F6AG);  

• for significant current ratings, the best option is given by IXYS with its SMPD 

package (such as MMIX1F420N10T or MMIX1F520N075T2); 

Few of those conventional components are AEC-Q101 qualified, representing an 

assurance in terms of consistency and reliability of the product. It is a common opinion that 

the AEC-101 qualification of a GaN MOSFET will represent a waypoint for GaN Technology 

and the evidence of technological maturity. A similar conclusion may is valid for “Hybrid 

Robot’s E-Motor drive applications”. 

[17] 

 


	1 Introduction
	1.1 Unmanned Vehicles Introduction
	1.1.1 Unmanned Ground Vehicles
	1.1.2 Unmanned Aerial Vehicles
	1.1.3 Unmanned Underwater Vehicles

	1.2 Topicality
	1.3 Primary Hypothesis and Intentions
	1.4 Methods of Research and Development
	1.5 Scientific Novelty
	1.6 Practical Application of Research Results
	1.7 Dissemination of Research Results

	2 Unmanned Vehicles Control Strategies Overview
	2.1 Principles of flight dynamics
	2.2 Linear Control
	2.3 Non-Linear Control
	2.4 Practical Non-Linear UAV control strategy, CPWL Mathematical model and controller approximation
	2.5 Neuro-Fuzzy Logic for UV and Robotic applications
	2.5.1 AI, Learning-Based Control
	2.5.2 Data capture for the training process


	3 Typical Architectures for Electric Vehicles
	3.1 Automotive Regulations/Standards Overview
	3.2 Low Voltage Electric Vehicles Architecture
	3.3 High Voltage Electric Vehicles Architecture
	3.4 Hybrid Architecture variants
	3.4.1 Hybrid Electric Vehicle (HEV) Overview
	3.4.2 Plug-In Hybrid Electric Vehicle (PHEV) Overview
	3.4.3 Mild Hybrid Electric Vehicle (MHEV) Overview

	3.5  Example of 48V REESS with Boost Voltage Converters
	3.6 Electric Vehicles Power Converters
	3.6.1 Discrete Power Elements design
	3.6.2 Critical issues on Discrete Power Elements Power PCB
	3.6.3 “Power Module”, Benefits for Electric Vehicle Power Converters
	3.6.4 Wide bandgap (WBC) Semiconductors advantages for Electric Vehicles

	3.7 Battery Technology Overview
	3.7.1 PHEV, HEV and EV Battery Cell Chemistry Overview
	3.7.2 Battery Management System (BMS)
	3.7.3 Application of Fuzzy Logic for BMS


	4 Theoretical Framework
	4.1 Study Case Introduction
	4.2 Controller’s Framework Definition
	4.2.1 Controller’s Inputs Definition
	4.2.2 Controller’s Outputs Definition
	4.2.3 Rule Block and Defuzzification
	4.2.4 VHDL implementation theory
	4.2.5 VHDL Modelling theory


	5 System’s Hardware Design Proposal
	5.1 Core Hardware Definition
	5.1.1 Control Unit, FPGA
	5.1.2 Digital Motion Sensor
	5.1.3 Gyroscope
	5.1.4 Landing Proximity sensor
	5.1.5 Navigation Monitor
	5.1.5.1 GPS Module, Teseo-LIV3F
	5.1.5.2 Redundant Altimeter

	5.1.6 Electronic Compass Unit
	5.1.7 Motor Drive - Powertrain
	5.1.8 Electro-Mechanical Actuators – SERVO
	5.1.9 Data Storage
	5.1.10 Battery management and Low Voltage power supply management

	5.2 Human Remote Control

	6 Study Case, Controller’s Design Proposal
	6.1 Controller’s Inputs
	6.1.1 VHDL Component A3G4250D
	6.1.2 VHDL Component LIS3DSH
	6.1.3 VHDL Component TESEO
	6.1.4 VHDL Component, Safety Sensors
	6.1.4.1 BMS_VHDL Component
	6.1.4.2 Proximity Sensor Components

	6.1.5 VHDL Component, Flight Parameters EEPROM
	6.1.6 Controller’s core inputs, summary

	6.2 Controller’s Outputs
	6.2.1 VHDL Component SERVO
	6.2.2 Powertrain’s VHDL Components
	6.2.3 VHDL Component, Flight Telemetry EEPROM
	6.2.4 Controller’s core outputs, summary

	6.3 Fuzzy Logic Controller Design
	6.3.1 Type “Rudder_SERVO”, Membership Output Function
	6.3.2 Type “Altitude_input”, Membership Input Function
	6.3.3 Type “Compass_input”, Membership Input Function
	6.3.4 Type “Energy_Status”, Membership Input Function
	6.3.5 Type “Speed_Input”, Membership Input Function
	6.3.6 Type “Pitch_angle_Input”, Membership Input Function
	6.3.7 Type “Yaw_angle_Input”, Membership Input Function
	6.3.8 Type “Rolling_angle_Input”, Membership Input Function
	6.3.9 Type “Aileron_SERVOs”, Membership Output Function
	6.3.10 Type “ELEV_SERVO”, Membership Output Function
	6.3.11 Type “M1_THROTTLE”, Membership Output Function
	6.3.12 Type “M2_THROTTLE”, Membership Output Function

	6.4 Controller’s Rulebases
	6.4.1 “ELEV_SERVO”, Rulebase
	6.4.2 “Aileron_SERVO”, Rulebase
	6.4.3 “RUDD_SERVO”, Rulebase
	6.4.4 “M1”, Rulebase
	6.4.5 “M2”, Rulebase

	6.5 Fuzzy Controller System Structure
	6.6 Fuzzy Controller Simulations and preliminary optimisation
	6.6.1 Take-Off simulation
	6.6.1.1 Simulation at t=t0
	6.6.1.2 Simulation at t=t1
	6.6.1.3 Simulation at t=t2
	6.6.1.4 Simulation at t=t3
	6.6.1.5 Simulation at t=t4
	6.6.1.6 Full Climbing manoeuvre at t = t5
	6.6.1.7 Take-off simulation Conclusion

	6.6.2 Route adjustment Simulation
	6.6.2.1 Heavy negative Heading angle error adjustment, at t=t6
	6.6.2.2 Mild Positive Heading angle error adjustment, at t=t7
	6.6.2.3 Moderate Negative Heading angle error adjustment, at t=t8
	6.6.2.4 Conclusion, route adjustment simulation

	6.6.3 Steady-state simulation
	6.6.4 Adjustment due to gusty winds simulation
	6.6.4.1 Case of a gusty wind that impacts on the vehicle from the right to the left
	6.6.4.2 Alternative case, gusty wind from the left to the right that influences the flight
	6.6.4.3 “Controller Behavior” under gusty wind conclusions

	6.6.5 Landing Simulation
	6.6.5.1 Preliminary Landing Approach, simulation at t=t11
	6.6.5.2 Landing Descending Approach, simulation at t=t12
	6.6.5.3 Descending simulation at t=t13
	6.6.5.4 Descending simulation at t=t14
	6.6.5.5 Descending simulation at t=t15
	6.6.5.6 Descending simulation at t=t16
	6.6.5.7 Landing simulation, Conclusions


	6.7 Controller
	6.7.1 Digital_Processing VHDL component
	6.7.1.1 “ANGLE_input”, VHDL component
	6.7.1.2 “SPEED_input”, VDHL component
	6.7.1.3 “ALTITUDE_input”, VHDL component
	6.7.1.4 “ENERGY_input”, VHDL component
	6.7.1.5 ROLLING_input, VHDL component
	6.7.1.6 YAW_input, VHDL component
	6.7.1.7 PITCH_input, VHDL component
	6.7.1.8 COMPASS_input, VHDL component

	6.7.2  “Fuzzy”, VHDL component

	6.8 Data Capture for the learning Process
	6.9 Learning/Training Process Description
	6.9.1 Knowledge acquisition tool (“xfdm” tool)
	6.9.2 The supervised learning
	6.9.2.1 Gradient Descent Algorithms
	6.9.2.2 Conjugate Gradient Algorithms
	6.9.2.3 Second-Order Algorithms
	6.9.2.4 Algorithms Without Derivatives

	6.9.3 Error function
	6.9.4 The Simplification tool - Xfsp
	6.9.4.1 Membership functions simplification
	6.9.4.2 Rulebases simplification


	6.10 Proposed Learning Tool Configuration

	7 Conclusions and Further Researches
	REFERENCES
	APPENDICES
	A. Abbreviations
	B. Non-Linear System Linearization Technique
	C. Lyapunov Theorem
	D. Lyapunov Stability Technique
	E. CPWL Function introduction
	F. Fuzzy logic Introduction
	Fuzzy Logic Membership Input Functions
	Fuzzy Hedges
	Fuzzy Output Defuzzification

	G. Fuzzy Logic applications in smart electrical systems
	H. Neuro-Fuzzy introduction
	Definition of Neuro-Fuzzy modules
	Definition of Genetic Algorithm

	I. TYPES OF NEURO-FUZZY SYSTEMS
	Cooperative Neuro-Fuzzy Systems
	Concurrent Neuro-Fuzzy Systems
	Hybrid Neuro-Fuzzy Systems

	J. ARTIFICIAL NEURAL SYSTEMS
	K. Automotive trend interpretation for EV, PHEV and HEV
	L. ANCILLARY RESULTS FROM THE THESIS WORK
	UAV Motor Drive Doctoral Research
	UAV Motor Drive Doctoral Research Conclusion



