

RIGA TECHNICAL UNIVERSITY

Faculty of Electrical and Environmental Engineering
Institute of Industrial Electronics and Electrical Engineering

Donato REPOLE
Doctoral Student of the Study Programme “Computerized Control of Electrical

Technologies”

RESEARCH OF
PARALLEL COMPUTING

NEURO-FUZZY NETWORKS
FOR UNMANNED VEHICLES

PhD Thesis

Scientific supervisor

Assistant Professor Dr. sc. ing.

Leslie Robert ADRIAN

RTU Press
Riga 2021

Repole D., Research of Parallel Computing
Neuro-fuzzy Networks for Unmanned Vehicles.
Doctoral Thesis. – Riga: RTU Press, 2021. – 249 p.

Published in accordance with the decision of the
Promotion Council “RTU P-14” of 30 August
2021, Minutes No. 04030-9.12.1/9.

Parts of this work, including some travel costs and participation fees to conferences,

have been supported by:

ROBOTRAX Limited (United Kingdom)

Purchase of materials and manufactured items have been supported by:

Lesla Latvia SIA

3

DOCTORAL THESIS PROPOSED TO RIGA TECHNICAL
UNIVERSITY FOR THE PROMOTION TO THE SCIENTIFIC

DEGREE OF DOCTOR OF SCIENCE

To be granted the scientific degree of Doctor of Science (Ph. D.), the present Doctoral
Thesis has been submitted for the defence at the open meeting of RTU Promotion Council on
28 December 2021 at 12.00 at the Faculty of Electrical and Environmental Engineering of Riga
Technical University.

OFFICIAL REVIEWERS

Dr. habil. sc. ing. Peteris Apse-Apsitis
Riga Technical University

Dr. habil. sc. ing. Raja Mazuir Raja Ahsan Shah
Coventry University, UK

Dr. habil. sc. ing. Andrés Gabriel García
Universidad Tecnológica Nacional, Bahía Blanca, Argentina

DECLARATION OF ACADEMIC INTEGRITY

I hereby declare that the Doctoral Thesis submitted for the review to Riga Technical
University for the promotion to the scientific degree of Doctor of Science (Ph. D.) is my own.
I confirm that this Doctoral Thesis had not been submitted to any other university for the
promotion to a scientific degree.

Donato Repole ……………………………. (signature)
Date: ………………………

The Doctoral Thesis has been written in English. It consists of 7 chapters, inclusive of the
introduction; 111 figures, 19 tables; 88 equations; the total number of pages is 249.
The Bibliography contains 66 titles.

4

ABSTRACT
The presented Doctoral Thesis illustrates the Author’s researches in the field of VHDL

based “neuro-fuzzy controllers”. The Author’s academic investigations involve numerous

applications of “neuro-fuzzy controllers”, and part of Doctoral researches focuses on

evaluating different implementation methods. The decision of VHDL as “controller’s

hardware description language” is the outcome of the Author’s academic researches, which

are the core of the Author’s international papers.

Presented work starts with an overview of autonomous mobile robotics applications,

automotive applications and small Autonomous Unmanned Aerial Vehicles (derivative from

RC planes), which describes the context where the Doctoral Thesis is implanted.

Then, the dissertation moves to the motivations behind the decision process of the

selection of VHDL as “controller’s hardware description language”, strictly correlated to the

flexibility and the advantages of using an FPGA instead of a multi-core MCU. A major focus

is given to the FPGAs parallel processing functionality. Part of the Doctoral Thesis

scrutinises methods to mitigate the complexity of a VHDL based description and the

implementation of advanced learning processes.

Doctoral Thesis examines a novel software tool for the high-level “neuro-fuzzy

controller” description capable of executing controller simulations, optimisation tasks,

performing learning/training tasks, and exporting the controller in VHDL code.

The Thesis proposes an application case for the VHDL based “neuro-fuzzy controllers”

researches, aiming the use of learning/training controller’s capability to off-load the

mechanical design. This approach targets the controller fine-tuning through a replicable

process, which shall allow adapting the controller’s parameters to the mechanical

characteristics of the RC plane that shall be converted into a small Unmanned Aerial Vehicle.

A series of mechanical and electrical/electronic hardware assumptions and definitions are

made as pre-requisites for the controller conception. The proposal’s focus is the controller’s

design strategy, scrutinising the design process, the description and the simulation of the

“neuro-fuzzy controller”.

Since the system’s pre-requisites and boundary conditions are finalised to deliver a

general aerial vehicle controller, the Thesis aims to deliver a “neuro-fuzzy controller” capable

of replicating a human being pilot behaviour. Efforts are made to establish: fuzzy controller’s

simulation (fuzzy controller is the core of the “neuro-fuzzy controller” before the

5

learning/training process and the optimisation process), a learning/training process and, an

optimisation process.

A learning capable controller design may result in a very sophisticated design, and the

designer shall rely on robust software tools; the selection of the learning/training acceleration

tool becomes a crucial step of the dissertation application case. Even more important for the

dissertation is the definitions of the “Simulation Conditions” on which the “core fuzzy

controller” shall be tested. In fact, a mandatory condition for an appropriate learning/training

process is to use a “core fuzzy controller”, already capable of performing basic tasks, as the

heart of the system.

What is drawn, between the lines, by the Doctoral Thesis is the introduction of a design

strategy that is looking to develop solutions for complex controller architecture of mobile

robotic vehicles (of any nature) or even for multiple industrial application. This work enables

further investigative researches into autonomous robotics, particularly to the physical

implementation of an Autonomous Aerial Unmanned Vehicle from an inexpensive RC plane.

A simplified RC plane design may be used, as a worst-case scenario for the controller

design, where a 3D printed homebuilt aircraft may be turned into AUAV, through the process

and the algorithms disserted. Replication of the learning/training process and their iteration

on different mechanics and different RC planes to be adapted into AUAV may result in

information gold mining for the researchers. Indeed, the determination of reliable processes

allows researchers to reutilise the same principles for totally different applications,

circumscribed only by the researcher’s imagination.

The Doctoral Thesis has been written in English. All summaries and conclusions and the

results of the research relate to the hypothesis and the relationship between them. Researches

outcome has the potential to evolve into other projects consisting of various methodologies

extracted from the investigations.

The Thesis consists of 7 chapters, inclusive of the introduction and the subsequent conclusions.

The bibliography contains 66 reference sources and 12 appendices.

The volume of the present Doctoral Thesis is 249 pages.

It has been illustrated with 111 figures, 88 formulas and 19 tables.

6

Anotācija

Promocijas darbs ilustrē autora pētījumus saistībā ar “neironu faziloģikas

kontrolleriem”, kam pamatā ir VHDL. Autora akadēmiskie pētījumi ietver daudzus “neironu

faziloģikas kontrolleru” izmēģinājumus, un daļa pētījumu ir vērsta uz dažādu to ieviešanas

metožu novērtēšanu. Lēmums izmantot VHDL kā “kontrollera aparatūras aprakstīšanas

valodu” ir autora akadēmisko pētījumu rezultāts, kas ir autora starptautisko rakstu pamatā.

Promocijas darba sākumā ir autonomas mobilās robotikas lietojuma, transportlīdzekļu

lietojuma un mazu autonomu bezpilota lidaparātu (atvasinājums no radiovadāmām

lidmašīnām) pārskats, kurā aprakstīts konteksts promocijas darba ietvaros.

Turpmāk disertācijā aprakstīts lēmumu pieņemšanas process, izvēloties VHDL kā

“kontrollera aparatūras aprakstīšanas valodu”, kas cieši saistās ar iespēju dažādību un

priekšrocībām, izmantojot FPGA, nevis daudzkodolu MCU. Liela daļa uzmanības tiek

pievērsta FPGA paralēlās apstrādes funkcionalitātei. Promocijas darbā tiek pārbaudītas

metodes, lai mazinātu uz VHDL balstīta apraksta sarežģītību un progresīvu mācību procesu

ieviešanu.

Promocijas darbā tiek pētīts jauns programmatūras rīks augsta līmeņa “neironu

faziloģikas kontrollera” aprakstam, kas spēj izpildīt kontrollera simulācijas, optimizācijas

uzdevumus, veikt mācīšanās/apmācības uzdevumus un spēj eksportēt kontrolleri VHDL

kodā.

Disertācijā tiek piedāvāts uz VHDL balstītu “neironu faziloģikas kontrolleru” pētījumu

izmantošanas gadījums ar mērķi izmantot mācīšanās/apmācības kontrollera spējas

mehāniskās konstrukcijas noslogošanai. Šī pieeja ir vērsta uz kontrollera precīzu

noregulēšanu ar atkārtojumu palīdzību, kas ļauj kontrollera parametrus pielāgot

radiovadāmas lidmašīnas mehāniskajām īpašībām, kura tiks pārveidota par mazu bezpilota

lidaparātu. Kā priekšnosacījums kontrollera koncepcijai tiek izveidota virkne mehānisku un

elektrisku/elektronisku aparatūras pieņēmumu un definīciju. Šajā priekšlikumā galvenā

uzmanība tiek pievērsta kontrollera projektēšanas stratēģijai, rūpīgi pārbaudot “neironu

faziloģikas kontrolleru” veidošanas procesu, aprakstu un simulāciju.

Tā kā sistēmas priekšnosacījumi un robežnosacījumi ir pilnībā skaidri, tad, lai izveidotu

universālu lidaparāta kontrolleri, disertācijas mērķis ir radīt “neironu faziloģikas kontrolleri”,

kas spētu imitēt cilvēka kā pilota rīcību. Ir mēģinājumi izveidot faziloģikas kontrollera

simulāciju (faziloģikas kontrolleris ir “neironu faziloģikas kontrollera” pamats pirms

7

mācīšanās/apmācības un optimizācijas procesa), mācīšanās/apmācības procesu un

optimizācijas procesu.

Tādu kontrolleri ar iemācīšanās opciju var būt ļoti sarežģīti izveidot un tā veidotājam

jāpaļaujas uz izturīgiem programmatūras rīkiem – mācīšanās/apmācības paātrināšanas rīka

izvēle kļūst par izšķirošu soli disertācijā aprakstītā izmantojuma gadījumā. Vēl nozīmīgāki ir

“Simulācijas apstākļu” nosacījumi, kuros būtu jātestē “pamata faziloģikas kontrolleris”.

Patiesībā obligāts nosacījums atbilstošam mācīšanās/apmācības procesam ir izmantot

“pamata faziloģikas kontrolleri” kā sistēmas centru, kas jau spēj veikt vienkāršus uzdevumus.

Disertācijā vispārējā ideja ir ieviest tādu projektēšanas stratēģiju, kuras mērķis ir

izstrādāt risinājumus mobilo robotu transportlīdzekļu (jebkāda veida) sarežģītai kontrolleru

arhitektūrai vai pat dažādām industriālām vajadzībām. Šis darbs dod iespēju turpināt

pētījumus par autonomu robotiku, jeb radīt autonomu bezpilota lidaparātu no lētas RC

(radiovadāmas) lidmašīnas.

Vienkāršotu RC lidmašīnas projektu var izmantot kā pēdējo variantu neveiksmīgāka

rezultāta gadījumā, lai izveidotu kontrolleri, kur 3D formātā izdrukātu un mājās uzbūvētu

lidaparātu procesa gaitā un ar pārrunāto algoritmu palīdzību varētu pārveidot par AUAV.

Mācīšanās/apmācības procesu imitēšana un to atkārtojums dažādos mehānismos un dažādām

RC lidmašīnām, ko pārveidotu par AUAV, pētniekiem varētu kļūt par informācijas zelta

raktuvēm. Patiesi, uzticamu procesu noteikšana ļauj pētniekiem atkārtoti izmantot vienus un

tos pašus principus pilnīgi atšķirīgiem pielietojumiem, ko ierobežo tikai pētnieka iztēle.

Promocijas darbs ir uzrakstīts angļu valodā. Visi kopsavilkumi un secinājumi, kā arī

pētījumu rezultāti ir saistīti ar hipotēzi un mijiedarbību starp tiem. Pētījumu rezultātiem ir

potenciāls attīstīties citos projektos, kas sastāvētu no dažādām metodoloģijām, kas rastos no

pētījumiem.

Promocijas darbs sastāv no 7 nodaļām ieskaitot ievadu un sekojošos secinājumus.

Bibliogrāfija sastāv no 66 atsaucēm un 12 pielikumiem.

Promocijas darba apjoms ir 249 lapas.

Darbā ir 111 zīmējumi, 88 matemātiskās formulas un 19 tabulas.

8

CONTENTS

1 Introduction ... 13

1.1 Unmanned Vehicles Introduction.. 13

 Unmanned Ground Vehicles .. 13

 Unmanned Aerial Vehicles .. 16

 Unmanned Underwater Vehicles ... 17

1.2 Topicality .. 18

1.3 Primary Hypothesis and Intentions ... 19

1.4 Methods of Research and Development.. 20

1.5 Scientific Novelty .. 21

1.6 Practical Application of Research Results .. 21

1.7 Dissemination of Research Results ... 22

2 Unmanned Vehicles Control Strategies Overview.. 24

2.1 Principles of flight dynamics... 24

2.2 Linear Control ... 27

2.3 Non-Linear Control ... 31

2.4 Practical Non-Linear UAV control strategy, CPWL Mathematical model and

controller approximation .. 34

2.5 Neuro-Fuzzy Logic for UV and Robotic applications .. 36

 AI, Learning-Based Control... 37

 Data capture for the training process ... 39

3 Typical Architectures for Electric Vehicles .. 41

3.1 Automotive Regulations/Standards Overview .. 41

3.2 Low Voltage Electric Vehicles Architecture .. 43

3.3 High Voltage Electric Vehicles Architecture .. 44

3.4 Hybrid Architecture variants ... 46

 Hybrid Electric Vehicle (HEV) Overview ... 46

9

 Plug-In Hybrid Electric Vehicle (PHEV) Overview ... 50

 Mild Hybrid Electric Vehicle (MHEV) Overview .. 50

3.5 Example of 48V REESS with Boost Voltage Converters ... 50

3.6 Electric Vehicles Power Converters .. 51

 Discrete Power Elements design .. 51

 Critical issues on Discrete Power Elements Power PCB 53

 “Power Module”, Benefits for Electric Vehicle Power Converters 54

 Wide bandgap (WBC) Semiconductors advantages for Electric Vehicles 57

3.7 Battery Technology Overview .. 57

 PHEV, HEV and EV Battery Cell Chemistry Overview 58

 Battery Management System (BMS) ... 60

 Application of Fuzzy Logic for BMS .. 64

4 Theoretical Framework ... 65

4.1 Study Case Introduction .. 67

4.2 Controller’s Framework Definition ... 68

 Controller’s Inputs Definition .. 68

 Controller’s Outputs Definition ... 69

 Rule Block and Defuzzification ... 70

 VHDL implementation theory ... 70

 VHDL Modelling theory.. 75

5 System’s Hardware Design Proposal .. 80

5.1 Core Hardware Definition ... 80

 Control Unit, FPGA ... 81

 Digital Motion Sensor .. 82

 Gyroscope .. 84

 Landing Proximity sensor .. 85

 Navigation Monitor .. 87

10

 Electronic Compass Unit ... 95

 Motor Drive - Powertrain... 95

 Electro-Mechanical Actuators – SERVO .. 96

 Data Storage ... 100

 Battery management and Low Voltage power supply management 101

5.2 Human Remote Control .. 103

6 Study Case, Controller’s Design Proposal .. 105

6.1 Controller’s Inputs... 105

 VHDL Component A3G4250D ... 106

 VHDL Component LIS3DSH .. 107

 VHDL Component TESEO ... 108

 VHDL Component, Safety Sensors ... 109

 VHDL Component, Flight Parameters EEPROM ... 111

 Controller’s core inputs, summary ... 111

6.2 Controller’s Outputs .. 111

 VHDL Component SERVO ... 112

 Powertrain’s VHDL Components .. 112

 VHDL Component, Flight Telemetry EEPROM... 113

 Controller’s core outputs, summary ... 113

6.3 Fuzzy Logic Controller Design ... 114

 Type “Rudder_SERVO”, Membership Output Function 116

 Type “Altitude_input”, Membership Input Function....................................... 118

 Type “Compass_input”, Membership Input Function 120

 Type “Energy_Status”, Membership Input Function....................................... 123

 Type “Speed_Input”, Membership Input Function .. 124

 Type “Pitch_angle_Input”, Membership Input Function................................. 125

 Type “Yaw_angle_Input”, Membership Input Function 127

11

 Type “Rolling_angle_Input”, Membership Input Function 128

 Type “Aileron_SERVOs”, Membership Output Function 129

 Type “ELEV_SERVO”, Membership Output Function 131

 Type “M1_THROTTLE”, Membership Output Function 133

 Type “M2_THROTTLE”, Membership Output Function 135

6.4 Controller’s Rulebases .. 137

 “ELEV_SERVO”, Rulebase .. 137

 “Aileron_SERVO”, Rulebase .. 140

 “RUDD_SERVO”, Rulebase ... 141

 “M1”, Rulebase .. 143

 “M2”, Rulebase .. 145

6.5 Fuzzy Controller System Structure ... 147

6.6 Fuzzy Controller Simulations and preliminary optimisation 149

 Take-Off simulation ... 149

 Route adjustment Simulation ... 160

 Steady-state simulation .. 168

 Adjustment due to gusty winds simulation .. 169

 Landing Simulation .. 172

6.7 Controller .. 182

 Digital_Processing VHDL component .. 186

 “Fuzzy”, VHDL component .. 193

6.8 Data Capture for the learning Process ... 194

6.9 Learning/Training Process Description ... 199

 Knowledge acquisition tool (“xfdm” tool) .. 200

 The supervised learning ... 202

 Error function ... 206

 The Simplification tool - Xfsp ... 207

12

6.10 Proposed Learning Tool Configuration... 209

7 Conclusions and Further Researches... 212

REFERENCES .. 219

APPENDICES ... 225

A. Abbreviations .. 225

B. Non-Linear System Linearization Technique ... 230

C. Lyapunov Theorem ... 232

D. Lyapunov Stability Technique .. 233

E. CPWL Function introduction .. 235

F. Fuzzy logic Introduction ... 235

Fuzzy Logic Membership Input Functions ... 236

Fuzzy Hedges .. 237

Fuzzy Output Defuzzification ... 237

G. Fuzzy Logic applications in smart electrical systems ... 238

H. Neuro-Fuzzy introduction ... 239

Definition of Neuro-Fuzzy modules ... 240

Definition of Genetic Algorithm ... 241

I. TYPES OF NEURO-FUZZY SYSTEMS .. 242

Cooperative Neuro-Fuzzy Systems ... 242

Concurrent Neuro-Fuzzy Systems .. 243

Hybrid Neuro-Fuzzy Systems ... 243

J. ARTIFICIAL NEURAL SYSTEMS .. 244

K. Automotive trend interpretation for EV, PHEV and HEV ... 246

L. ANCILLARY RESULTS FROM THE THESIS WORK .. 247

UAV Motor Drive Doctoral Research .. 247

UAV Motor Drive Doctoral Research Conclusion ... 248

13

1 Introduction

1.1 Unmanned Vehicles Introduction

Nowadays, Unmanned Vehicles are getting more popular. Although during the last

decades’ Unmanned Vehicles mainly had a military application, today it is possible to

observe Unmanned Vehicles in factories, streets, civil airfields and cities’ parks. It is possible

to divide Unmanned Vehicles into three groups:

a) Unmanned Ground Vehicles;

b) Unmanned Aerial Vehicles;

c) Unmanned Underwater Vehicles.

 Unmanned Ground Vehicles

In the previous decades, “Unmanned Ground Vehicles” (UGV) were primarily

associated with robots, especially indoor robots used for carrying goods from deposit to

factory’s working station. Over the last few years, an impressive technological acceleration

brought to market many new UGV for both military and civil application. The most prevalent

military applications are:

a) hazardous object manipulations;

b) explorer;

c) delivery of goods and supplies.

There are many attention-grabbing systems developed for military applications, such as

the ANDROS (Northrop Grumman Unmanned Ground Systems - Figure 1.1) or the

Lockheed Martin Squad Mission Support System (SMSS – Figure 1.2). Civil applications for

UGV result in line with the Thesis researches and, it is possible to highlight a few exciting

applications:

a) industrial applications (Autonomous Robots or AR);

b) Utility Unmanned Ground Vehicles (UUGV);

c) human transportation.

14

Figure 1.1: ANDROS - Northrop Grumman, Unmanned Ground Vehicles.

Figure 1.2: Lockheed Martin Squad Mission Support System (SMSS).

15

Industrial utilisation is the most common application of civil UGVs. The best example

is a robotic unit that delivers parts from the stockroom to the single working station and

withdraws from the working station to the refuse warehouse. Fundamentally this application

has two advantages: increase the factory’s efficiency/productivity and limit human handling

of dangerous refuses. “Figure 1.3” represents a typical illustration of an industrial UGV

operation environment.

Figure 1.3: example of Industrial Ground Vehicle.

“Utility Unmanned Ground Vehicle” is a general definition, which may be associated

with a wide range of UGVs. Generally, it is associated with a vehicle that performs a specific

task, which might be the delivery of a parcel or a farm field groundwork. A good example

could be a driverless-capable truck able to assist the driver during his delivery route1 (in order

to increase the vehicle’s productivity).

One more interesting example of a “Utility UGV” is represented by the autonomous

tractor, as shown in “Figure 1.4”.

1 The amount of items that may be delivered during a shift by a driver, is generally affected by the availability of parking space near
the delivery area. This particular kind of UGV may allow the driver to stop near the address where an item should be delivered, in
meanwhile truck will autonomously move within a pre-defined area and will pick up driver after a specified amount of time. This
strategy targets delivery time efficiency optimisation.

16

Figure 1.4: Prototype of Autonomous Tractor.

The last group of autonomous vehicles (human transportation UV topology) might be

perceived in contrast with the UV’s definition because the vehicle carries a “Human Load”.

In fact, by definition: UV may be interpreted as a vehicle without any humans or as a vehicle

that is driverless and capable of performing complex task autonomously, independently by

the load that they are carrying; in this case, passengers should be professed only like a “load”

(“Human Load”).

The best example of a driverless capable passenger vehicle is the “TESLA

AUTOPILOT” (although the legislator, at the moment, does not allow the driver to take off

both hands from the steering wheel while the vehicle is moving).

 Unmanned Aerial Vehicles

 Unmanned Aerial Vehicles (UAV) is the most famous category of Unmanned Vehicles,

mainly due to the impact that UAV had on military combat strategies and techniques. Today,

it is common to associate the perception of a UAV with the USAF models “PREDATOR”

and “REAPER”. It is also important to highlight that almost all developed countries are

running programs for new UAVs and AUAVs combat systems that will progressively replace

the human-piloted reconnaissance vehicles and, lastly, the combat aeroplanes.

17

Figure 1.5: General Atomics Predator B (or MQ-9 Reaper).

The civil market is also observing a broad interest in UAVs for multiple purposes.

Increased availability of cheap and durable batteries mixed with the low cost and high-

performance available electronics for controls and power electronics made it possible to

diffuse small-sized hobby UAVs (widely accessible in a consumer electronics store; it is

common to observe in our parks flying quad-copters or small model based aeroplanes

controlled by a smartphone or just flying entirely autonomously).

 Unmanned Underwater Vehicles

UUVs may be divided into the two categories of “Remotely Operated Underwater

Vehicles” (ROUV) and “Autonomous Underwater Vehicles” (AUV). Previously, UUVs

have been used for a limited number of tasks dictated by the technology available. Recently,

with technological progress, UUVs and (particularly AUVs) are now being used for more

and more challenging tasks. It is possible to highlight four main applications of UUVs.

• Commercial: UUVs are very popular in the oil and gas industry for a large

variety of uses2;

2 Such as: the definition of detailed maps of the seafloor, pre-lay or post-lay subsea infrastructure survey, pipelines or any subsea
infrastructure installation and maintenance.

18

• Military: the navies of multiple countries are currently producing UUVs to be

used in oceanic warfare, with particular attention to the sea exploration to

eradicate underwater mines threats or the sea exploration to detect unfriendly

objects3;

• Research: scientists rely on a heterogeneous4 variety of UUVs to study lakes,

seas, and the ocean floor;

• Hobby: many robotic enthusiasts enjoy constructing and operating UUVs as a

hobby.

1.2 Topicality

Previously described autonomous vehicles applications (mobile robotics applications,

driverless automotive applications, AUAV and UAV applications, etc.) define the context

where the Doctoral Thesis is implanted. However, the Doctoral Thesis objective is devoted

to the research and development of VHDL based “neuro-fuzzy controllers” for small

Autonomous Unmanned Aerial Vehicles (derivative from RC planes).

For many years, fuzzy logic has been an attractive technology for designers of industrial,

consumer and automotive products. Conversely, achieving the right balance between cost

and performance results in a difficult task. In fact, fuzzy algorithms can be executed on low-

cost MCUs, but as these have architectures that were not designed to handle fuzzy logic often

their performance results being inadequate. Dedicated fuzzy processor microchips can meet

the most demanding performance requirements, but it is mainly an expensive ASIC solution.

Indeed, only a few full customs (or semi-custom) integrated fuzzy controllers exist and most

of them are assembled from standard cells at the gate level. At the moment, an FPGA based

solution is a valid option capable of delivering both: good system performances and high

flexibility to the designer. Relevant scientific literature proves the strength of the use of

FPGAs for the implementation of neuro-fuzzy controllers. FPGA’s parallel processing

capability results in a significant advantage over the use of conventional MCUs, which are

operating serial data processing.

3 There are a very large variety of objects that a navy may wish to detect. As simple example a navy may look for a missing airplane’s
wreckage or an illegal UUV used for drug smuggling.
4 In function of the UUV’s task its technical characteristics may significantly change. For instance, a variety of sensors can be
affixed to AUVs to measure the concentration of various elements or compounds, the absorption or reflection of light, and the
presence of microscopic life. Or operate conductivity-temperature-depth sensors (CTDs), fluorometers, and pH sensors.

19

The selection of VHDL as “controller’s hardware description language” has its

fundamentals on the VHDL efficiency and reliability for sophisticated hardware, verified in

numerous scientific articles, such as an AUAV controller.

1.3 Primary Hypothesis and Intentions

As system pre-requisites and boundary conditions are finalised to deliver a general aerial

vehicle controller, the Thesis aims to deliver a “neuro-fuzzy controller” capable of replicating

a human being pilot behaviour. A series of mechanical and electrical/electronic hardware

assumptions and definitions are made as pre-requisites for the controller’s conception.

Project’s Hypotheses are:

a) to use a fly-wing platform as a baseline for the small UAV mechanical design;

b) to use a not optimised mechanical design;

c) the controller shall compensate eventual mechanical misbalances;

d) the controller, by definition, has nine inputs (altitude, speed, pitch angle, rolling

angle, yaw angle, estimated position, flight reference parameters, proximity

sensor and, battery state of charge);

e) the controller, by definition, has five outputs (ailerons, elevator, rudder, left E-

Motor and, right E-Motor)

f) to use a Lattice Semiconductors automotive-qualified FPGA;

g) to define a binding set of “simulation conditions” for the validation process of

the controller;

h) to use two independent low-cost BLDC motors and two independent motor

drivers;

i) the telemetry’s data will be stored into a dedicated EEPROM.

The project’s goals are to establish: fuzzy controller simulation, a learning/training

process and, an optimisation process.

Project’s Intentions are:
a) to move part of the hardware/mechanical design load, making it as thoroughly as

possible, to the controller design;

b) overcome the design load of defining the UAV flight dynamics model;

c) to predispose the controller design to be easily adapted to different platforms with

different flight dynamics models;

d) to define a control unit capable of parallel computation;

20

e) to design a fuzzy logic controller able to perform limited flying operations;

f) to validate the fuzzy logic controller through the use of simulations;

g) to define the fuzzy logic controller optimisation process;

h) to define an algorithm development strategy for the learning/training process.

1.4 Methods of Research and Development

Doctoral Thesis scrutinises methods to mitigate the complexity of a VHDL based

controller’s description and to implement advanced learning processes.

A learning capable controller design may result in being a very complex project, and the

designer shall rely on robust software tools. The selection of the learning/training acceleration

tool becomes a crucial step of the dissertation. However, paramount importance is assigned

to the definitions of the “simulation conditions” on which the “core fuzzy controller” should

be tested. In fact, a mandatory condition for an appropriate learning/training process is to use

a “core fuzzy controller”, already capable of performing basic tasks, as the heart of the

system.

Many of the processes of theoretical calculations and graphical representation of the

results have been obtained utilising a menagerie of software systems, including:

• Aforge.net (C# framework);

• ALDEC Active-HDL (VHDL compatible FPGA design creation and simulation

environment);

• Altium Designer (hardware design environment);

• Cadence-OrCAD (hardware design environment);

• fuzzyTECH (Fuzzy/Neural GUI for fuzzy logic modelling and programming

algorithms);

• Lattice Diamond (Lattice Semiconductors VHDL design environment);

• LT Spice (hardware design environment);

• MATLAB (multi-paradigm numerical computing environment);

• Maplesoft Maple (symbolic and numeric computing environment);

• Microsoft Excel (tables and spreadsheets);

• Microsoft Paint 3D (2D parts design);

• Microsoft PowerPoint (2D parts design);

• Microsoft Visio (2D parts design);

• Microsoft Word;

21

• Model-Sim (Mentor Graphics);

• Neural.NET (neural guided learning software);

• Pspice (Circuit modelling and analysis);

• Synopsys Synplify PRO (VHDL compatible FPGA synthesis software);

• Solidworks (3D parts design environment);

• XFL3 (Xfuzzy 3 GUI development environment for Neuro-Fuzzy system design,

optimisation and simulations).

1.5 Scientific Novelty

The project’s primary focus is a small AUAV (it is assumed to be an autonomous RC

plane) “neuro-fuzzy controller” capable of replicating a human being pilot behaviour. Efforts

are concentrated on the design, the description and the simulation of the “neuro-fuzzy

controller”. Doctoral Thesis introduces a design strategy proficient at supporting advanced

controller’s development for mobile robotic vehicles of any nature or even for multiple

industrial application5.

The dissertation examines a novel software’s tool for the high-level “neuro-fuzzy

controller description” capable of executing controller’s simulations, optimising tasks,

performing learning/training tasks, and exporting the controller in VHDL code.

The resulting outcome is a flexible and innovative system capable of being adapted to a

different machine through a training-based process for the adjustment, weighting, and

learning of the neuro-fuzzy control algorithm.

1.6 Practical Application of Research Results

The Thesis proposes an application case for the VHDL based “neuro-fuzzy controllers”

researches, aiming the use of learning/training controller’s capability to off-load the

mechanical design. This approach targets the controller’s fine-tuning through a replicable

process, which shall allow adapting the controller’s parameters to the mechanical

characteristics of the RC plane that might be converted into a small AUAV.

A simplified 3D printed homebuilt RC plane is an extreme study case. Turning it into a

basic AUAV, thanks to the use of core algorithms properly adapted and developed through a

5 Few Author’s international publications developed self-learning concepts capable of being applied to a wide range of difficult
control networks design.

22

series of proposed optimisation and learning/training processes, it may represent a

remarkable achievement.

Researches results are applicable to a wide range of autonomous robotics, not only to the

physical implementation of an AUAV from an inexpensive RC plane. The determination of

reliable processes may allow reutilising the same principles for different kind of applications.

1.7 Dissemination of Research Results

Author’s academic investigations touched on several different applications of “neuro-

fuzzy controllers”, and part of Doctoral research focused on evaluating different

implementation methods. The decision process that led to the selection of VHDL as

“controller’s hardware description language” is linked to the Author’s academic researches.

The following ten publications are presented in the Doctoral Thesis:

1. L. R. Adrian, D. Repole and L. Ribickis, “Proposed neuro-guided learning for

obstacle avoidance in AMBOA robotic device”, 2015 56th International Scientific

Conference on Power and Electrical Engineering of Riga Technical University

(RTUCON), Riga, 2015, pp. 1-5.

2. Janis Voitkans, Leslie R. Adrian, Donato Repole, “INVESTIGATION OF

ELECTRICAL PARAMETERS FOR PCB TRANSFORMER” 15th International

Scientific Conference: Engineering for Rural Development 25-27.05.2016 Jelgava,

LATVIA, pp. 1445-1452.

3. L. R. Adrian, D. Repole and L. Ribickis, “High efficiency modular DC-DC power

converter for adaption to industrial & hybrid robotics”, 2016 57th International

Scientific Conference on Power and Electrical Engineering of Riga Technical

University (RTUCON), Riga, 2016, pp. 1-5.

4. L. R. Adrian and D. Repole, “Intelligent autonomous environmental monitoring based

on the AMBOA robot sensory system”, 2017 IEEE 58th International Scientific

Conference on Power and Electrical Engineering of Riga Technical University

(RTUCON), Riga, 2017, pp. 1-6.

5. D. Repole and L. R. Adrian, “Fuzzy nano piezo hybrid for fault detection in

automotive power PCB”, 2017 IEEE 37th International Conference on Electronics

and Nanotechnology (ELNANO), Kiev, 2017, pp. 400-404.

6. D. Repole and L. R. Adrian, “Evaluation of GaN MOSFET for Unmanned Aerial

Vehicles BLDC Motor Drive”, 2018 IEEE 59th International Scientific Conference on

23

Power and Electrical Engineering of Riga Technical University (RTUCON), Riga,

Latvia, 2018, pp. 1-4.

7. D. Repole and L. R. Adrian, “Introduction to Parallel MAS Control for MAS - Smart

Sensor Networks”, 2019 IEEE 60th International Scientific Conference on Power and

Electrical Engineering of Riga Technical University (RTUCON), Riga, Latvia, 2019,

pp. 1-5.

8. L. R. Adrian, D. Repole and A. Rubenis, “Comparative study of Lithium-Ion hybrid

super capacitors”, 19th International Scientific Conference Engineering for Rural

Development, 20-22.05.2020 Jelgava, LATVIA, pp. 906-912.

DOI:10.22616/ERDev.2020.19.TF217.

9. D. Repole and L. R. Adrian, “VHDL based Neuro-Fuzzy Lithium-Ion Hybrid Super

Capacitors management, Advantages of the high-level descriptions of neural fuzzy

logic-based systems”, 2020 IEEE 61th International Scientific Conference on Power

and Electrical Engineering of Riga Technical University (RTUCON), Riga, Latvia, 5-

6 Nov. 2020.

10. Krists Kviesis, Leslie Robert Adrian, Ansis Avotins, Olegs Tetervenoks and D. Repole,

“MAS Concept for PIR Sensor-Based Lighting System Control Applications”, 8th

IEEE Workshop on Advances in Information, Electronic and Electrical Engineering

(AIEEE’2020), Vilnius (Lithuania) 2021, accepted for publication (ID: PID014).

24

2 Unmanned Vehicles Control Strategies Overview

Each kind of Unmanned Vehicles has a specific control strategy that allows the

performing of particular tasks. In specific, it is taken as an example of the control strategy for

a civil UAV. Generally, it might be applied to three different control strategies to govern a

UAV, which are:

a) linear control;

b) non-linear control;

c) AI (learning-based control).

2.1 Principles of flight dynamics

Newton’s laws of mechanics for a body frame, whose origin coincides with the aircraft’s

centre of mass, are defined by:

𝐹𝐹𝐵𝐵 = 𝑚𝑚 ∙ 𝑣̇𝑣𝐵𝐵 + 𝜔𝜔𝐵𝐵 × 𝑚𝑚 ∙ 𝑣𝑣𝐵𝐵

(Equation 1)

𝑇𝑇𝐵𝐵 = 𝐽𝐽𝐵𝐵 ∙ 𝜔̇𝜔𝐵𝐵 + 𝜔𝜔𝐵𝐵 × 𝐽𝐽𝐵𝐵 ∙ 𝜔𝜔𝐵𝐵

(Equation 2)

𝐽𝐽𝐵𝐵 = � 𝜌𝜌(𝑠𝑠)[(𝑠𝑠 ∙ 𝑠𝑠)𝐼𝐼 − 𝑠𝑠⨂𝑠𝑠]𝑑𝑑𝑑𝑑
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴

(Equation 3)

Figure 2.1: various body frames used for aircraft analysis.[1]

25

Where: the subscript “B” indicates vectors or tensors expressed in the body frame, the

dot indicates differentiation with respect to time, “𝑣𝑣𝐵𝐵” is the velocity of the aircraft’s centre

of mass with respect to the inertial frame, “𝜔𝜔𝐵𝐵” is the angular velocity of the body frame with

respect to the inertial frame, “𝑚𝑚” is the aircraft's mass, and “𝐽𝐽𝐵𝐵” is its inertia tensor, which is

constant in the body frame. [1]

Equations mentioned above might be written as follows:

1
𝑚𝑚
𝐹𝐹𝐵𝐵 ≡

1
𝑚𝑚
�
𝑋𝑋
𝑌𝑌
𝑍𝑍
� = �

𝑈̇𝑈 + 𝑄𝑄𝑄𝑄 − 𝑅𝑅𝑅𝑅
𝑉̇𝑉 + 𝑅𝑅𝑅𝑅 − 𝑃𝑃𝑃𝑃
𝑊̇𝑊 + 𝑃𝑃𝑃𝑃 − 𝑄𝑄𝑄𝑄

�

(Equation 4)

𝑇𝑇𝐵𝐵 ≡ �
𝐿𝐿�
𝑀𝑀
𝑁𝑁
� = �

𝐽𝐽𝑥𝑥𝑥𝑥𝑃̇𝑃 − 𝐽𝐽𝑥𝑥𝑥𝑥𝑅̇𝑅 + 𝑄𝑄𝑄𝑄�𝐽𝐽𝑧𝑧𝑧𝑧 − 𝐽𝐽𝑦𝑦𝑦𝑦� − 𝑃𝑃𝑃𝑃𝐽𝐽𝑥𝑥𝑥𝑥
𝐽𝐽𝑦𝑦𝑦𝑦𝑄̇𝑄 + 𝑃𝑃𝑃𝑃�𝐽𝐽𝑥𝑥𝑥𝑥 − 𝐽𝐽𝑧𝑧𝑧𝑧� + (𝑃𝑃2 − 𝑅𝑅2)𝐽𝐽𝑥𝑥𝑥𝑥
𝐽𝐽𝑧𝑧𝑧𝑧𝑅̇𝑅 − 𝐽𝐽𝑥𝑥𝑥𝑥𝑃̇𝑃 + 𝑃𝑃𝑃𝑃�𝐽𝐽𝑦𝑦𝑦𝑦 − 𝐽𝐽𝑥𝑥𝑥𝑥� − 𝑄𝑄𝑄𝑄𝐽𝐽𝑥𝑥𝑥𝑥

�

(Equation 5)

“𝐹𝐹𝐵𝐵” denotes the sum of the forces acting on the vehicle (including aerodynamic,

gravity, thrust, and buoyancy), and “𝑇𝑇𝐵𝐵” denotes the sum of the moments of these forces

about its centre of mass. [1]

Figure 2.2: representation of the “lift” and the “drag” acting on the aircraft.[1]

Neglecting the aircraft's rotational dynamics and treating it as a point mass with no thrust,

the twelve non-linear equations of motion (EOMs) used to represent 6-DOF aircraft motion

(Honeywell, 1996:65-66) reduce to the following six non-linear differential equations. [2]

26

𝑉̇𝑉𝑡𝑡 =
1

𝑚𝑚
[−𝐷𝐷 − 𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠(𝛾𝛾)]

(Equation 6)

𝜓𝜓
˙

=
1

𝑚𝑚 ∙ 𝑉𝑉𝑡𝑡 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝛾𝛾)
[𝐿𝐿 𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)]

(Equation 7)

𝛾̇𝛾 =
1

𝑚𝑚 ∙ 𝑉𝑉𝑡𝑡
[𝐿𝐿 𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙) −𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐(𝛾𝛾)]

(Equation 8)

ℎ̇ = 𝑉𝑉𝑡𝑡 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝛾𝛾)

(Equation 9)

𝐸̇𝐸 = 𝑉𝑉𝑡𝑡 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝛾𝛾) 𝑠𝑠𝑠𝑠𝑠𝑠(𝜓𝜓)

(Equation 10)

𝑁̇𝑁 = 𝑉𝑉𝑡𝑡 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝛾𝛾) 𝑐𝑐𝑐𝑐𝑐𝑐(𝜓𝜓)

(Equation 11)

Where:

ψ → Heading Angle (deg)

φ → Roll Angle (deg)

γ → Flight Path Angle (deg)

D → Drag (kgf)

E → Inertial Crossrange Distance (m)

g → Gravitational Acceleration (m/s2)

h → Inertial Altitude (m)

L → Lift (kdf)

m → Mass (kg)

N → Inertial Downrange Distance (m)

T → Thrust

Vt → True airspeed (m/s)

In the case of a vehicle with a powertrain capable of generating a thrust, “Equation 6” is

not valid and shall be considered “Equation 12”.

27

𝑉̇𝑉𝑡𝑡 =
1

𝑚𝑚
[𝑇𝑇 − 𝐷𝐷 − 𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠(𝛾𝛾)]

(Equation 12)

Figure 2.3: Dentition of the flight path angle.[1]

2.2 Linear Control

The UAV’s control may be accomplished using estimates of its dynamic states, including

position, velocity, angular rate, and attitude of the autonomous vehicle. Linear Control is the

more straightforward approach for achieving a UAV autonomous control; a simplified set of

aircraft motion equations can be derived for route planning purposes. In deriving these

equations, the aircraft roll rate, pitch rate, and yaw rate dynamics are neglected and

superseded using kinematic approximations. The resulting model describes the motion of a

rigid point mass with kinematic path constraints. For this model, the position of the aircraft

in an inertial frame whose 𝑥𝑥 axis is parallel to the local horizon is denoted by: 𝑥𝑥𝑒𝑒 ,𝑦𝑦𝑒𝑒 , 𝑧𝑧𝑒𝑒. The

flight “path angle 𝛾𝛾” denotes the angle between the local horizon and the velocity vector of

the aircraft “𝑉𝑉𝑇𝑇”. The “heading angle 𝜓𝜓” is the angle between: “𝑉𝑉𝑇𝑇” and the 𝑧𝑧 axis of the local

inertial frame. The “bank angle 𝜙𝜙” is the angle that the aircraft is banked about the velocity

vector (𝑉𝑉𝑇𝑇). The forces acting on the aircraft consist of the weight “𝑚𝑚 ∙ 𝑔𝑔”, thrust “𝑇𝑇”, lift

“𝐿𝐿”, and drag “𝐷𝐷”. The equations for a point mass model of a fixed-wing aircraft can then be

formulated by assuming small “𝛾𝛾” and “𝜓𝜓”.

[1]

𝑥̇𝑥𝑒𝑒 = 𝑉𝑉𝑇𝑇 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝛾𝛾) ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝜓𝜓)

(Equation 13)

28

𝑦̇𝑦𝑒𝑒 = 𝑉𝑉𝑇𝑇 ∙ 𝑐𝑐𝑐𝑐𝑐𝑐(𝛾𝛾) ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜓𝜓)

(Equation 14)

𝑥̇𝑥𝑒𝑒 = −𝑉𝑉𝑇𝑇 𝑠𝑠𝑠𝑠𝑠𝑠(𝛾𝛾)

(Equation 15)

𝑉̇𝑉𝑡𝑡 =
1

𝑚𝑚
[𝑇𝑇 − 𝐷𝐷 − 𝑚𝑚𝑚𝑚 𝑠𝑠𝑠𝑠𝑠𝑠(𝛾𝛾)]

(Equation 16)

𝛾̇𝛾 =
1

𝑚𝑚𝑉𝑉𝑇𝑇
[𝐿𝐿 𝑐𝑐𝑐𝑐𝑐𝑐(𝜙𝜙) −𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐(𝛾𝛾)]

(Equation 17)

𝜓𝜓
˙

=
𝐿𝐿 ∙ 𝑠𝑠𝑠𝑠𝑠𝑠(𝜙𝜙)

𝑚𝑚 ∙ 𝑉𝑉𝑇𝑇 𝑐𝑐𝑐𝑐𝑐𝑐(𝛾𝛾)

(Equation 18)

𝐿𝐿 ≡ 𝑄𝑄�𝑆𝑆𝐶𝐶𝑙𝑙

(Equation 19)

𝐷𝐷 = 𝑄𝑄�𝑆𝑆(𝐶𝐶𝐷𝐷0 + 𝐾𝐾𝐶𝐶𝐿𝐿2)

(Equation 20)

Where:

CD0 → parasitic drag coefficient

CL → lift coefficient

K → aircraft wing geometry constant

𝑄𝑄� → dynamic pressure equal to 1
2
𝜌𝜌𝑉𝑉𝑇𝑇2

𝜌𝜌 → air density

S → wing surface area (m2)

A linear control tries to approximate a complex non-linear problem, although described

by a simplified pattern of equations, into a linear system that may be reduced as a classical

control feedback loop.

[3 and 4]

29

Figure 2.4: a classical control feedback loop representation. [1]

Due to the complexity of the dynamics, there are two basic strategies for the control

design.

The first method is to continue the decomposition in the previous section to identify

components of the dynamics that are well controlled by specific choices of the actuators, and

then perform successive loop closure (Figure 2.5). In this case, the loops are nested by

arranging that the outer-loop controller provides the reference commands for the inner loop.

Figure 2.5 shows an example in which the outermost position control loop provides desired

velocity commands using path following guidance previously discussed. The outer velocity

control loop provides a reference (in this case, the desired quaternion value) for the inner

attitude control loop. A key advantage of this approach is that it leads to a natural mechanism

of handling limits on flights variables (e.g., bank or pitch angles) and actuator inputs because

the reference commands can be saturated before being passed to the inner loop. Each step of

the control design process may result simplistic, but the control loops’ nesting leads to some

challenges. A general design rule aims that the inner control loops result in “fast” dynamics,

and then each successive loop added is “slower than the previous one”. The primary

challenges are the determination of what is fast or slow and the entity of the interaction

between the inner/outer loops being closed6. “Figure 2.5” illustrates the previously described

simplified approach (but extremely robust), which describes the “successive loop-closure

control architecture”. [1, 3 and 4]

6 e.g., closing the outer loop might reduce the performance of the inner loop requiring a redesign.

30

Figure 2.5: successive loop-closure control architecture.[1]

The second approach is to design a controller for the full dynamics, either linear or

non-linear. The advantage of this approach is that it employs the state space control

approaches to handle fully coupled dynamics. However, it is challenging to handle the

actuator’s saturation and very hard to include state constraints. Furthermore, unless done with

extreme care, these controllers, especially in high-performance flight, can be very sensitive

to modelling errors and omissions. [1 and 3]

As soon as is defined the architecture, the next step in any control design is to determine

the dynamics of the system of interest (i.e., the full set of dynamics or the approximate inner

loop dynamics). The subsequent action defines the requirements and the extent to which the

dynamics will meet its goals. For example, could be requirements on a specific frequency (to

ensure the dynamics are “fast”) and damping (to ensure that the oscillations die out quickly)

specifications on the pole locations. There may also be requirements on the maximum steady

tracking error to a step command input. Since the vehicle’s open-loop dynamics rarely satisfy

these requirements, the typical approach uses linear feedback control to modify the pole

locations and loop gains. [1 and 3]

A full-state feedback controller could implement this second strategy. Moving by a

linearized and simplified state-space model, controller design is reduced to a classical

exercise of well-known control techniques synthesis (controller could be designed using a

specific technique such as: “Linear Quadratic Regulator”, “Dynamic Output Feedback

Controller”, “Optimal Estimator”, “Robust Controller”, “Robust Control Synthesis” and

etc.).

31

Figure 2.6: full-state feedback controller.[1]

2.3 Non-Linear Control

The scientific literature shows that for LTI systems, the controller’s design may result in

a simple task, but in front of a non-linear system, some other more complex techniques should

be considered, with particular attention to the system’s stability. The most common non-

linear control techniques7 are:

• Linearization (approximation);

• Feedback Linearisation;

• Lyapunov Stability;

• CPWL (Continuous Piecewise Linear Approximation).

It has been shown that aircraft dynamics can be linearized around equilibrium points (or

trim conditions). A commonly used aircraft control methodology leverages this fact by

designing a finite number of linear controllers, each corresponding to a linear model of the

aircraft dynamics near a design trim condition. The key motivation in this approach is to

leverage well-understood tools in linear systems design. [5]

Let 𝐴𝐴𝑖𝑖 ,𝐵𝐵𝑖𝑖, 𝑖𝑖 ∈ {1, … ,𝑁𝑁} denote the matrices containing the aerodynamic and control

effectiveness derivatives around the 𝑖𝑖𝑡𝑡ℎ trimmed condition 𝑥̅𝑥𝑖𝑖. Let 𝑋𝑋1, . . . ,𝑋𝑋𝑁𝑁 be a partition of

the state space, i.e., 𝑈𝑈𝑖𝑖=1𝑁𝑁 𝑋𝑋𝑖𝑖 = ℝ𝑛𝑛,𝑋𝑋𝑖𝑖 ∩ 𝑋𝑋𝑗𝑗 = ∅ for ≠ 𝑗𝑗 , into regions that are “near” the design

trim conditions; in other words, whenever the state 𝑥𝑥 is in the region 𝑋𝑋𝑖𝑖, the aircraft dynamics

are approximated by the linearisation at 𝑥𝑥𝑖𝑖 ∈ 𝑋𝑋𝑖𝑖. Then, the dynamics of the aircraft can be

approximated as a state-dependent switching linear system as follows:

7 Those techniques are briefly enunciated in the “Appendices section”.

32

𝑥̇𝑥 = 𝐴𝐴𝑖𝑖𝑥𝑥 + 𝐵𝐵𝑖𝑖𝑢𝑢 , 𝑤𝑤ℎ𝑒𝑒𝑒𝑒 𝑥𝑥 ∈ 𝑋𝑋𝑖𝑖

(Equation 21)

The idea in a gain scheduling based control is to create a set of gains “𝐾𝐾𝑖𝑖” corresponding

to each of the switched models and apply the linear control 𝑢𝑢 = 𝐾𝐾𝑖𝑖𝑥𝑥. Contrary to intuition,

however, merely ensuring that the 𝑖𝑖𝑡𝑡ℎ system is rendered stable (that is, the real parts of the

eigenvalues 𝐴𝐴𝑖𝑖 + 𝐵𝐵𝑖𝑖𝐾𝐾𝑖𝑖 of are negative) is not sufficient to guarantee the closed-loop stability

of “Equation 21”. A Lyapunov based approach can be used to guarantee the stability of the

closed-loop when using a gain scheduling controller. [5, 6 and 7]

Consider the following Lyapunov candidate:

𝑉𝑉�𝑥𝑥(𝑡𝑡)� = 𝑥𝑥(𝑡𝑡)𝑇𝑇𝑃𝑃𝑃𝑃(𝑡𝑡)

(Equation 22)

where 𝑃𝑃 is a positive definite matrix, that is, for all 𝑥𝑥 ≠ 0, 𝑥𝑥𝑇𝑇𝑃𝑃 𝑥𝑥 > 0. Therefore,

𝑉𝑉(0) = 0, and 𝑉𝑉(𝑥𝑥) > 0 for all 𝑥𝑥 ≠ 0, making 𝑉𝑉 a valid Lyapunov candidate. The derivative

of the Lyapunov candidate is:

𝑉̇𝑉(𝑥𝑥) = 𝑥̇𝑥 𝑇𝑇𝑃𝑃𝑃𝑃 + 𝑥𝑥 𝑇𝑇𝑃𝑃𝑥̇𝑥

(Equation 23)

For the 𝑖𝑖𝑡𝑡ℎ system, “Equation 23” can be written as:

𝑉̇𝑉(𝑥𝑥) = (𝐴𝐴𝑖𝑖𝑥𝑥 − 𝐵𝐵𝑖𝑖𝐾𝐾𝑖𝑖𝑥𝑥)𝑇𝑇𝑃𝑃𝑃𝑃 + 𝑥𝑥𝑇𝑇𝑃𝑃(𝐴𝐴𝑖𝑖𝑥𝑥 − 𝐵𝐵𝑖𝑖𝐾𝐾𝑖𝑖𝑥𝑥)

(Equation 24)

Let 𝐴̅𝐴𝑖𝑖 = (𝐴𝐴𝑖𝑖𝑥𝑥 − 𝐵𝐵𝑖𝑖𝐾𝐾𝑖𝑖𝑥𝑥); then from Lyapunov theory, it follows that for a positive

definite matrix “𝑄𝑄” if for all 𝑖𝑖

𝐴̅𝐴𝑖𝑖 𝑇𝑇𝑃𝑃 + 𝑃𝑃𝐴̅𝐴𝑖𝑖 < −𝑄𝑄

(Equation 25)

then:

𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝜕𝜕

𝑓𝑓(𝑥𝑥) < −𝑥𝑥𝑇𝑇𝑄𝑄𝑄𝑄

(Equation 26)

In this case, “𝑉𝑉(𝑥𝑥)” is a standard Lyapunov function for the switched closed-loop system

establishing the equilibrium's stability at the origin. Therefore, the control design task is to

select the gains 𝐾𝐾𝑖𝑖 such that “Equation 25” is satisfied. One way to tackle this problem is

through the framework of “Linear Matrix Inequalities” (LMI) [5]. It should be noted that the

33

condition in “Equation 25” allows switching between the linear models to occur infinitely

fast, this can be a reasonably conservative assumption for most UAV control applications.

This condition can be relaxed to 𝐴̅𝐴𝑖𝑖 𝑇𝑇𝑃𝑃 + 𝑃𝑃𝐴̅𝐴𝑖𝑖 < −𝑄𝑄𝑖𝑖 for 𝑄𝑄𝑖𝑖 > 0 to guarantee the stability of

the system if the system does not switch arbitrarily fast. A rigorous condition for proving the

asymptotic stability of a system of the form of “Equation 21” was introduced in [6].

Let 𝑉𝑉𝑖𝑖, 𝑖𝑖 ∈ {1, … ,𝑁𝑁}be Lyapunov-like functions, i.e., positive definite functions such that

𝑉̇𝑉𝑖𝑖(𝑥𝑥) < 0 whenever 𝑥𝑥 ∈ 𝑋𝑋𝑖𝑖\{0}. Define 𝑉𝑉𝑖𝑖[𝑘𝑘] as the infimum of all the values taken by

𝑉𝑉𝑉𝑉during the 𝑘𝑘 − 𝑡𝑡ℎ time interval over which 𝑥𝑥 ∈ 𝑋𝑋𝑖𝑖. Then, if the system satisfies the

sequence non-increasing condition 𝑉𝑉𝑖𝑖[𝑘𝑘 + 1] < 𝑉𝑉𝑖𝑖[𝑘𝑘], for all 𝑘𝑘 ∈ ℕ, asymptotic stability is

guaranteed. [5]

Figure 2.7: schematic of a gain scheduled scheme for UAV control8. [5]

The above example illustrates the use of Lyapunov techniques in synthesising

controllers. In general, given the system 𝑥̇𝑥(𝑡𝑡) = 𝑓𝑓�𝑥𝑥(𝑡𝑡)�, and a positive definite Lyapunov

candidate, the Lyapunov synthesis approach of creating robust exponentially stable

controllers can be summarised as follows: let 𝑉̇𝑉(𝑥𝑥) = 𝑔𝑔(𝑥𝑥,𝑢𝑢), find a control function 𝑢𝑢(𝑥𝑥)

such that 𝑉̇𝑉(𝑥𝑥) < −𝜖𝜖𝜖𝜖(𝑥𝑥) for some positive constant 𝜀𝜀.

Robust methods for Lyapunov based control synthesis are discussed in [8]. Furthermore,

[9] provides an output feedback control algorithm for a system with switching dynamics.

Linear Parameter Varying (LPV) systems’ framework leads naturally to the design and

analysis of controllers based on a UAV dynamics representation via linearisation across

8 The controller’s selector box decides which linear controller is to be used based on measured system states.

34

multiple equilibria. Gain scheduling based LPV control synthesis techniques have been

studied for flight control, and conditions for stability have been established. [5]

2.4 Practical Non-Linear UAV control strategy, CPWL Mathematical model

and controller approximation

Moving from the previous description of a few strategies for AUAV control design, in

order to evaluate the complexity of a non-linear AUAV control, the “CPWL control strategy”

is taken as an example.

Achieving a CPWL control algorithm may be a very intricate task, and it is the final

result of many working steps. The first step is to create a mathematical model capable of

describing the system’s dynamics during the flight operation. The second step is the test of

those mathematical models through the use of powerful simulations software (e.g. “Matlab”).

The use of comprehensive simulations increases the reliability of mathematical models and,

supports the transition to the design of CPWL control algorithms. For a CPWL control

algorithm, it is intended a control algorithm that is achieved according to the “continuous

piecewise linear models” principles and implementation technique.

The equations previously shown are at the base of the mathematical models that describe

the AUAV flight dynamics. Models have been developed by [2] for controlling a specific

aircraft adapting the basic flight equations. These models are tailored to the physical

characteristics of the vehicle. Indeed, this operation requires the investigation of all the

unique coefficients associated with the vehicle, which are indispensable for the flight control

equations’ solution.

For the mathematical modelling, the Author appreciates the use of “Maplesoft Maple”

(a commercial computer algebra system developed and sold commercially by Waterloo

Maple Inc.). This affirmation is motivated by the capability of “Maplesoft Maple” to manage

“symbolic computations”. In fact, once that all the equations are written, it is possible to

generate the “CompleteSystem”, as shown in the “Figure 2.8” example.

35

Figure 2.8: “Maplesoft Maple” code extract.

According to the theory of the non-linear differential system shown before, the CPWL

controller design passes by the controller’s “Affine Function” (called “F”). This function is

determined through a series of iterations, as illustrated in Figure 2.9.

Figure 2.9: MAPLE code extract.

The function “F” is the output generated by “Maplesoft Maple” and should be exported

to Matlab, which will use that function as input for the generation of the CPWL controller’s

parameter.

36

As the complete “Affine Function” could be very complicated, it may require a too-large

computational power (Matlab may generate a control algorithm, which may result too heavy

for a conventional MCU), and it is recommended to simplify the model that should produce

a steepest simplification of the CPWL parameters.

The first simplification taken into consideration is to develop the “Affine Form” in the

following equations.
𝐶𝐶𝐷𝐷 = (0.0027 ∙ 𝐶𝐶𝑙𝑙2 + 0.017) + 𝐶𝐶𝐷𝐷𝐷𝐷𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

(Equation 27)

𝐶𝐶𝑙𝑙 = 𝐶𝐶𝐿𝐿𝐿𝐿 ∙ 𝛽𝛽 + 𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝐴𝐴𝐴𝐴𝐴𝐴 + 𝐶𝐶𝐿𝐿𝐿𝐿𝐿𝐿𝑅𝑅𝑅𝑅𝑅𝑅 +
𝑏𝑏

2𝑉𝑉𝑡𝑡
�𝐶𝐶𝐿𝐿𝐿𝐿𝑃𝑃 + 𝐶𝐶𝐿𝐿𝐿𝐿𝑅𝑅�

(Equation 28)

The purpose is to avoid quadratic or any other function different than linear (in the

original system’s controls, there is one control with a quadratic behaviour).

The next simplification operation may consist of the simplification of the winds

reckonings and their coordinate transformation. The wind measures, taken in the coordinates

𝐸𝐸 𝑁𝑁 ℎ and then transformed to 𝑋𝑋 𝑌𝑌 𝑍𝑍, present their influence on the relative velocity of the

aircraft. The simplification consists of the assumption: the winds are not measured, and they

appear in the form of white noise (this make it possible to delete the change of coordinates

of the winds and work directly with winds in 𝑋𝑋 𝑌𝑌 𝑍𝑍). [2, 5, 10, and 11]

At this point, the simplified model can be exported9 and may become Matlab’s algorithm

input. The “CPWL algorithm” is the result of a specific process, where a tailored “Matlab

toolbox” (for the CPWL algorithm generation) computes the input mathematical model

(Maple’s exported model or “Matlab input”). The outcome, the “CPWL Algorithm”, to be

functional shall be translated into C-Code (or VHDL if it is used an FPGA), using the

dedicated Matlab’s tool. Generated C-Code is raw and needs a final configuration; this may

vary in function of the MCU and its specific environment tool (such as MPLAB, IAR, Keil,

etc.). The final step includes the MCU programming and debugging operation.

2.5 Neuro-Fuzzy Logic for UV and Robotic applications

When fuzzy systems become popular in industrial applications, many engineers

perceived that developing a fuzzy system with excellent performance might not be a

9 The model processed by “Maplesoft Maple”, shall be exported in Matlab through a dedicated GUI’s tool.

37

straightforward task. The problem of attaining membership functions and appropriate

weighted rules is frequently a laborious and exhausting process of attempts and errors. This

lead to the idea of employing learning algorithms in fuzzy systems. The neural networks that

have robust learning algorithms were offered as an alternative to automate or assist the

development of tuning fuzzy systems.

Methods for fine-tuning the fuzzy logic controllers are an evolution of fuzzy logic. A

neuro-fuzzy controller uses the neural network learning techniques to tune the membership

functions while preserving the semantics of the fuzzy logic controller intact. In conclusion,

neural networks offer the possibility of solving the problem of tuning.

 AI, Learning-Based Control

“Learning-Based Control” (LBC) is an alternative approach to control an Unmanned

Vehicle and could be based on a hybrid neuro-fuzzy network tuned by a genetic algorithm.

Practically the system uses the available parameters, or digitally processed differential

parameters, as inputs of a specific fuzzy membership function.

The fuzzy system (MIFs, MOFs, FIS, etc.) could be processed in a dedicated neuro-fuzzy

network. Subsequent interaction of neuro-fuzzy modules and genetic algorithms produce a

neuro-fuzzy controller tuned by a genetic algorithm10. The training system produces a more

elaborated and accurate “Fuzzy Inference System” (FIS).

Usually, a hybrid neuro-fuzzy controller uses a combination of several layers, and only

two of them will be entirely readable because inner layers, as usual for a neuro-fuzzy system,

are the neuro-fuzzy hidden layers.

The first layer contains all “Membership Input Functions” (MIFs), which for a UAV

controller could be divided in:

• Flight dynamics membership functions;

• Trajectory membership functions;

• Energy estimation membership functions.

10 Such iteration is the training process of the fuzzy logic control unit, by a genetic algorithm.

38

Figure 2.10: neural network blocks scheme representation.

Each MIF activates a specific group of neurones, and each membership function

activates the “Status neurone”; neuro-fuzzy training (achieved into hidden layers) defines

features and weights of the second layer neurones network.

Figure 2.11: hybrid neuro-fuzzy network, hidden layer representation.

The second network (described in “Figure 2.11”) activates the output layer, which may

be associated with an array of actuators and with a powertrain. The successive step of the

controller’s design process is the definition of the “defuzzification method”. The designer

shall select the most appropriate between various methods and techniques; the most

commonly used is the “Center of Area” method.

39

 Data capture for the training process

 There are many methods and techniques to achieve the learning system; for the study

case, one robust strategy could be the collection of data during several human-piloted flights.

Data collection could be achieved as the UAV is guided via remote control (RC) through

an area defined as the “selected environment”, which is either the actual environment in

which the UAV will operate or is a near facsimile of that environment. Therefore, appropriate

hardware is required to provide the RC aspect of the learning process. The operator guides

the UAV through a series of flight manoeuvres (such as the take-off, landing, and any other

significant manoeuvre) to establish a base and bias pattern for the algorithm. The on-board

data collection algorithm should be designed to capture both digital and analogue readings

from the UAV sensor array during the allocated learning period “Tlearn”, during which time

the received data is stored within the on-board memory chip. “Tlearn” must not exceed the

MOB maximum as in Equation 29. [12 and 13]

𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 < �
𝑀𝑀𝑀𝑀𝑀𝑀 × 106

�(𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑 × 1) + (𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎 × 2)� × 𝑆𝑆𝑝𝑝𝑝𝑝 × 𝑆𝑆
�𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀

(Equation 29)

Where:

𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = Maximum run time.

𝑆𝑆𝑆𝑆𝑆𝑆𝑑𝑑 = Digital Sensors (1 or 2 bytes per sample).

𝑆𝑆𝑆𝑆𝑆𝑆𝑎𝑎= Analog Sensors (generally 2 bytes per sample).

𝑆𝑆𝑝𝑝𝑝𝑝 = Samples per second.

𝑆𝑆 = Number of seconds.

𝑀𝑀𝑀𝑀𝑀𝑀 = On-board memory Mbytes.

Collected data consists of raw sensor data from the UAV sensor array and should be

processed through a selected genetic algorithm11. The process might be referred to a batch

learning because it could be analysed using the “Delta Rule Method” after the data has been

collected. The “Delta Rule” is illustrated by “Equation 30” and, in its purest form, as

pronounced by [14].

11 An example case may be the Aforge.net C# framework, which is purpose-designed for developers and researchers in the fields
of Artificial Intelligence, neural networks, genetic algorithms, machine learning and robotics among other things)

40

∆𝑊𝑊𝑖𝑖𝑗𝑗𝑥𝑥
= −𝜀𝜀

𝛿𝛿𝛿𝛿

𝛿𝛿𝑊𝑊𝑖𝑖𝑖𝑖

= 𝜀𝜀𝜀𝜀𝛼𝛼𝑖𝑖𝑥𝑥

(Equation 30)

Scrutinising “Equation 30”, it can be seen that the change in any particular weight is

equal to the products of:

• the learning rate 𝜀𝜀;

• the difference between the target and actual activation of the output node 𝛿𝛿;

• the activation of the input node associated with the weight in question.

A higher value for 𝜀𝜀 will inevitably result in a greater magnitude of variation. Because

each weight update has a physical limit for the error’s reduction, many iterations are required

in order to minimise error satisfactorily. In batch mode, the value of “Equation 31”,
𝛿𝛿𝛿𝛿𝑝𝑝
𝛿𝛿𝑊𝑊𝑖𝑖𝑖𝑖

(Equation 31)

is calculated after each sample, and it is submitted to the network with the total derivative

equation (“Equation 32”) calculated at the end of an iteration by summing the individual

pattern derivatives. When this value is calculated, it is possible to update the weights.
𝛿𝛿𝛿𝛿
𝛿𝛿𝑊𝑊𝑖𝑖𝑖𝑖

(Equation 32)

As long as the learning rate epsilon is small, batch mode approximates gradient descents.

[12, 13 and 15]

41

3 Typical Architectures for Electric Vehicles

Autonomous Unmanned Vehicles (AUV) development (and evolution) is rigorously

connected to the vehicles electrification process. Part of the Author’s researches also analyses

this process, using automotive applications as a significant study case.

The automotive market’s electrification process is in constant growth, and the

expectation is that the incoming regulations will strengthen the trend. In fact, across the globe,

numerous cities and countries are opting for severe “Diesel Combustion Engines” limitation

in the urban areas and, in a few cases, some substantial limitations as well as for “Petrol

Combustion Engines”. The E-Mobility process is going to affect the whole urban transport

(private and public), this means that in the function of the vehicle’s application a specific

architecture will be used in order to satisfy the new regulations at the lowest production cost.

3.1 Automotive Regulations/Standards Overview

Scrutinising the EV/HEV electrical architectures and the annexe legislation, the most

relevant regulation to highlight is the “UN/ECE-R100”. This regulation defines the main

requirements in terms of electrical safety and makes a clear architecture distinction in the

function of the vehicle’s battery configuration (topology, technology and voltage). It is

imperative to highlight the following scopes of UN/ECE-R100:

• safety requirements with respect to the electric powertrain of road vehicles of

categories M and N1, with a maximum design speed exceeding 25 km/h,

equipped with one or more traction motor(s) operated by electric power and not

permanently connected to the grid, as well as their high voltage components and

systems which are galvanically connected to the high voltage bus of the electric

power train;12

• safety requirements with respect to the “Rechargeable Energy Storage System”

(REESS), of road vehicles of categories “M” and “N” equipped with one or more

traction motors operated by electric power and not permanently connected to the

grid.13

[16]

12 UN/ECE-R100 Part I - this regulation does not cover post-crash safety requirements of road vehicles. [16]
13 UN/ECE-R100 Part II - this regulation does not apply to REESS(s) whose primary use is to supply power for starting the engine
and/or lighting and/or other vehicle auxiliary’s systems. [16]

42

Automotive legislation, regulations and standards are in constant evolution in order to

stay in line with the continuous technological progression of the automotive industries.

Modern automotive standards compliance is becoming day by day more challenging due to

the increasing complexity of new vehicles (especially for HEVs and EVs), due to the amount

of “computational power”14 installed on the new vehicles and due to the safety role associated

with the functions performed by the vehicle’s ECUs. Particularly relevant are the new

“ADAS” functionalities installed on modern vehicles.

In this scenario, ISO 26262, which is an adaptation of IEC 61508, compliance represent

a goal that every major automaker cannot miss, even more, for what is inherent to the security

of new HEV/EV.

A wide range of variables influence the “SECURITY LEVEL”, which “ISO 26262”

defines as “ASIL LEVEL”, which shall be associated with each ECU’s and system’s

function. The target “ASIL LEVEL” imposes design rules, component level selections

guidelines, software validation procedures, hardware tests and hardware validations

protocols. The highest “SECURITY LEVEL” is defined as “ASIL LEVEL D” (represents

the highest safety standards for automotive components/functions), generally associated with

particular critical15 functions.

 It follows a short resume of a few prominent automotive standards.

14 The amount of data exchanged across the vehicle between the vehicle’s ECU is exponentially increasing. It is due to two factors:
the increasing number of ECUs installed on the vehicle and the increasing amount of data broadcasted by the vehicle’s ECUs. It is
essential to annotate that each ECU is fitted with at least one modern automotive MCU (continuously growing in terms of
computational power and functionalities) and, often with a combination of multiple MCUs and FPGA. It is obvious to highlight
the safety challenge to secure such amount of data exchanged between within each ECU and across the vehicle.
15 Breaking, Torque Control, Power Steering, etc.

43

Reference Title Published

ISO 26262 Road vehicles – Functional safety 2011

IEC 61508 Functional Safety of Electrical/Electronic/Programmable
Electronic Safety-related Systems (E/E/PE, or E/E/PES)

1994

ISO 16750 Road vehicles—Environmental conditions and electrical testing
for electrical and electronic equipment

2006

IEC 60950 Information technology equipment - Safety 2005

ISO 12405 Electrically propelled road vehicles — Test specification for
Lithium-Ion traction battery packs and systems

2011

IEC 62660 Secondary Lithium-Ion cells for the propulsion of electric road
vehicles

2010

UL 2580 Batteries for Use In Electric Vehicles 2013

SAE J2464 Electric and Hybrid Electric Vehicle Rechargeable Energy
Storage System (RESS) Safety and Abuse Testing

2009

SAE J2929 Electric and Hybrid Vehicle Propulsion Battery System Safety
Standard - Lithium-based Rechargeable Cells

2011

IEC TS 61851 Electric vehicle conductive charging system 2017

Table 3.1: automotive standards summary.

3.2 Low Voltage Electric Vehicles Architecture

[16] clearly defines the “Low Voltage Architecture” as the system that utilises a REESS

with a maximum operative voltage below 60 VDC.

This architecture is predominant in the ultra-light, light and low power vehicle’s

segment. Its simplicity and its superior cost-efficiency make this architecture the most

popular solution for vehicles having a powertrain’s power rating below 15 kW.

This configuration’s main advantage is: it is not required reinforced galvanic isolation

between the REESS and the vehicle’s chassis16. Below a “Low Voltage Architecture”

representation17.

16 Since that vehicle’s chassis is electrically connected to the negative pole of the secondary battery (12V or 24V), any electrical
device, such as vehicle’s ECUs, installed are referenced to the vehicle’s chassis.
17 The block diagram refers to a conventional system architecture applicable to light and low-power vehicles.

44

Figure 3.1: EV “Low Voltage Architecture” representation.

3.3 High Voltage Electric Vehicles Architecture

[16] allows the use of the “High Voltage Architecture” for passengers and commercial

vehicles under strict conditions. Where “High Voltage” means the classification of an electric

component or circuit, if its working voltage is greater than 60 VDC ([16] does not allow the

use of working voltage above 1500VDC) or greater than 30Vac ([16] does not allow the use of

working voltage above 1000Vac).

[16] makes mandatory the introduction of reinforced galvanic isolation18 between the

“High Voltage REESS” and the vehicle’s chassis on which is connected the negative battery

pole of the vehicle’s “Low Voltage Battery” (thus each vehicle’s “Low Voltage” device and

circuit).

The main advantages of operating in “High Voltage” are:

18 Please refer to UN/ECE-R100 (particularly to the section 5.1.3.2) and to the IEC60950.

45

• reduced current flow and the relative use of small cable cross-section19;

• increased E-Motor performances (in particular power density and efficiency);

• E-Motor size/weight reduction.

What presented is the most popular architecture for EVs in the segment of passenger

vehicles and heavy-duty with a powertrain power rating above 15kW. Currently, there are

many REESS designs on the market; most commons are:

• approximately 200VDC “NiMH Battery” with a bidirectional DCDC that

generally fixes powertrain’s operative voltage up to 600VDC;

• 200VDC to 400VDC “Lithium-Ion Battery” directly connected to the powertrain;

• 200VDC to 400VDC “Lithium-Ion Battery” with a bidirectional DCDC that

generally fixes powertrain’s operative voltage up to 800V;

• 600VDC to 820VDC “Lithium-Ion Battery” directly connected to the powertrain.

Figure 3.2: EV “High Voltage Architecture” representation.

19 Considerable advantages in terms of weight reduction, power cables cost reduction and utilisation of power cables with
considerable higher mechanical bending flexibility;

46

3.4 Hybrid Architecture variants

The HV evolution during the last decades brought to the automotive market a few

architecture’s variants. This process has its roots in the always popular objective for the

automotive OEMs industries: vehicle cost optimisation. In truth, what may be effective in a

particular vehicle’s segment most likely will not give any economic advantage for a vehicle

of a different segment. Typical HV topologies are:

• Full Hybrid (or Hybrid Electric Vehicle - HEV);

• Mild Hybrid (MHEV);

• Hybrid Plug-In (PHEV).

 Hybrid Electric Vehicle (HEV) Overview

A Hybrid Electric Vehicle (HEV) uses the combined efforts of both a combustion engine

and a battery-powered E-Motor to drive the vehicle. The work of driving the vehicle is

distributed between the two propulsion sources in the best way possible at any given time.

For instance, the E-Motor can give the vehicle a boost of power, feasibly while climbing

a hill, without burning additional fuel. The vehicle may also be able to drive for brief periods

solely in EV mode, with ICE switched off.

The electric motor’s power is produced by a built-in generator, or by the traction E-

Motor, and then stored in a REESS. In an HEV, all power is generated on-board, and there is

no plugging-in possible. The system charges the battery in two ways. Firstly, the combustion

engine drives the electric motor (or a dedicated generator) to charge the battery. The second

method is through regenerative braking, where the system utilises the E-Motor as a “power

generator”.

By definition, a Full Hybrid or HEV utilises a “High Voltage REESS” and complies with

the safety standards and automotive regulation previously disserted (ISO26262, [16],

IEC60950, etc.). At the moment, this is the most popular Hybrid topology; the best example

for this topology is the TOYOTA Hybrid Synergy Drive (HSD)20 architecture.

20 Hybrid Synergy Drive (HSD) is the Toyota Motor Corporation hybrid car drivetrain technology brand name. It is the most

popular hybrid system in the world and has sold more than 12 million units since the Prius was launched in Japan in August 1997.
Currently, each year Toyota Group produces more than 1.5 million hybrid vehicles. HSD technology produces a full hybrid vehicle
which allows the car to run on the electric motor only, as opposed to many other brand hybrids which cannot and are considered
mild hybrids. The HSD combines an electric drive and a continuously variable transmission (CVT). The Synergy Drive is a drive-
by-wire system with no direct mechanical connection between the engine and the engine controls: both the gas pedal/accelerator
and the gearshift lever in an HSD car merely send electrical signals to a control computer. HSD is a refinement of the original
Toyota Hybrid System (THS).

47

Figure 3.3 TOYOTA’s Hybrid Synergy Drive.

Since 1997, Toyota pioneered a full hybrid system that consists of six primary

components:

a) Internal Combustion Engine (ICE);

b) CVT Gearbox;

c) electric motor;

d) electric generator;

e) power control unit;

f) power split device that uses a particular type of gearbox to smoothly distribute

power from the ICE, electric motor and electric generator;

As a complete system, HSD is a bright, reliable, and robust fuel-saving technology that

seamlessly (and automatically) switches between electric power and conventional engine

power. Proficient in adapting to different driving conditions, HSD effectively controls the

power coming from both sources and tells the car how to combine them for the highest

efficiency and performance.

As its name suggests, the system delivers tangible synergy between the two power

sources. When the engine is running, it charges the battery via the generator; when driving

conditions allow it, the generator can cut out the ICE and let the electric motor take over for

zero-emissions travelling. The sophisticated engine management system can sense when the

48

car is stopped and will switch off the engine to conserve power and cut emissions,

automatically starting up again when needed.

Traction control diverts energy back to the battery, where it is recycled, every time the

user requests a vehicle deceleration. Instead of the energy being lost as heat or noise from the

brakes, it is captured and used to power the electric motor later. It is incredibly efficient in

stop-start traffic, where the system recovers and stores a considerable amount of energy,

increasing the vehicle’s efficiency. This approach, as well, reduces the emissions of

microparticles generated by the mechanical interaction between brake pads and brake disks.

The HSD's peculiarity is the particular ICE with a slightly different engine cycle than

the conventional Otto-type four-stroke cycle. Called the Atkinson cycle21, this modified four-

stroke cycle produces less heat, and it is, consequently, more efficient.

A general-purpose HEV system that may be a great study case is the ZF System

developed for various car manufacturers. As may be observed in Figure 3.5, this solution is

very flexible and aims to efficiently adapt the conventional FR-ICE vehicle structure (front

engine-rear traction vehicle) to an HEV. In contrast with HSD, this solution uses only one

electric motor embedded in an integrated transmission. This integrated transmission, which

includes an E-Motor and an automatic gearbox, is installed between the ICE and the drive

shaft. This solution allows to mechanically disconnect the engine (and switch it off) from the

transmission while the electric motor may, for example, perform a regenerative braking

operation or, most simply, spin the drive shaft.

21 The Atkinson-cycle engine is a type of ICE invented by J. Atkinson (1882) to increase fuel efficiency, although if compared to
the conventional Otto cycle engine, it results capable of lower power density. Toyota’s variable valve timing solution is a very
reliable, fuel-efficient oriented design.

49

Figure 3.4: FR HEV configuration.

Figure 3.5: BMW HEV architecture.

50

 Plug-In Hybrid Electric Vehicle (PHEV) Overview

Except for the fact of having a few core enhancements, PHEV architecture is very similar

to the HEV architecture. In contrast with an HEV, the PHEV has an on-board battery charger

(OBC), which allows the vehicle of being charged from the grid.

Usually, the REESS capacity of a PHEV is between the HEV and the EV REESS

capacity, and this allows PHEV to drive in “zero-emission mode” for a considerable distance

(depending on the vehicle may be above 40 km).

 Mild Hybrid Electric Vehicle (MHEV) Overview

The operational principles of MHEVs are very similar to the operational principles of

HEVs. The main difference between MHEV and HEV is the vehicle’s REESS and the E-

Motor's design strategy. By definition, an MHEV utilises a small “Low Voltage” REESS,

while the HEV utilises a “High Voltage” REESS. The lower REESS capacity and relatively

low operating voltage limit the power rating of the E-Motor, which is generally rated below

the 15kW.

As for the previous example of “Low Voltage EV”, the “MHEV” is usually a low-cost

hybrid solution that generally targets the compact size vehicles market.

3.5 Example of 48V REESS with Boost Voltage Converters

Although not popular as the previous ones, a particular EV architecture is characterised

by a “Low Voltage” REESS and a “High Voltage” E-Motor. It is gaining the attention of a

few debates in the automotive industries due to the availability on the market of always more

performing “WBG Power Semiconductors”. New WBG devices, which can work with very

high switching frequencies compatible with the planar Transformers/Inductors technology,

make it possible to build very efficient small form-factors bidirectional DC/DC. This

architecture’s main advantage is to reduce the vehicle’s hazards restricting the “High

Voltage” operations only when the vehicle is in a “DRIVE MODE”. As soon as the ignition

key is “OFF”, all DC/DC converters will be disengaged, and as soon as the “High Voltage

DC-link capacitor” will be discharged, no “High Voltage” will be detected on the vehicle.

What described represents a significant advantage for the vehicle service procedures and the

passenger’s safety in case of a vehicle’s “fault” or “crash event”.

As for the previous examples of “Low Voltage EV” and “MHEV”, this specific study

case may target the compact size vehicles market.

51

Figure 3.6: EV with a “Low Voltage” REESS and a “High Voltage” E-Motor.

3.6 Electric Vehicles Power Converters

Currently, e-Mobility (Vehicles) and Industrial Service Hybrid Robots (Factory ISH)

applications are becoming progressively more accessible, and a significant evolution is

occurring for the power electronics parts of these systems. Constant growth in terms of

quantities of vehicles produced and power ratings of vehicles, emphasises the development

of new, more efficient, more cost-effective and with higher power density traction inverters.

It is possible to identify two primary design strategy: discrete power elements design and

power module design.

 Discrete Power Elements design

A low-cost oriented design would most likely look to a traction inverter design realised

with discrete power elements. Indeed, this strategy will sacrifice the power density, life

expectancy and the power electronics elements switching frequency favouring a cost-saving.

Although, the installation on a PCB (as for Figure 3.7 and Figure 3.8) of many discrete

components per switch is generally necessary to match the E-Motor power ratings [17].

52

A remarkable study case is the first generation of “TESLA” EV powertrain shown in

Fig. 3.7, which uses 14 x IGBT discrete elements per every single inverter’s switch in order

to drive the required current to the mated E-Motor. To achieve such high current ratings, it is

usually necessary to connect additional laminated bus bars to the PCB, which results in

increased weight and higher vulnerability to vibration. To ensure the appropriate electrical

and thermal connection between the PCB and bus bars, bespoke connections (joints) are

usually indispensable22. [17]

Figure 3.7: TESLA integrated powertrain.

The TESLA’s powertrain displays a fascinating mechanical design. It utilises three

“Power PCBs”, one for each motor’s phase (shown in Figure 3.8), with the motor positioned

within the cavity achieved by the triangular formation of the “Power PCBs” (shown in Figure

3.7). On every “Power PCB”, there are 28 IGBTs installed and, the electrical connection of

these power element forms a half-bridge inverter. Each IGBT is thermally connected to its

22 At each point, the pressure is achieved by a fixing element that ensures the contact between the surfaces of two conductive parts.

53

cold plate (heatsink), and the PCB applies a force to the cold plate in order to ensure the

thermal connection between each IGBT and the cold plate.23 [17]

Figure 3.8: TESLA Model S half-bridge inverter power PCB.

 Critical issues on Discrete Power Elements Power PCB

E-Mobility vehicles must comply with a wide range of several safety requirements,

ensure a minimum product lifetime, and provide fail-safe mechanisms in case of a fault. In

the majority of cases, the vehicle’s DCU and traction inverters can guarantee a high level of

safety as well as being able to prevent catastrophic faults24. [17]

Studies to address the issues related to the forces that the Power PCB applies on the cold

plate have been made by the Author. Typically, there is a “Thermal Material”25 between the

component and the cold plate, which needs to be compressed accordingly. A lack of

compression will increase the thermal resistance between the component and cold plate, or

additionally, excessive compression may trigger an insulation fault, as shown in Figure 3.9.

[17]

23 The action is performed by an optimised array of mechanical screws, accordingly selected. This ensures a uniform force applied
from the top side of each IGBT to the cold plate.
24 A fault on the Power PCB may occur in many circumstances, more likely due to a collision, lack of insulation or of some other
external event.
25 This material is generally a “Gap Pad” or “Thermal Paste”, the advantage of using the “Gap Pad” lies on its reinforced galvanic
isolation capability.

54

Nano-piezo electric sensors might act as safety feedback and monitor the existence of a

correct thermal connection because it may detect if an appropriate compression is applied

(power electronics devices to the cold plate26). [17]

Figure 3.9: example of excessive compression fault [left] and vertical section of a study case “Power PCB” [right].

A Common “Power PCB” is manufactured in layers, constructed mainly by copper films

and FR4’s variants, and it is possible to bend the PCB at specific points when not symmetrical

and not uniform forces are applied. Uniformity of force spread is necessary to prevent

inappropriate mechanical stress on the PCB and achieve an excellent thermal connection

between the cold plate and power components.

In this kind of PCB, a single element that does not establish a good enough thermal

connection will most likely trigger a system fault. Consequently, a power stage fault may

have catastrophic consequences on other systems directly connected with the traction

inverter, such as the vehicle’s REESS. [17]

 “Power Module”, Benefits for Electric Vehicle Power Converters

“Power Modules” based power electronics systems are the most popular design choice

for modern EV, HEV, and PHEV. Its popularity has its roots in the following factors:

• limited space available;

• power requirements;

• traction inverter life expectancy (warranty).

26 Thus, a contact IGBT’s heat-sinks to the cold plate.

55

In order to reach a high switching frequency with low switching losses, a package design

targets the lowest stray inductance for both the module and the system-level bus-bar design.

A common approach is to use a low-inductance, overlapping planar structure.

“Direct Bonded Copper” (DBC) substrates have become an essential electronic circuit

board for multichip power semiconductor modules. They replace complicated assemblies

based on lead frames and refractory metallised substrates due to ease of assembly and the

low-temperature coefficient of expansion of DBC, which matches silicon despite thick

copper metallisation. The DBC technology allows the bonding of copper to alumina and

aluminium nitride, fusing copper to copper has been developed to establish efficient water

cooling devices with sophisticated internal microchannel structures for cooling power laser

diodes and other high power density electronics. The continuous demand to satisfy more

stringent requirements for temperature cycling reliability and mechanical stability in

automotive, avionics and space applications result in more investments in new, more reliable

and more performing DBC solutions. [18]

There are four different kinds of ceramic materials that can be bonded with copper foils

by either the DBC or AMB (Active Metal Brazing) process. Each combination of these

insulating materials and joining technologies meets specific demands and is suitable for

different applications. Furthermore, thick printed copper may be an alternative solution for

special applications. According to their physical properties, the costs of metallised substrates

vary widely.

Because of the outstanding performance ratio against cost-efficiency, DBC aluminium

oxide ceramic is the most commonly used substrate. For many industrial applications, the

performance is sufficient to meet the lifetime and the thermal dissipation requirements. If

higher mechanical performance is required, “ZTA” DCB offers an even higher bending

strength, whereas thermal conductivity is comparable to “Al2O3” DCB (due to the direct

bonding process, costs for production are in an acceptable range).

Joining copper foils on highly thermal conductive aluminium nitride can be done

utilising AMB and DCB. However, DCB is a more cost-effective method, whereas “AlN”

AMB shows enhanced thermal cycling performance. Because of the inherent low mechanical

strength of “AlN”, the insulating layer needs to be thick compared to “Al2O3”, ZTA (Zirconia

Toughened Alumina) and “Si3N4”. Furthermore, aluminium nitride DCB (especially AMB)

is quite expensive and mainly used for very high voltage applications. Silicon nitride

combines both superb mechanical properties and enhanced thermal conductivity. However,

56

prices for raw ceramic substrates are still high and, until now, AMB is the only joining

technology applicable for metallisation.

The die improvement imposes a further irreversible trend, and the power losses are

reduced by each new IGBT and new Power MOSFET technology (device’s die). Therefore,

power density increases and die size shrinks over the development time. Recently the

maximum junction temperature increases from 125°C from the past to 200°C. In the future

are expected new material combinations and joining technologies, primarily when a wide

bandgap (WBG) material like silicon carbide (SiC) or gallium nitride (GaN) is used.

This dissertation highlight that in the power semiconductor package technology, there is

still room for improvements. The most commons stacks layer combination, from the die to

case bottom, are already used for several decades. It shows considerable potential for

improvement from the material science perspective. Indeed, it impacts the cost, the

performance, the thermal dissipation and the system’s reliability.

For the best reliability: the substrate, its functional surfaces, the die-attach, and other

packaging materials must be perfectly matched together. Therefore, the fine-tuning of the

material set is mandatory, including a wide range of qualification and intensive FMEAs. [19]

What disserted displays the automotive “Power Module” mechanical design complexity,

which targets to:

• maximise the thermal exchange between each power electronics element (die

form) and the package heat-sink;

• minimise the stray inductance;

• maximise space consumption;

• maximise the system’s reliability;

• minimise the stress on key “Power Module” components (die, wire bonding and,

etc.);

Those efforts are rewarded by the opportunity to obtain the best of performance and

reliability from any power electronics element (Diode, IGBT or Power MOSFET).

Significant limitations27 occurring on traction inverters are associated with the DC-link

capacitor (usually a PP film capacitor).

27 In terms of mechanical design, volume consumption and converter’s forecasted life-time.

57

 Wide bandgap (WBC) Semiconductors advantages for Electric Vehicles

WBC Power Elements are more expensive than the standard “Si” technology, especially

if compared to the IGBT alternatives. The notable advantages of WBC power elements, such

as SiC Technology, are:

• lower losses (higher efficiency);

• higher switching frequency;

• higher junction temperature.

The selection of the correct power element technology for an automotive engineer is the

outcome of a complex process driven by the end application technical requirements. It is

possible to affirm that the SiC technology main advantage is the possibility of using a higher

switching frequency, which enables the design of smaller E-Motors because it is rated to a

much higher frequency. Therefore, the use of a higher switching frequency implies the size

reduction of the DC-Link Capacitor28.

The possibility of being more efficient and working at junction temperature above 200

degrees Celsius is a significant mechanical advantage on a system vehicle level. There are

gains in terms of components packaging, not only because the traction inverter may be

smaller and more convenient to install within the vehicle, but mainly for the more relaxed

cooling requirements. Since a significant vehicle’s design challenge is to ensure the

appropriate cooling to each component, the combination of lower losses and higher

acceptable coolant temperature produces a substantial cost reduction. Those facts explain

why SiC technology is gaining popularity in every power converter for automotive

application.

3.7 Battery Technology Overview

At the moment, automotive REESS technology represents the main limitation for the EV

breakthrough and the full EVs market quota ramps up. Comparing to conventional

combustion engine vehicles, EVs suffer a technological gap in three key factors, which are:

• REESS cost;

• range and charging time;

• lifetime.

28 Many solutions based on PP film Capacitor and CERA-LINK (TDK) capacitors, demonstrate this opportunity.

58

Observing the technological evolution of Lithium-Ion technology, there is a shred of

evidence that during the last 24 months, ample technological signs of progress have been

achieved in the following areas:

a) cost per KWh;

b) charging cycles;

c) charging capability;

d) discharging capability.

At the moment, OEMs are trying to prioritise the investments in technologies,

potentially, capable of performing super-fast charging of the vehicle’s “REESS” and the

relative infrastructures for performing this operation on a large scale. Automotive OEMs are

targeting to transfer enough energy29 in 15-20 minutes to allow the vehicle to drive for

approximately 200 km.

 PHEV, HEV and EV Battery Cell Chemistry Overview

At the moment, the most popular technologies used by automotive industries to

implement REESS for HEV, PHEV and EV applications are:

a) NiMH;

b) Lithium-Ion (Li-Ion).

The most self-evident intrinsic difference between Li-Ion and NiMH batteries is the

material used. Lithium-Ion batteries are made of carbon and highly reactive Lithium, which

allows high-density energy storage. Nickel-metal Hydride batteries use Hydrogen to store

energy, with Nickel and another metal (such as Titanium) to secure the Hydrogen-Ions

(keeping a lid on the Hydrogen-Ions). Such different chemistry structures implicate

substantial practical differences. A rough comparative parametric summary of both

technologies may be the following.

• Cost: Nickel-metal Hydride batteries, at the moment30, is the less expensive

technology.

29 It means to convoy up to 250KW from the charging station to the EV’s REESS; this requires a cell’s chemistry capable of
allowing charging profile up to 5C.
30 As production of Lithium-Ion cells is currently ramping up, it is expected that the economies of scale will play a role and price
of Li-Ion cells will drop.

59

• Weight: NiMH batteries are larger and heavier than Li-Ion batteries (the density

energy stored is critical in EV and PHEV applications, slightly less for HEV

application, limiting the NiMH technology applications31).

• Power: current NiMH batteries can handle sudden power demands just as

quickly as Lithium-Ion batteries, but the strength of Lithium-Ion cells is their

ability to be charged and discharged more rapidly.

• Energy: Li-Ion technology has higher energy storage density and is less affected

by the memory effect than NiMH technology (this affects the battery’s capacity).

• Durability: both types of batteries are durable, and both have been in use for

years in various applications; this is the one area where NiMH technology has an

advantage32.

Figure 3.10: Toyota Prius HEV Nickel-Metal Hydride Battery (NiMH).

The scrutiny of these two technologies allows the Author to articulate a set of

conclusions. The NiMH battery is currently an integral part of a large portion of HEVs on

the market, while the new EVs and PHEVs use mostly Lithium-Ion batteries. The Li-Ion

battery has the potential of eclipsing the NiMH battery, but it will require a few more years.

31 Obviously, lighter battery packs with higher energy density makes it possible to extend the vehicle range.
32 NiMH batteries are more predictable when it comes to performances.

60

The study case of the standard Toyota HEV NiMH REESS33 appears very intriguing. It

proved to be remarkably reliable in extreme environments during the last decades, especially

during the vehicle cold start. Nowadays, Toyota is offering up to 14 years of warranty on

their HEV NiMH battery pack, and it is common to obtain a prolonged warranty on a similar

kind of REESS from other car manufactures. Li-Ion batteries do not last as long in extreme

temperatures, particularly in hot climates. Presently, there are massive investments efforts to

improve the Li-Ion batteries chemistry to improve performances (especially under thermal

stress) and last as long as the vehicles they power.

 Battery Management System (BMS)

The automotive EV market continues to be constrained by demand for longer range

vehicles, improved functional safety, and decreased charge times and cost. Unlike a single

energy storage element, such as a fuel tank, an EV’s battery pack (or REESS) consists of

hundreds or thousands of individual battery cells working together. BMS is interfaced with

each cell, providing accurate cell measurement from the time the pack is manufactured to its

retirement. Then, reading the remaining energy in a battery is more complicated than

dispensing liquid fuel. While a fuel tank has a fixed dimension and carries fuel which amount

can be estimated with excellent accuracy, an electrochemical storage system reduces its size

and the “in and outflowing Coulombs” cannot be assessed with great accuracy as the battery

ages.

Today’s automotive battery market continues to be not merely cost-driven, but the

demand for longer range vehicles, decreased charge times, and functional safety has

paramount importance. Although, with up to 40% of the sticker price of an EV attributed to

the REESS, performance and lifetime become the crucial factor in an EV’s brand success.

Truthfully, the EV battery design is a very intricate task, where shall be considered a range

of priorities, including price, reliability and, safety. Market burdens are giving challenging

battery management system requirements, demanding the adherence to the highest of

standards with the narrowest of tolerances. Since a battery system is expected to deliver more

than a hundred Amperes with a pedal’s push (it is beneficial to operate at the highest voltage

to be efficient).

33 The batteries in Toyota’s hybrid vehicles are efficient, corrosion-resistant units designed to last, which is why Toyota’s standard
battery warranty is five years or 100,000 miles and can be extended up to 15 years with no limit on total mileage. The batteries are
actual units that have to store sufficient voltage to power the car with no assistance from the petrol engine.

61

However, Lithium-Ion battery cells can deliver only a few Volts and, to extract enough

power, a large number of battery cells shall be connected together in series as one long stack.

The apparent result is that the BMS is responsible for monitoring the EV’s REESS and

managing critical processes such as ensure battery safety, productivity, and longevity.

In fact, the purposes of a BMS are:

• to provide battery safety and longevity;

• to reveal the “State of Function” in the form of the “State of Charge” (SoC) and

the “State of Health” (SoH, capacity);

• thermal monitoring and calibration;

• to indicate the “End of Life” when the capacity falls below the user-set target

threshold;

• to provide cell balancing in multi-cell battery chains34 (the most common

automotive BMS architecture assigns this function to EBMs);

• to provide authentication and identification35;

• to provide communications and diagnostics, BMSs incorporate some form of

communication between the REESS, other vehicle’s ECUs and the charger or the

test equipment36 (communication interfaces to allow the user to access to the

battery for modifying the BMS control parameters or for diagnostics/test

purpose).

In modular design, an EV’s REESS is built with several battery modules connected in

series and parallel accordingly. Electronics are attached directly to each cell in the stack,

broadcasting back voltage and temperature, coordinated with output current. BMS requires a

robust communication interface between the central unit (the BMS ECU) and the peripherals

electronics units (electronic battery monitors, EBMs). It allows a modular design

(architecture), fully extensible for a variety of different customer end applications.

BMS is continuously monitoring the cells, delivering reliable measurement accuracy

over time, temperature, and operating environment; to do that, BMS relies entirely on the

34 Small differences between cells due to production tolerances or operating conditions tend to be amplified during the
charging/discharging cycles and, weaker cells became overstress during the charging causing them to became even weaker until
they eventually fail (it will, most likely, cause premature failure of the whole battery).
35 The BMS also allows the possibility to record information about the cell such as the manufacturers, type designation and the cell
chemistry (which can facilitate automatic testing and the batch or serial numbers or date of a manufacturer which enable traceability
in case of cell failure).
36 A BMS might have a link to another system interfacing with the battery for monitoring its conditions history.

62

information broadcasted by EBMs37, in order to estimate the REESS’s SoC and SoH. Every

cell’s current and temperature must be controlled through a multi-layered algorithm at the

central node (BMS processor)38.

The BMS carefully monitors, controls, and distributes the reliable charge and discharge

of the entire battery system during its lifetime. Precise monitoring of current and voltage

profiles is critical, as overcharging a battery can cause an endothermic reaction (even an

explosion), and undercharging (or a full discharge) magnifies the battery ageing. The quality

and the reliability of the BMS directly impacts the miles per charge that an EV can deliver,

maximizes the REESS lifetime, and, as a result, lowers the cost of ownership. Considering

the investment for the EV’s REESS, the value of BMS performance is clear, and it becomes

even more evident as automotive designers consider warranty (and lifetime) costs. If one cell

dies in a long stack of battery cells, eventually, the whole system may be lost. So, shall be

adequately monitored and managed each cell, every day for the vehicle’s life. Li-Ion cells

cannot be operated to the full extent of their charge and discharge range. They must be kept

in a particular range39, as recommended by the manufactures (could be a range between 20%

and 90% or slightly different depending on chemistry), or the cells are weakened. While SoC

is helpful, the readout is incomplete without also tracking the capacity as the battery fades.

Capacity is the primary indicator of battery SoH and should be part of the BMS

functionalities. Knowing SoC and SoH, it is possible to estimate the “State of Function”

(SoF).

By definition, the battery consists of:

• stored energy;

• the empty portion that can be recharged ;

• the inactive portion that is permanently lost due to ageing.

Rated capacity refers to the manufacturer’s quantified capacity in Ah (Ampere-hours)

that is only valid when the battery is new; available capacity indicates the actual energy

storage capability derived by deducting the inactive part. “SoC” refers to the stored energy,

which also includes the inactive part.

37 The EBM has limitations; it cannot estimate the cell’s capacity effectively. This can be mitigated by adding capacity estimations
on the EBM’s software.
38 Key Values: Accuracy, Reliability, and Stability
39 BMS devices address safety and reliability concerns by providing measurements that ensure each cell is functioning within a
constrained operating range.

63

A BMS is programmed to rated capacity, and it measures the in and outflowing

Coulombs that relate to the available capacity. As the capacity falls, the Coulomb count

decreases, and this divergence enables capacity estimation. The most accurate readings are

possible when computing the Coulombs from a fully discharged battery during a complete

charge or discharging a fully charged battery to the cut-off point. Such clean starts are

occasionally possible, and real-life capacity estimations get entangled over time.

A BMS sets flags when experiencing a full discharge and charge. During a rest period,

an upper-level BMS might calculate SoC on hand of the stable open-circuit voltage and begin

counting the Coulombs during charge and discharge from that vantage point. A few BMS

also look at voltage recovery after removing a load to estimate SoC and (or) SoH.

Although the BMS is very effective in detecting anomalies, it is not that easy to elaborate

even the most predictable health indicator. “Capacity fade” is challenging to estimate because

voltage and internal resistance are commonly not affected. A typical BMS usually responds

to anomalies that lie outside capacity estimation, such as voltage differences among cells

caused by cell imbalances and a change in internal resistance.

A BMS might take the imprint of the “chemical battery” during charging and discharge.

As well, the BMS establishes the “digital battery” that communicates with the user.

Nowadays, the leading automotive industry is targeting superior accuracy, stability and

safety ratings. It is common to observe new EV, PHEV and HEV vehicles BMS targeting

full compliant “ASIL D” systems.

Figure 3.11: ST BMS reference design block diagram.

64

 Application of Fuzzy Logic for BMS

Although there is interest in the topic and fuzzy logic may be a capable control strategy

for the BMS ECUs, at this time, it is not a popular choice for automotive manufacturers.

However, in the future, BMS might combine the information of the “digital battery”

with that information of the “chemical battery” to provide reliable “SoF” data through

advanced learning algorithms, which may allow a BMS to predict an eventual

replacement.

65

4 Theoretical Framework

A learning capable AUAV controller design is the core of the Thesis project; the

Author’s preferences lie in the “fuzzy logic” and “neural networks” arena. However, the

system’s software may lead itself to a whole array of possibilities regarding the choice of

protocol and subsequent proprietary software, the software architecture of the system

becomes the main focus of the proposal.

For many years, fuzzy logic has been a fascinating technology for designers of industrial,

consumer and automotive products. However, achieving the right balance between cost and

performance has not always been easy. Fuzzy algorithms can be executed on low-cost

conventional microcontrollers, but as these have architectures that were not designed to

handle fuzzy logic, the software overhead often makes the performance inadequate.

Dedicated fuzzy processor chips can meet the most demanding performance needs. Today,

only a few full custom (or semi-custom) integrated fuzzy controllers exist, and most of them

are assembled from standard cells at the gate level. [20]

The dissertation starts with the scrutiny of a high-level design approach. The usage of

high-level description methodologies for modelling fuzzy controllers reduce development

time significantly, making a rapid design of custom fuzzy hardware possible. VHDL [21] for

design capture and VHDL based logic synthesis are an efficient method for designing

complex hardware.

However, for describing regular structures like finite state-machines, a different

approach could be more appropriate. For describing such structures, could be used state-

charts. Besides, a commercial tool based on state-charts incorporates a VHDL generation

facility for generating synthesizable code. The employment of state-charts formalism for

capturing a fuzzy control system’s rule base is a widely used approach in the scientific

literature.

Fuzzy controller relies on conventional principles for the interface and the information

exchange. In the controller, an external device’s information (such as a sensor) is converted

into an output control signal to drive a device40 (or multiple devices) via the process of

fuzzification, rule evaluation and defuzzification. These processes are all based on a set of

40 Such as motors, actuators etc.

66

membership functions and the FIS; it is available a vast scientific literature, such as [20, 21,

22, 23, 24 and 25], to support those design processes.

The VHDL assembly of the fuzzy control system and the synthesis to a gate-level

description for Field Programmable Gate Array (FPGA) technology is usually performed

using dedicated tools provided by the FPGA manufacturer (often are available dedicated

open-source compilers).

Although the motivation behind the implementation of a fuzzy controller in VHDL is

driven by the need for an inexpensive hardware implementation of a generic fuzzy controller

for use in industrial and commercial applications. There are several advantages more for this

approach. Field Programmable Gate Array (FPGA) is used as a hardware platform because

FPGA allows very high logic capacity (the amount of digital logic that can be mapped into a

single FPD) [26 and 27]. FPGAs offer more flexibility than ASICs because the chip can be

reprogrammed41, allowing to redesign portions of the system’s circuits for optimisation [28].

With the use of cost-effective FPGA for the implementation of the fuzzy logic controller, it

is possible to fully benefit from the parallel computational capabilities of the fuzzy logic (and

neural networks). [29]

A significant advantage of using an FPGA, after the parallel computational process, is

the possibility of having interchangeable blocks-based software where the objects associated

with each “Rulebase” represent an independent “VHDL component”. For each “VHDL

component”, if a standard porting layout is used, it could be possible to tune the controller

within the main state machine algorithms performing only two operations:

• adapt the algorithm’s objects (adapt or replace at the “Component Level” the

rules, the membership functions, etc.);

• define the new weights of each “Rulebase” (algorithms can be trained42 to

achieve a perfectly tuned system). [29]

This solution enables a dynamic43 FIS tuning via the cloud or a dedicated learning

process typical of the neural network design. Enabling this functionality, it is possible then

to influence the behaviour of a specific “device”, adapting the “controller’s behaviour” to

particular tasks or environmental conditions.

41 FPGA based systems can be reprogrammed several times.
42 It might be used as a pre-defined algorithms setup.
43 It might be seen as a partially DES function.

67

4.1 Study Case Introduction

Neural networks, given their learning ability and adaptability, are applied in areas such

as robotics (Bekey and Goldberg, 1993; Rao, 1995; Zouetal.,2006), image processing

(Carpenter and Grossberg, 1992; Egmont-Petersenetal., 2002; Hongetal., 2009), and speech

recognition (Othman and Riadh, 2008; Lippman, 1988). Within the hybrid systems, the

neuro-fuzzy systems combine both paradigms; on the one hand, the system of linguistic rules

generated by an expert, on the other hand, the learning ability of neural networks applied to

this system. The applications include pattern recognition (Ray and Ghoshal, 1997; Pal and

Mitra,1999), robotics (Rusuetal., 2003; Wongsuwarn and Laowattana, 2006), non-linear

system identification (Babuska and Verbruggen, 2003; Panchariyaetal., 2004), adaptive

signal processing (Li and Tsai, 2006; Chabaaetal., 2009) and, etc. [30]

The study case focuses on the learning process of neuro-fuzzy networks for the control

of a small electric UAV. The project's idea is to move part of the hardware/mechanical design

load, making it as simple as possible, to the controller’s design. The main goal is to study a

technique in order to make it possible to build a controller able to learn and tune itself in

order to control its own flight properly. By assumption, the design employs, as a baseline, a

fly-wing platform for the small UAV mechanical design due to the packaging constraints for

batteries and all electronics. For packaging constraints, it is meant a not optimised design in

terms of size/volume, the outcome of a low-cost hardware/electronics solution, which is

divided into three groups: the central control unit, the actuators’ (E-Motors and SERVO-

Motors) drivers and the battery monitoring unit.

As the main project’s ambition is to implement a parallel computation unit, the “Control

Unit” is assumed to be built around an automotive-qualified FPGA, while the motor drivers

used are low-cost motor driver available on the market. The algorithm’s development strategy

moves from the definition of a few essential fuzzy logic functions used as fundamentals for

the learning process.

For essential fuzzy logic functions, it is meant a set of fundamental “Membership Input

Functions” (MIF), a set of fundamental “Membership Outputs Functions” (MOF) and a

detailed set of “Rulebases” (FIS). Such a primary fuzzy logic controller may perform a

limited flying operation, but to achieve a proper vehicle control, it is indispensable to

perfectly tailor a set of weights for each function of each “Rulebase”. Calling back what

described in “Chapter 2”, in order to define such weights, it is required the full knowledge of

the “UAV Dynamics”. The identification of the weight’s values is associable with the

68

identification of the unique physical parameters of the vehicle; required information (as

described in “Chapter 2”) to solve the “Vehicle’s Dynamic Equations”. This proposed work

aims to overcome the design’s load of defining the “UAV Flight Dynamics model”; by

assumption, the controller’s design is not based on the solution of the “UAV Dynamics

Equations”.

In front of the absence of this essential information, the controller’s key point is the

learning process, which is the outcome of two critical processes: data capture from a human-

controlled flying operation and by the consequent learning/training process, which is a

software-based data computation of the information previously captured.

4.2 Controller’s Framework Definition

As previously introduced, the “Control Unit” receives external devices’ information and

generates the output control signals to drive a device (or multiple devices) via the process of

fuzzification, rule evaluation and defuzzification. Such kind of processes are based on a set

of membership functions and FIS; numerous publications, such as [20, 21, 22, 23, 24 and 25],

illustrate the processes’ details. The first step of the “Control Unit” design is the definition

of the system’s peripherals: the sensors, the actuators and the UAV’s powertrain.

 Controller’s Inputs Definition

By definition, sensors are peripherals capable of detecting pre-defined information

(generally defined as the “controller’s inputs”). Each input is associated with a function and,

if required, a functional safety rating; the application case associates a specific MIF for each

sensor data.

As previously declared, the systems controller’s goal is to replicate the behaviour44 of a

“Human Pilot”; to achieve that, the controller requires the information provided by a set of

heterogeneous sensors. It is reasonable that a “Pilot” might control the vehicle giving more

attention to particular parameters (or sensors) and less attention to others. In the proposed

“controller’s framework”, this “behaviour” is implemented using the primary fuzzy logic

controller’s optimisation process first and then a learning/training process.

It is assumed that the study case system requires the following mandatory parameters:

a) altitude;

44 For a Pilot’s behaviour, it is intended the Pilot’s driving style.

69

b) speed;

c) pitch angle;

d) rolling angle;

e) yaw angle;

f) estimated position;

g) REESS SoC45.

As previously introduced, the strategy to be pursued is to utilise a simplified mechanical

design of a small UAV and to focus on the “neuro-fuzzy learning process”. The assumptions

made on the selection of the controller’s mandatory inputs are coherent with a mechanical

design based on a flying-wing concept46.

 Controller’s Outputs Definition

By definition, an “actuator” is a component of a machine that is moving and controlling

a specific mechanism. An “electro-mechanical actuator” utilises a relatively low power

electrical signal to control the mechanical load. In the proposed study case, each “electro-

mechanical actuator control signal” represents a controller’s output.

In regards to the study case, the controller’s outputs are the following:

• ailerons SERVO-Motors (two units, complementary control);

• Elevator SERVO-Motor;

• Rudder SERVO-Motor;

• Propulsion E-Motors (two independent units).

Indeed, it is assumed that the “controller” has six outputs, although it is more appropriate

to declare that there are five independent outputs since that the two ailerons are controlled by

a single control signal (the ailerons control signal splits into two complementary signals).

This signal conditioning is a digital operation, and it is implemented within the FPGA by a

digital signal processing sub-system.

45 Mostly for safety purposes.
46 This mechanical concept overcomes the REESS and hardware/electronics packaging issues typical of small UAV based on small
RC planes architecture.

70

 Rule Block and Defuzzification

FIS (the fuzzy logic “Rule Block”47) is the controller’s core, which in several specialised

fuzzy logic GUI environments is addressed as a single “Rulebase” or a set of multiple

independent “Rulebases”. Each rule has a unique weight, which defines the importance of

function to function link for the system’s decision-making process. At the beginning of the

“Rulebase” design process, unregulated weights are assigned, according to assumptions made

on the available data. Later the weights can be tuned by a “learning/training process” as a

result of field tests.

 VHDL implementation theory

It can briefly be mentioned that one of the main reasons that influenced the success of

fuzzy systems, neural networks and neuro-fuzzy systems is their ability to approximate

continuous non-linear functions. In this area within the fuzzy systems, the following works

can be cited: Wang (1992), Kosko (1994), Zeng and Singh (1996), Rovatti (1998),

Kreinovichetal (2000), Caoetal (2001), and Landajo et al. (2001). Concerning neural

networks, the following contributions should be highlighted: Stinchcombe and White (1989),

Cotter (1990), Hornik (1991), Attali and Pagès (1997) and, Castro et al. (2000). On neuro-

fuzzy networks, the following references are emphasised: Buckley (1993), Castro (1995),

Jang et al. (1997), Nauck and Kruse (1999), Wang and Wei (2000), and Wu et al. (2010).

[30]

The different applications of soft computing algorithms have been realised on different

supports overtime, depending on the technologies of the moment. The following have been

used: general-purpose processors, dedicated processors, dedicated coprocessors, specific

designs with Very Large Scale Integration (VLSI) integration scales, either analogue or

digital or mixed, up to the current reconfigurable hardware (HW) devices. Use has also been

made up of multi-processor platforms for systems that require high-speed computation and

supporting parallel processing, as in the case of neural networks. The use of one or other

support has been conditioned by different requirements, among others, power consumption,

processing speed, size, portability and cost. [30]

47 The “Rule Block” links accordingly MIFs to the MOFs. It may be seen as a simplified definition of the block.

71

Digital hardware achieved the most crucial development due to the consolidation of

programmable or reconfigurable devices, mainly in the FPGAs. The high integration density

and the power introduced by the parallel structures achieved by this technology have enabled

implementations of fuzzy inference systems with a high number of fuzzy rules, neural

networks with a large number of layers and neurons, including learning algorithms, and

finally, neuro-fuzzy systems based on fuzzy rules and endowed with learning mechanisms of

the same type as those used in neural networks. [30]

In this proposed structure, it is considered that a programmable integrated circuit is a

hardware that a user can reconfigure by means of any specific technique. These are

commercial devices such as FPGAs, where the applications, as in the dedicated ones, are

entirely HW based. One aspect that makes these devices particularly attractive is their ability

to re-programme and the existence of EDA tools that facilitate their design. A recent type of

programmable device called FPAA (Field Programmable Analog Array) can also be

mentioned, which emerged as a commercial option in the 2000s, but in a very low integration

density and with few applications made in the area at hand. [30]

Digital implementations have superior immunity against factors such as noise,

temperature or voltage variation, among others. In contrast, the processing speed tends to be

lower than in ASIC analogue devices, although evolution in integration technologies has

changed this scenario.

In this classification, FPGAs are emphasised because they can be programmed through

circuit design using graphic or, preferably, HW description languages like VHDL (Very

High-Speed Hardware Design Language) or Verilog. Further development of FIS privileges

the FPGAs because of their ability to reconfigure and the low “time to market”. For example,

consulting the “Web of Knowledge - Web of Science”, there are approximately 340 works

on FPGAs only between 1990 and 2012. [30]

A few literature examples of fuzzy and neuro-fuzzy systems build on digital

programmable integrated circuits are:

• Manzoul and Jayabharathi (1992) presented the work “Fuzzy controller on FPGA

chip” (a fuzzy controller expressed as Boolean equations on an FPGA).

• Hung and Zajak (1995) presented the implementation of a fuzzy inference system

on an FPGA in the article “Design and implementation of a hardware fuzzy

inference system”.

72

• Hollstein et al. (1996), in the article “Computer-aided design of fuzzy systems

based on generic VHDL specifications”, presented a development tool for

performing parallel processing architectures48 or sequential rules.

• Blake et al. (1998), in the article “The implementation of fuzzy systems, neural

networks and fuzzy neural networks using FPGAs”, presented three approaches

to “Soft Computing”, but the article will focus on the FIS49.

• D’Amore et al. (2001), in the article “A two-input, one-output bit-scalable

architecture for fuzzy processors”, presented an automatic synthesis of a fuzzy

system with scalability, with either the bits of the I/O variables or the bits of the

membership functions of the I/O (the synthesis process is performed using the

VHDL code).

• Raychev et al. (2005) presented the work “VHDL modelling of a fuzzy co-

processor architecture” (presented a hardware accelerator for fuzzy calculations).

• Hung (2007), in the article “Using FPGA technique for design and

implementation of a fuzzy inference system”, implemented a fuzzy inference

system with the max-min compositional rule with the COG being the

defuzzification method applied.

• Lizárraga et al. (2008), in the article “Modeling and simulation of the

defuzzification stage using Xilinx system generator and Simulink”, illustrated a

defuzzification stage, using the “Height method” (Driankovetal.,1996).

• Fung et al. (2009), in the article “FPGA-based adaptive fuzzy back-stepping

control for a micro-positioning Scott–Russell mechanism”, presented a fuzzy

controller with an error feedback mechanism applied to a micro-positioning

Scott–Russell type (The actuator was piezoelectric).

• Hsu et al. (2010), in the article “Chip-implementation of a self-tuning non-linear

function control for DC-DC converters”, proposed a model-free STNFC design

method suitable for real-time practical applications50.

48 Each FIS consists of three distinct modules: fuzzification, rules of inference and composition/defuzzification. Modules can be
described in C or VHDL. The defuzzification follows the MOA (Midpoint of Area) method.
49 The interest of the article is, taking a non-linear function of three variables, to compare the approximation capacity between the
architecture e on an FPGA and the architecture on Matlab.
50 The system is applied to a DC-DC converter based on an FPGA controlling the duty-ratio of PWM modulator in the DC-DC
converter. The article highlights the following points: STNFC is a system without heavy computational loading, the parameter-
learning algorithm is designed based on the Lyapunov stability theorem to guarantee the system stability, there are successful

73

• Kung et al. (2011) in “Simulink/Modelsim co-simulation and FPGA realisation

of speed control IC for PMSM drive”, implemented a fuzzy-control based speed

control IC for a Permanent Magnetic Synchronous Motor (PMSM).

• Abramson et al. (1998), in the paper “FPGA based implementation of a Hopfield

neural network for solving constraint satisfaction problems”51, described and

solved the N-Queen problem using a Hopfield neural network (used to solve

complex optimisation problems) to demonstrate and solve the potential of a

custom computer-based on FPGA technology.

• Omondi and Rajapakse (2002) published the work, “Neural networks in FPGAs”

in which an approach is made to parallelism and arithmetic, the HW or SW

implementation, and which finally examines a case of Independent Component

Analysis (ICA) (Comon, 1994), implementing an independent component neural

network (ICNN) over the Xilinx XCV812C.

• Kim et al. (2003) presented the article “FPGA implementation of ICA algorithm

for blind signal separation and adaptive noise cancelling” (applied to speech

recognition in noise environments and echo52).

• Ide and Saito (2006) presented the article “FPGA implementations of

neocognitrons” applied to character recognition and biometric measures.53

• Bastos et al. (2006) presented the work “FPGA implementation of neural

network-based controllers for power electronics applications”, where an ANN54

governs a buck converter (step-down DC/DC) based on the behaviour of a SACT

controller (synergetic approach to control theory).

• Hu et al. (2008), in the article “Key issues of FPGA implementation of neural

networks”, give an overview of the different parts and methods involved in the

applications of the STNFC system to control the forward DC-DC converter, and finally, the proposed STNFC methodology can
be easily extended to other DC-DC converters.
51 The paper highlights that in this architecture, first, the weights are small land can be represented using small integers. They also
reduce the carry propagation delays. It means that the hardware responsible for the accumulation can be optimised for small integer
values. Second, the vector product becomes a set of conditional additions without the need to perform any multiplication
operations. Third, the interconnection between neurons is fixed and dictated by the nature of the constraints in the problem.
52 Algorithms of signal separation (blind signal separation) and algorithms of adaptive noise cancellation (adaptive noise cancelling)
were implemented.
53 It describes the implementation of a reconfigurable ANN on a parallel computer architecture based on FPGAs, called REOMP
(Reconfigurable Orthogonal Multi-Processor Memory). On this architecture, Neocognitrons are implemented. A Neocognitron
ANN model is a feed-forward topology proposed by Fukushima (1982), based on the model of Hubel and Wiesel (1968) concerning
the research of the vision from a biological point of view.
54 The ANN chosen had the structure 4–4–1 and was trained to have the high-performance characteristics of the SACT controller.

74

design of the ANNs such as data representation, inner-products computation,

implementation of activation function, storage and update of weights, nature of

learning algorithm and design constraints.

• Shoushan et al. (2010), in the article “A single layer architecture to FPGA

implementation of BP artificial neural network”, presented a back-propagation

ANN design and constructed an application for classifying the defects of the

carbon-fibre reinforced plastic.55

• Mekki et al. (2010), in the article “FPGA-based implementation of a real-time

photovoltaic module simulator”, proposed a multilayer perceptron (MLP) for

simulation and implementation of a real-time PV-module56 on FPGA.

• Hasanien (2011), in the article “FPGA implementation of adaptive ANN

controller for speed regulation of permanent magnet stepper motor drives”,

studied the dynamic response of a PMSM under full load torque and underload

disturbance.57

• Cárdenas et al. (2012), in the article “Development of an FPGA based real-time

power analysis and control for distributed generation interface”, presented the

development and the experimental evaluation of a power control system for a

single-phase grid-connected which has several energy sources connected.58

• Soleimani et al. (2012), in the article “Biologically inspired spiking neurons:

piece-wise linear models and digital implementation”, proposed PWL models

with a fewer number of multipliers for implementations of spiking neural

networks on FPGAs.59

55 A one-dimensional systolic array of the finite impulse response (FIR) filter for the back-propagation algorithm is introduced. All
calculated parameters are stored on a RAM, and the implementation of excitation function (sigmoid) is performed on Look-up
tables. The design is implemented on two FPGAs, and a comparison between the resources used is performed.
56 The evaluation of the performance of a PV-module is based only on meteorological data such as air temperature and total solar
radiation and can be used for prediction of the PV electrical energy output under actual climatic conditions.
57 The evaluation of the performance of a PV-module is based only on meteorological data. The model has been developed and
Simulated under Matlab/Simulink and the optimal configuration has been written in VHDL on ModelSim and then implemented
on an FPGA.
58 An ADALINE network is used for control and synchronisation of the power of the electric network. The learning is performed
by means of the Widrow-Hoff algorithm. The article performs a comparison between the Adaline network and the FFT
implemented off-line on Matlab. The results are similar.
59 The models replaced the operation “square” by comparison or “absolute value”; this means that in digital implementations the
multipliers are replaced by comparators which implies that they can implement a large number of neurons. The network is trained
with a supervised and unsupervised learning algorithm. The results show that: the 91.7% accuracy in the recognition and the
implemented PWL models are significantly faster than the Izhikevich (2003) model with a simple combinational multiplier.

75

• Saadi and Bettayeb (2013) in the article “ABC optimised neural network model

for image deblurring with its FPGA implementation”, try to improve radiological

images degraded during acquisition and processing.60

[30]

Concerning the design flow of a fuzzy system, two different levels may be considered.

The algorithmic level specifies the functional behaviour of the system. The objective within

this level is to define the shape of the membership functions, the implication mechanism, the

“Rulebase”, and the defuzzification strategy that better achieve the proposed system task. At

the circuit level, the designer has to select an efficient system architecture, design the

required building blocks, and verify the temporal behaviour of the system. Therefore, a

design methodology for a fuzzy system has to cover the different design stages, from the

system’s specification up to the system’s prototyping and testing. To accomplish this task,

some authors proposed the use of VHDL as a language to describe and model the high-level

system [31, 32, 33 and 34] and the employment of specific architectures of fuzzy processor

[32, 35 and 36].

 VHDL Modelling theory

VHDL language imposes some limitations if confronted with the versatility and

expressiveness of other fuzzy logic oriented languages (such as XFL3 [37]). On the other

hand, it is crucial to adapt the system’s characteristics (types of membership functions,

inference algorithms, defuzzification mechanisms) to its hardware implementation. [32]

The premise, VHDL will be used as the working platform for the system implies that the

fuzzy system description must be synthesisable (hardware realisations on FPGA). A

synthesisable VHDL algorithm requires to adapt and tune the characteristics of the controller

(types of membership functions, inference algorithms, defuzzification mechanisms, etc.) to

the physical hardware implementation (FPGA printing). [32]

The [32] and the [38] describe the advantages of the high-level descriptions of neuro-

fuzzy systems in an easy way61. To achieve behavioural modelling might be used a VHDL

description style where the system’s definition structure (fuzzy sets, rule base, etc.) and the

operator’s description (connectives, fuzzy operations) are defined separately, making it

60 An autoregressive moving average (ARMA) model is identified using an ANN. The network training is improved using a novel
swarm optimisation algorithm called Artificial Bees Colony (ABC), inspired by the foraging intelligence of honey bees.
61 Linguistic variables, rule base, fuzzy operators.

76

possible to describe both the fuzzy system structure and the processing algorithm

independently. The description format makes it possible to use linguistic hedges in order to

compact the rules defining the system’s behaviour. High-level descriptions’ main advantage

is the availability of tools capable of translating a fuzzy logic oriented language with a GUI

interface into a VHDL code62. [32 and 38]

Proposed work utilises the “XFUZZY XFL version 3.5” (or XFL3) GUI developed by

“Instituto de Microelectrónica de Sevilla (IMSE-CNM)” [38] to describe the fuzzy logic

controller (or the neuro-fuzzy logic controller after the learning/training process) and then

translate this description to a valid VHDL code.

Figure 4.1: proposed design flow.

62 VHDL code could be automatically integrated on specific supported FPGAs or shall be manually integrated by the designer into
the “VHDL Top Level Architecture” that the user uses to describe all other systems’ blocks and interfaces.

77

“Xfuzzy” is a development environment that eases the specification, verification and

synthesis of fuzzy inference systems. XFL3 specification language is the core of the tools

integrated into such described environment [37]. A set of standard functions encased in a

module called the “XFL library” performs the parsing and semantic analysis of XFL

specifications and stores them using an abstract syntax tree. This format is used inside the

environment when handling system descriptions. “Figure 4.1” illustrates the design flow for

the hardware implementation of fuzzy systems.

The starting point of the process is a behavioural description of the system using the

specification language XFL. The verification process is carried out with the help of the

simulation and learning tools provided by the environment.

Once the system specification is validated, the subsequent step is the generation of the

VHDL code from the XFL description. The synthesis tool, called “xfvhdl”, translates the

XFL specification into a VHDL description according to the realisation strategy (behavioural

or structural). In the case of behavioural strategy, “xfvhdl” gives a system description

according to the description style63. It includes a package containing the type and function

definitions. In specific architecture, “xfvhdl” employs a cell library containing the

parameterised VHDL description for the basic building blocks. There are two kinds of blocks:

data path building blocks (implementing the inference algorithm) and control blocks

(controlling the memory write/read operations and the signals which control the operation

scheduling). The code used in the cell library description is compatible with the restricted

VHDL implementations of most synthesis tools. It is essential to highlight that the output

VHDL code is “raw”64, and it is necessary to adapt the code to the end FPGA and the system’s

“state-machine”.

[32] validates the VHDL description using a simulation process (simulator Model-Sim

of Mentor Graphics), then performs the logic synthesis stage65 and then creates66 the circuit

description of the fuzzy system. [32]

63 The behavioural modelling uses a VHDL description style where the system structure description and the operator description
are defined separately, making it possible to describe both the fuzzy system structure and the processing algorithm independently.
64 For “Raw” code it is intended that the generated VHDL describes only the “Architectures” which contains the “neuro-fuzzy
block” without any configuration of the FPGA, this because the XFUZZY XFL3.5 GUI is able to configure only two specific
FPGA; proposed work focuses on a not supported brand and P/N.
65 Such as XST of Xilinx or FPGA Express of Synopsys. [32 and 38]
66 In order to accelerate the development of those two design stages, “xfvhdl” provides two additional outputs: a “testbench file”
to ease the simulation of the fuzzy system and a command script file to drive the synthesis and Xilinx FPGA implementation. The
following architectural options are defined by the user when “xfvhdl” is run: architectural options (memory-based MFCs or
arithmetic MFCs), knowledge-base (predefined using ROM or programmable using RAM), and memory implementation (using

78

The study case, due to the complexity and by the necessities to generate a general-

purpose algorithm compatible with a wide range of potential FPGAs (rather than focusing on

the specific P/Ns supported by the XFL GUI), requires few more intermediate steps. It is

indispensable a manual integration of the generated VHDL algorithm within the whole

system (the main VHDL algorithm, which includes: sensors interface, actuators interface,

powertrain interface, system’s clock, etc.). This operation shall be performed on the adopted

VHDL environment; it cannot be performed on XFUZZY GUI.

The tuning stage is usually a very intricated task when designing fuzzy systems. The

system behaviour depends on the logic structure of its “Rulebases” and the membership

functions of its linguistic variables. The tuning process often exploits the adjustments of the

different membership function parameters that appear in the system definition. Since the

number of parameters to modify (simultaneously) is high, manual tuning is cumbersome, and

automatic techniques are required. The two learning mechanisms most widely used are

supervised and reinforcement learning. In supervised learning techniques, the desired

system behaviour is given by a set of training (and test) input/output data, while in

reinforcement learning, what is known is not the exact output data but the effect that the

system has to produce on its environment, thus making necessary the monitoring of its on-

line behaviour. [38]

[38] shows that the Xfuzzy 3 environment includes four tools for this design stage:

“xfdm” and “xftsp” are knowledge acquisition tools. The first one allows obtaining the

structure of inference systems used as fuzzy approximators or classifiers. In contrast, the

second one primarily focuses on time series prediction applications. “xfsl” is a parameter

adjustment tool based on the use of supervised learning algorithms. In supervised learning

techniques, the system’s desired behaviour is described by a set of training (and test) patterns.

Supervised learning attempts to minimise an error function that evaluates the

distributed or block-type RAM, distributed ROM or combinational logic). The storage strategy for the knowledge base conditions
the VHDL description style of the system modules. The choice between the two alternatives (ROM or combinational logic) depends
on the synthesis tool. Synopsys tools (as an example) will implement the MFC using combinational logic. Nevertheless, the Xilinx
synthesis tool (XST) can detect the ROM structure, and the implementation tool can configure properly the XC4000 and Spartan2E
basic building blocks (CLBs and Slices, respectively). Synopsys tools cannot identify a memory from that VHDL code, but the
Xilinx tool can make two kinds of implementations: using distributed memory, or using block memory (Spartan2, Spartan3 and
Virtex families).
The selection of the synthesis tool and the implementation options are performed as “xfvhdl” command parameters. Option-C
allows the choice between Xilinx-XST (x), Synopsys-FPGA Express (e) or Synopsys-FPGA Compiler. Parameter-M allows a
selection between the RAM memory implementation using distributed RAM (d), block RAM (b), ROM (o) or combinational block.
The “xfvhdl” command admits additional parameters to determine the FPGA device, the synthesis effort level, and the synthesis
optimisation objective (area or speed). [32 and 38]

79

difference between the actual system behaviour and its desired behaviour defined by

the set of input/output patterns. Finally, “xfsp” is a simplification tool that allows reducing

the number of membership functions and compacting the rules bases of a fuzzy system to

facilitate its software or hardware implementation and to increase its linguistic

interpretability. [38]

The tool “xfdm” facilitates the identification of fuzzy systems from numerical data using

different algorithms based on matrix partitioning (Grid Partitioning) or data grouping

(Cluster Partitioning) techniques. “xfdm” can be executed from the command line or through

its graphical user interface using the “Data Mining” option of the “Tuning” or the

corresponding icon in the main window of the environment. [38]

The main window of “xfdm” is divided into two parts. The upper part configures the

identification process, defining: the selection of the algorithm, input/output data file, number

of inputs and outputs, inputs style and fuzzy system style. [38]

The system’s learning and training activities represent the last design process before

generating the final VHDL code67.

67 Which shall be integrated into the main VHDL algorithm before to be synthesised and then printed on the target FPGA.

80

5 System’s Hardware Design Proposal

As previously introduced, the assumption is to use a simplified RC plane mechanical

design as a worst-case scenario for the controller design, where a 3D printed homebuilt

aircraft may be turned into AUAV through the process and the algorithms disserted. The

design uses a twin-motor fly-wing platform as a mechanical baseline for the controller’s

design dissertation. For the proposed work, the electronic hardware configuration proposal

endeavours to perform a few functions, which are:

• to define the core electronics/hardware required by the “Autonomous Flight

Mode Controller”;

• to define the hardware for the neuro-fuzzy controller;

• to define the hardware for the learning/training process.

5.1 Core Hardware Definition

Budget is the main project’s limitation, and the electronic design and prototyping

converge on cost optimisation. This concept is reinforced by the study case assumptions made

previously; as mentioned before, most of the design load moves to the controller’s design. In

order to reduce the cost has been privileged the usage of free sample parts and functional

development boards.

Figure 5.1: HW high-level block diagram.

81

Figure 5.1 describes the block diagram of the employed electronic hardware; the

system’s core unit is the FPGA, which acts before as the system’s gateway (collects and

digital processes all peripherals information) and then acts as the system’s controller

performing a parallel computation of the collected information.

 Control Unit, FPGA

FPGA is the core component of the AUAV control unit, which collect the information

from all the sensors and generates commands for the actuators and the motor drivers. By

assumption, the proposal’s control strategy targets to implement a neuro-fuzzy network,

which, by definition, is a parallel controller. The decision of using an FPGA comes from the

fact that an FPGA has a parallel computation capability while any standard MCU sequentially

executes68 operations. For FPGA’s parallel computation capability, it is meant that the FPGA

allows designing the controller in blocks that will work in parallel and in a symbiosis between

each other. The practical result will be that each MIF will be processed simultaneously and

independently, as well as for each MOF69.

Figure 5.2: FPGA’s peripherals block diagram.

68 It computes the data in a serial loop.
69 Both MIF and MOF use similar integration structures within the controller.

82

For this specific project, the Author advocates the use of a “Lattice Semiconductor”

automotive-qualified FPGA; few factors drive the decision:

a) low unit cost;

b) high reliability;

c) production longevity;

d) free compiler;

e) low-cost debugger/programmer device.

 Digital Motion Sensor

For the implementation of autonomous applications has paramount importance, the

estimation of the vehicle’s orientation. To implement such peripheral, it is available for the

project a “LIS3DSH”. It is a very low-power device with a high-performance three-axis linear

accelerometer belonging to the “nano” family with an embedded state machine that can be

programmed to implement autonomous applications.

The “LIS3DSH” has dynamically selectable full-scales of ±2g/±4g/±6g/±8g/±16g and is

capable of measuring accelerations with output data rates from 3.125 Hz to 1.6 kHz. The unit

configuration happens via six control registers, a FIFO control register and several registers

for the calibration (device’s fine-tuning). The system’s outputs are accessible on seven

registers: one temperature register and two registers for each axis output.

“Control Register 1”, State Machine 1 (SM1) control register, defines the SM1 Interrupt

Enable / port selection.

0 0 0 0 0 0 0 0

Table 5.1: proposed configuration for the LIS3DSH “Control Register 1”.

“Control Register 2”, State Machine 2 (SM2) control register, defines the SM2 Interrupt

Enable / port selection.

0 0 0 0 0 0 0 0

Table 5.2: proposed configuration for the LIS3DSH “Control Register 2”.

“Control Register 3” defines the “Interrupt” configuration (the assumption is to do not

use Interrupts on the state machine).

0 0 0 0 0 0 0 0

Table 5.3: proposed configuration for the LIS3DSH “Control Register 3”.

83

“Control Register 4” enables the sensor and defines its working frequency (in this case

set to 400Hz) and empowers the “Block Data Update” (BDU) to avoid the reading of values

(most significant and least significant parts of the acceleration data) related to different

samples. Expressly, when the BDU is activated, the data registers related to each channel

hold the device’s most recent acceleration data produced. However, if the reading of a given

pair70 starts, the refresh for that pair results blocked until both MSB and LSB data sections

will be read.

0 1 1 1 1 1 1 1

Table 5.4: proposed configuration for the LIS3DSH “Control Register 4”.

“Control Register 5” controls four functions: the unit Self-Test, the output scale (by

default, it is 2g, for the application it is more appropriate to select 4g), the anti-aliasing

bandwidth filters (proposed configuration sets to 800Hz) and the SPI interface mode

selection.

0 0 0 0 1 0 0 0

Table 5.5: proposed configuration for the LIS3DSH “Control Register 5”.

“Control Register 6” is an advanced functionality register that enables BOOT, FIFO,

“Stop on watermark”, and the functionality of register address automatically increased during

multiple byte access with a serial interface. For the application, the proposed configuration

accepts the default configuration.

0 0 0 0 0 0 0 0

Table 5.6: proposed configuration for the LIS3DSH “Control Register 6”.

In conclusion:

• FIFO Control Registers are set to default because the FIFO advance operations

are not required;

• device tuning and system calibration are achieved on all 3-axis via a dedicated

“Offset Register “and by a constant shift register;

• all other registers are kept as default;

70 i.e. OUT_X_H and OUT_X_L, or OUT_Y_H and OUT_Y_L, or OUT_Z_H and OUT_Z_L.

84

• all “Output registers” contains data in TWO’s complement format (signed

integer); this means that the data should be converted before getting meaningful

information.

 Gyroscope

The correct estimation of the vehicle’s motion angles requires, in addition to the 3-axis

accelerometer, the use of a gyroscope. The “A3G4250D” is a low power 3-axis angular rate

sensor able to provide high stability at zero rate level and sensitivity over temperature and

time. It includes a sensing element and an IC interface capable of providing the measured

angular rate through a standard SPI protocol. The “A3G4250D” is configured via 15

Registers, has three read-only operational/status registers and has seven output registers, one

for the temperature and six for the axis acceleration computed in “Degree Per Second” (DPS).

“Control Register 1” defines: the “Output Data Rate”, the “Bandwidth Cut-Off

Frequency”, “The Power Mode” and, the 3 Axis enables. In the application case, ODR is set

(Output Data Rate) to 200Hz, and the Cut-Off Frequency is set to 50Hz.

0 1 1 0 1 1 1 1

Table 5.7: proposed configuration for the A3G4250D “Control Register 1”.

“Control Register 2” defines the digital filters and, in particular, the High Pass Filters.

Default mode configuration is the selection for this register (“Normal Mode” - 2Hz High pass

filter).

0 0 1 0 0 0 1 1

Table 5.8: proposed configuration for the A3G4250D “Control Register 2”.

“Control Register 3” manages Interrupts. It is selected as a standard default mode

operations.

0 0 0 0 0 0 0 0

Table 5.9: proposed configuration for the A3G4250D “Control Register 3”.

 “Control Register 4” manages the SPI Communication, default71 setup is selected.

0 0 0 0 0 0 0 0

Table 5.10: proposed configuration for the A3G4250D “Control Register 4”.

71 BLE sets the LSB Register and MSB registers addresses (pag.14 of [39]).

85

“Control Register 5”, configures the memory management. It is kept the default mode.

0 0 0 0 0 0 0 0

Table 5.11: proposed configuration for the A3G4250D “Control Register 5”.

All other registers are considered to be as default. All Output registers contain data in

TWO’s complement format (signed integer); this means that the data should be converted

before to get meaningful information. Temperature sensor’s output data consists of only one

8-bit TWO’s complement format signed integer register, while each axis 16-bit gyroscope’s

output data is stored in 2 x 8-bit registers with the address defined by “Control Register 4”.

First, a conversion to “Decimal base” and then a multiplication by the device’s sensitivity of

8.75m DPS per integer will produce the Gyroscope output, expressed by the equation:

𝑅𝑅𝑡𝑡 = 𝑆𝑆𝑆𝑆 ∙ (𝑅𝑅𝑚𝑚 − 𝑅𝑅0)
(Equation 33)

where,

𝑅𝑅𝑡𝑡 → the actual angular rate, given in DPS

𝑅𝑅𝑚𝑚 → the MEMS gyroscope measurement, given in signed integer LSBs

𝑅𝑅0 → the zero-rate level72 given in signed integer LSBs

𝑆𝑆𝑆𝑆 → the scale factor (or sensitivity) given in DPS/LSB

 Landing Proximity sensor

Landing manoeuvre is a critical operation for a controller to perform, and the likelihood

of an approach error is not negligible. It suggests that shall be considered the risk associated

with the landing manoeuvre.

In order to help the controller to perform the last phase of the landing manoeuvre safely,

it is necessary to know when the vehicle is close to the ground; it means that the vehicle is

going to arrive shortly to the touch-down. The Author’s proposed solution to the problem is

a ventral installation of obstacle detection sensors, which will allow detecting the soil, as

“Figure 5.3” illustrates.

A design assumption is: as soon as the system detects the ground, the controller will

disable the powertrain (propellers will not produce anymore trust and, in case of an impact

72 The gyroscope output when no angular rate is applied.

86

of the propeller on the ground, the damages to the motor will be limited). Due to the

importance of the information, The Author’s proposal privileges an independent two-stage

proximity detection. First stage detection operated by an obstacle sensor tuned for detection

in the range of 1 to 1.5 meters, and a second stage operated by a sensor capable of higher

resolution (and accuracy) but capable of detecting targets only at a much shorter distance.

Figure 5.3: representation of landing sensor operation during the landing manoeuvre.

There are several devices capable of performing the first stage detection for the hardware

proposal; the Author’s selection is the “ST VL53L1X” plug-in board. It is a “Time of Flight”

(ToF), laser-ranging sensor, enhancing the ST “FlightSenseTM” product family. It is also

possible to program the size of the Region of interest (ROI) on the receiving array, allowing

a reduced sensor’s “Field of View” (FoV).

The VL53L1X has three distance modes (DM): short, medium, and long. Long-distance

mode allows reaching the longest possible ranging distance of 4 m. However, this maximum

ranging distance is impacted by ambient light. Short distance mode is more immune to

ambient light, but its maximum ranging distance is typically limited to 1.3 m and ranging

frequency up to 50 Hz. This solution results in the optimal solution for the application, and it

is assumed that the system will detect the ground when the vehicle elevation is in the range

between 120cm and 140 cm.

VL53L1X is designed to operate with the VL6180X; it is the latest product based on

ST’s patented “FlightSenseTM” technology. It is a ground-breaking technology allowing

absolute distance to be measured independent of target reflectance. Instead of estimating the

distance by measuring the amount of light reflected back from the object (which is

significantly influenced by colour and surface), the VL6180X precisely measures the time

the light takes to travel to the nearest object and reflect back to the “ToF” sensor. The

87

detection distance is in the range of 10 cm. Although the detection distance may look very

limited, it is crucial to highlight that this information not only has a safety purpose (redundant

sensor for safety-critical function) but allows future controller improvements on the landing

manoeuvre.

It possible to conclude that this approach allows the designer to be confident that at the

touch-down, the powertrain will be disabled and gives enough flexibility for future controller

quality improvements.

 Navigation Monitor

A human being pilot to monitor its route relies on a multitude of information; it is

possible to highlight a few significant ones:

a) the estimated geophysical position or the “Global Positioning System”

localization (GPS coordinates);

b) coordinates of the final destination;

c) the vehicle’s altitude;

d) the vehicle’s direction;

e) the vehicle’s speed.

Given the destination coordinates and altitude, a standard GPS Module can supply all

the requested relevant information. Acknowledging the vehicle’s flight dynamics, the Author

advises having a redundant altimeter in order to increase the quality of the data and reduce

the error typical of the GPS altitude measurements. A cost-effective solution is the

combination of a GPS module with a piezoresistive absolute pressure sensor which functions

as a digital output barometer. The Author’s opinion is that optimal utilisation of these sensors

requires a reading of the digital output barometer value and the GPS values before starting

the take-off manoeuvre; then use these data as calibration information to identify the “0m”

altitude reference value. It is likely to observe discordant values, in order to increase the

quality of the information, Author privileges to broadcast to the controller a weighted average

altitude value to the next stage.

In front of a predefined flight route, the expectation is that the vehicle will accordingly

reach a flying altitude and keep the target altitude until that the vehicle is close enough to the

final destination to approach the landing manoeuvre. Landing manoeuvre will utilize a

reference altitude reference value, a function of the final target destination’s distance.

88

It is assumed that the core controller will use an altitude “approximation error” (or

“relative error”), a function of the reference altitude value and the perceived vehicle altitude

as for “Equation 34”.

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 =
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 − 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

�
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

2 �

(Equation 34)

5.1.5.1 GPS Module, Teseo-LIV3F

There is a wide range of available plug-in GPS modules for the “hardware proposal”, the

Author’s benchmark is the ST Teseo-LIV3F module. It is an easy to use “Global Navigation

Satellite System” (GNSS) standalone module, connectable with I2C or UART

communication port.

Figure 5.4: ST Teseo-LIV3F module, block scheme.[40]

This device results in a cost-effective plug-in solution for any robotic applications; it is

capable of delivering, with enough accuracy, the essential information to establish a

navigation monitoring interface, such as:

• altitude;

• geographical position (Geographic Coordinates);

• heading angle;

• speed.

89

Parameter Specification GPS & GLONASS GPS & BeiDou GPS & Galileo Unit

Time To First Fix73
Cold start Warm start

<32 <36 <30

s <25 <29 <26

Hot start <1.5 <2.5 <2

Sensitivity 74 75 76 77

Tracking -163 -163 -163

dBm

Navigation78 -158 -158 -158

Reacquisition79 80 -156 -156 -156

Cold start -147 -147 -147

Warm start -148 -148 -148

Hot start -154 -151 -154

Max fix rate — 10 10 10 Hz

Velocity accuracy81 — 0.01 — 0.01 m/s

Velocity accuracy82 — 0.1 — 0.1 m/s

Heading accuracy67 — 0.01 — 0.01 °

Heading accuracy68 — 2.3 — 2.4 °

Horizontal position
accuracy83

Autonomous <1.869 <1.569 —
m

SBAS <1.569 — —

Accuracy of time pulse
RMS

99% ±12.4 ±29.0 ±21.8 ns

Frequency of time pulse — 1 1 1 Hz

Operational limits84

Dynamic85 <4.5g <4g <4.5g —

Altitude86 18000 18000 18000 m

Velocity72 515 515 515 m/s

Table 5.12: ST Teseo-LIV3F module datasheet summary.

The previous table is extracted from the ST Teseo-LIV3F module datasheet and

summarizes the most relevant device characteristics information. It is imperative to highlight

that the vehicle initialisation shall include a time of at least 36s in order to allow the module

to lock enough satellites signals87. Only after this waiting time, the controller can begin the

73 All satellites at -130 dBm - TTFF@50%.
74 Demonstrated with a good external LNA.
75 For hot start, all sats have the same signal level except one (pilot sat @-145 dBm).
76 For BEIDOU tracking sensitivity refers to MEO sats. For GEO the tracking sensitivity is -151 dBm. For GALILEO the signal
level refers to both pilot and data components.
77 For GALILEO the signal level refers to both pilot and data components.
78 Configurable Value.
79 All satellites at same signal level.
80 Minimum level to get valid fix after reacquisition.
81 50% @ 30 m/s - linear path.
82 50% @0.5 g - shape path.
83 CEP 50%, 24h static, Roof Antenna.
84 Verified the limit checking the fix availability.
85 Special configuration for high dynamic scenario.
86 ITAR limits.
87 Teseo Module cold start may require up to 36 s.

90

initialisation and perform the altitude calibration task. It is unavoidable for the controller to

set the “0m” altitude reference value every time before starting the take-off manoeuvre. It is

meaningful to report the absence of an altitude accuracy indication; this information

limitation (lack of accuracy) reinforces the assumption made to use a redundant altimeter in

order to mitigate the data inaccuracy.

A valuable device feature is the capability of data-logging88. Teseo-LIV3F receiver89

can, locally, save the resolved GNSS position on the internal flash memory in order to be

retrieved on demand from the host. The recorded data is configurable; data-logging supports

three types of data logged, and each type has a different size and different data-logged90. [40]

All the data logged types have: timestamp, latitude and longitude, while other fields

depend on the type. “Table 5.13” enlightens the details.

Table 5.13: ST Teseo-LIV3F module data logging types.[40]

5.1.5.2 Redundant Altimeter

The Author’s preference is to use a cost-effective device capable of estimating accurate

enough the vehicle flying altitude; LPS25HB91 results in a suitable choice since it is widely

available on target application PCB (similar alternative hardware solutions92 are available on

the market). It is a piezoresistive absolute pressure sensor that functions as a digital output

barometer. The device incorporates a sensing element and an Integrated Circuit (IC)

interface, which communicates through I2C or SPI from the sensing element to the

application. The sensing element, which detects absolute pressure, consists of a suspended

membrane manufactured using a dedicated process developed by ST.

88 Datalogging can be enabled, disabled and erased using proprietary NMEA runtime commands. Datalogging subsystem supports
both: Circular buffer and Standard buffer.
89 Teseo-LIV3F supports only one datalog at a time.
90 Teseo-LIV3F can support until 12 hours logging using “log-type 1” and fix-rate at 1 Hz.
91 The LPS25HB is available in a full-mould, holed LGA package (HLGA). It is guaranteed to operate over a temperature range
extending from -30 to +105 °C. The holed package allows external pressure to reach the sensing element. The LPS25HB is a high
resolution, digital output pressure sensor packaged in an HLGA full-mould package.
92 For example, SparkFun Electronics MPL3115A2 PRESSURE/ALTIMETER P/N SEN-11084 or Parallax ALTIMETER
MODULE MS5607 P/N 29124.

91

The comprehensive device includes a sensing element based on a piezoresistive

“Wheatstone Bridge” approach and a sensor’s interface, which communicates a digital signal

from the sensing element to the application. “Figure 5.5” clarifies the IC block scheme.

Figure 5.5: LPS25HB block scheme. [41]

The device has a large number of read-only registers and read/write registers, and the

most significant ones are: “Control Register 1” (20h), “Control Register 2” (21h),

PRESS_OUT_H (2Ah), PRESS_OUT_L (29h) and PRESS_OUT_XL (28h).

“Control Register 1” (address: 20h) defines the “Power-down control”, the “Output data

rate selection” (ODR [2:0]), the “Interrupt generation enable”, the “Block data update”

(BDU), the “Reset Auto-zero function” and the “Serial Interface Mode selection” (SIM -

SPI). The register is set in order to ensure the device “active mode” (bit 7, PD = 1), with a

12.5Hz frequency (ODR [2:0] set to “011”) continuous update (BDU, “0” default value);

other parameters are kept as default, ensuring the four-wire SPI operation mode (SIM, “0”

default value). “Table 5.14” clarifies the register’s setting.

1 0 1 1 0 0 0 0

Table 5.14: proposed configuration for the LPS25HB “Control Register 1”.

92

“Control Register 2” (address: 21h) defines: the “Reboot memory content”, the “FIFO

enable”, the “STOP_ON_FTH93”, the “Enable to decimate the output pressure to 1Hz with

FIFO Mean mode”, the “I2C interface enable”, the “Software reset”, the “Auto-zero enable”,

and the “One shot mode enable”. Except for the I2C interface control forced to “Disabled”,

all bits will be kept as default (set to “0”) in order to keep the “normal mode operation”. Table

5.15 elucidates the register’s setting.

0 0 0 0 1 0 0 0

Table 5.15: proposed configuration for the LPS25HB “Control Register 2”.

The pressure data are stored in three registers: PRESS_OUT_H (2Ah), PRESS_OUT_L

(29h) and PRESS_OUT_XL (28h). The value is expressed as “TWO’s complement”. The

information translation in hPa (pressure) requires that the algorithm shall take the “TWO’s

complement” of the complete word and then divide it by 4096 hPa. As described in the below

picture. [41]

Figure 5.6: LPS25HB output pressure algorithm example [41].

Moving by the consideration that the following table and graph illustrate the relationship

between altitude and pressure using the “default values”94 for pressure and temperature at sea

level. Then considering that by definition, the altitude at a given air pressure can be calculated

using “Equation 35” for an altitude up to 11 km (36,090 feet), the Author proposes the use of

93 “Enable the FTH_FIFO bit in FIFO_STATUS (2Fh) for monitoring of FIFO level”.
94 Using ISA standards, the defaults for pressure and temperature at sea level are 1013.25 hPa and 288 K.

93

such information as a baseline and to operate a linearization in the limited RC plane

operational altitude.

ℎ = ℎ𝑏𝑏 +
𝑇𝑇𝑏𝑏
𝐿𝐿𝑏𝑏
∙ ��

𝑃𝑃
𝑃𝑃𝑏𝑏
�
−�𝑅𝑅∙𝐿𝐿𝑏𝑏𝑔𝑔0∙𝑀𝑀

�

− 1�

(Equation 35)

Where:

𝑃𝑃 → dynamic pressure [Pa]

𝑃𝑃𝑏𝑏 → static pressure (pressure at sea level) [Pa]

𝑇𝑇𝑏𝑏 → standard temperature (the temperature at sea level) [K]

𝐿𝐿𝑏𝑏 → standard temperature lapse rate [K/m] = -0.0065 [K/m]

ℎ → height about sea level [m]

ℎ𝑏𝑏 → height at the bottom of the atmospheric layer [m]

𝑅𝑅 → universal gas constant = 8.31432 [(N∙m)/(mol∙K)]

𝑔𝑔0 → gravitational acceleration constant = 9.80665�𝑚𝑚
𝑠𝑠2
�

𝑀𝑀 → molar mass of Earth’s air = 0.0289644 [kg/mol]

Figure 5.7: graphical representation of “Equation 35”.

94

Table 5.16: parametric solution of “Equation 35”.

Assuming that the RC plane will operate in an altitude range between “0 m” and “305m”,

the Author assumes a linearization accurate enough for the system. The linearization process

upshot asserts that the pressure will decrease by about 11.9hPa (or 1.19kPa) every 100m (or

will decrease by 0.119hPa each meter).

To make the conversion assumption robust, before the take-off, it is necessary to

correlate the pressure value read before the manoeuvre start to the “0 m” altitude parameter.

It means that at the system turn-on shall follow the barometric altimeter initialisation, which

performs the altitude calibration task. During the calibration, the first reading of the first

pressure output, expressed in “hPa”, shall be stored in the FPGA’s internal RAM (or in any

other functional memory)95. Author preference is to make the altimeter’s SPI interface

externally accessible to the user. This feature will allow the user to calibrate the device and

store the calibration data in a dedicated memory unit, together with all other flight planning

parameters. The algorithm’s output value is the solution of the following equation.

95 The reference pressure value in “hPa” linked to the “0m” altitude reference value.

95

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿25𝐻𝐻𝐻𝐻 =
𝑃𝑃0𝑚𝑚,ℎ𝑃𝑃𝑃𝑃 − 𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿25𝐻𝐻𝐻𝐻,ℎ𝑃𝑃𝑃𝑃

0.119 �ℎ𝑃𝑃𝑃𝑃𝑚𝑚 �

(Equation 36)

Where:

𝑃𝑃0𝑚𝑚,ℎ𝑃𝑃𝑃𝑃 → 0 m pressure reference value [hPa]

𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿25𝐻𝐻𝐻𝐻,ℎ𝑃𝑃𝑃𝑃 → dynamic pressure read [hPa]

 Electronic Compass Unit

The implementation of the Electronic Compass peripheral is software achieved using the

information of the 3-axis accelerometer, the gyroscope and the GPS Module.

 Motor Drive - Powertrain

The Author’s academic researches [17 and 42] focus on new technologies of “Motor

Drives” and the state of the art of “WBG” technologies for powertrain applications. Notably,

research works focused on studying new and more efficient technology for “AUAV Motor

Drive”96 and a cost/performance/reliability comparison with conventional “Si” Technology

conventional alternative.

For the proposed “AUAV Motor Drive”, priority is given to a reliable oriented solution,

in line with [42] conclusions. A set of stand-alone “ST Microelectronics Eval BRD”97, based

on “Si” technology power elements, is chosen. It is a low-cost solution that does not require

developments or ASIC implementations.

The peripheral is fully capable of controlling the “E-Motor’s Torque”, and it is interfaced

with the FPGA via an RS-232 port (communication standard). FPGA unit (thus the proposed

96 The chosen parameters are in line with the current requirements for a small UAV or Small Hybrid Robots that operate on DC
battery systems, maintaining the Integrity of the Specifications [42]. Research work moved by the prerequisites of driving compatible
3-ph brushless motor in line with what required by the AUAV project in the object of the doctoral work.

Main parameters summary:
• Form-factor: Smaller than (W127mm x H80mm x L127mm)
• Converter topology: 3 Phase Inverter
• Input voltage: 20 volts to 48 volts
• Nominal input: 36Volts
• Battery Configuration: 10 x 4.2 VDC Li-Ion 5Ah Batteries, series configuration
• Maximum Output Current: 15Arms.

97 The “Motor Drive Unit” includes a control unit and a power unit. The control unit can perform a full E-Motor “Speed Control”
or “Torque control”. User is allowed to set the control strategy together with the E-Motor settings. The power unit is capable of
accepting a variety of “Power MOSFETs”, but it is capable of operating only with a “Low Voltage” [16] electrical power source. It
allows the user to select the MOSFETs P/N in the function of the power ratings of the E-Motor.

96

controller) acts as “Master” and each “AUAV Motor Drive” acts as “Slave”.It means that the

central controller will enable/disable the peripherals and will dynamically set the E-Motor’s

“Torque Demand”.

 Electro-Mechanical Actuators – SERVO

Previous paragraph 4.2.2 defines, for what regards the study case, the controller’s

outputs. This paragraph goal is to dissert the “electro-mechanical actuators” hardware design.

Although there is not a pre-defined set of requirements, the selection process of each actuator

is influenced by four key variables:

a) the actuator’s “accuracy”;

b) the actuator’s “form-factor”;

c) the actuator’s “reliability”;

d) the actuator’s “output torque”.

The necessity to utilize a small “form-factor” electro-mechanical actuator with a

relatively large “torque density” suggests using the SERVO-Motor topology. A device with

a “metal gear” is preferred to ensure the system’s reliability.

By definition, the ailerons control requires two complementary actuators; the selection

of the SERVO-Motor P/N is restricted by the space available for the installation inside the

“wing’s frame”. “Form-factor” results being the primary driver and a particular “slim

SERVO-Motor” with metal gear, specifically designed to fit inside tiny UAV wings, is

desirable. Hitec HS-125MG slim metal gear wing SERVO-Motor is selected for the ailerons

control because it represents a good trade-off between costs, performances, reliability and

size.

Elevator control may use a single or a dual actuator in the function of the UAV

mechanical design. There are similarities with the aileron’s actuators technical requirements

and physicals constraints (such as space available and packaging issues). In order to simplify

the algorithms and reduce the vehicle’s BOM, the elevator will be actioned by a single

actuator: a single “Hitec HS-125MG” slim metal gear wing SERVO-Motor.

Although the same SERVO-Motor model controls ailerons and elevator, each function

requires a specific gear that will act as a torque converter and actuator’s operating angle

adapter. The following figure summarizes the “Hitec HS-125MG” technical specifications.

97

Figure 5.8: “Hitec HS-125MG” technical specifications summary.

Rudder controller may use a single or a dual actuator, depending on the UAV

mechanical design. The study case uses a dual rudder design with a single control signal

(parallel configuration; the same control signal controls both rudders). Space constraints are

98

not so restrictive98 as for the ailerons because a high output torque is not mandatory for this

application; a low cost oriented solution is desired. HS-65MG metal gear servo is chosen for

the rudder control because it represents a good trade-off between costs, performances and

reliability.

Figure 5.9: “Hitec HS-65MG” technical specifications summary.

98 Technical requirements for the SERVO-Motor selection are less stringent if compared to the ailerons and the technical rudder
requirements.

99

Both, the HS-65MG metal gear SERVO-Motor and the HS-125MG slim metal gear

wing SERVO-Motor, although they are different SERVO-Motors, could be controlled by a

similar PWM signal. It means that it is possible to define only one generic VHDL component

(algorithm) replicable for each SERVO-Motor interface. The postulation is that this particular

VHDL algorithm will be named as “SERVO Control Signal Generator VHDL component”.

The VHDL algorithm generates an output SERVO control signal made out of two

parameters:

• refresh frequency of 20ms;

• pulse width range goes from 1.5ms to 1.9ms (provided by the manufacturer).

“Figure 5.8” and “Figure 5.9” SERVO-Motors datasheet’s extracts show that both, the

“HS-65MG” metal gear SERVO-Motor and the HS-125MG slim metal gear wing SERVO-

Motor, have an operative angle of 40 degrees and a pulse control range of 400µs (“Figure

5.10” presents the acceptable control waveforms; pulse fluctuating from 1500µs to 1900µs).

Figure 5.10: HS-65MG and HS-125MG control waveforms.

The acceptable resolution for the SERVO control signal (which results in the quantity of

position SERVO-Motor can take) could be 7-bit or 8-bit, resulting in 128 or 256 positions.

Therefore, the input clock frequency for the VHDL component “SERVO control signal

generation” should be:

𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,7𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = �
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
� = �

128
400𝜇𝜇𝜇𝜇

� = 320𝑘𝑘𝑘𝑘𝑘𝑘

(Equation 37)

or

100

𝑓𝑓𝑠𝑠𝑒𝑒𝑟𝑟𝑟𝑟𝑟𝑟,8𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = �
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
� = �

256
400𝜇𝜇𝜇𝜇

� = 640𝑘𝑘𝑘𝑘𝑘𝑘

(Equation 38)

A 7-bit control resolution will correspond to a theoretical angle step of 0.3125 degrees

(control pulse step width equal to 3.125µs), while the 8-bit control resolution will correspond

to a theoretical angle step of 0.15325 degrees (control pulse step width equal to 1.5625µs).

By definition, the “Dead Band Width” is used by the manufacturers to avoid servo

dancing at its centre position by telling it to stay in position until the difference between new

command and old command is greater than the “Dead Band Width”. Figure 5.8 and Figure

5.9 datasheet’s extracts define to 5µ the SERVO’s “Dead Band Width”, increasing the

SERVO control signals resolution from 7-bit to 8-bit most likely will not produce any

practical improvement. It inspires the use of a VHDL component, “SERVO Control Signal

Generator”, with a digital signal resolution of 7-bit and a clock of 320kHz (Equation 37).

It is imperative to highlight that the proposed FPGA uses a 3V3 I/O interface, and the

proposed SERVO-Motors logical circuits require a 5V logical level interface. It means that a

“Not Inverting Logic Level Translator” or a “Not Inverting Gate Driver” should be installed

between the FPGA and the “SERVO-Motor”. Therefore, the circuit design needs to protect

the “Control Unit” (particularly the FPGA) from external events99.

 Data Storage

A complex system like the technical proposal of the “Thesis” requires dedicated

memory, where to store a wide range of data. Indeed, it is indispensable a data storage

element, accessible to the user, where to upload the flight parameters or operate the sensors’

calibration100. This operation results indispensable to program, time by time, the flight route.

It is also necessary to allocate a second memory unit where to store all the flight telemetry to

use for the controller learning/training purpose or just for a flight parametric analysis.

The Author’s preference is to use a standard SPI interfaced memory. A wide range of

compatible devices is capable of fulfilling the task’s requirements, although each technology

available results optimised for a specific set of applications. The Author considers the

EEPROM memory technology an excellent trade-off for the technical proposal, privileging

99 Such as ESD events, short to battery, short to ground, etc...
100 For example, a place where to store the “0m” value of the redundant altimeter calibration, etc...

101

the reliability instead of larger memory sizes. The assumptions made is to use a set of two

EEPROM devices with a memory size of 2Mbit, associable to the “ST M95M02-A125”. In

the case will be required a larger memory size for the data storage element, the Author

acknowledged in a standard SPI interface “NOR Flash Memory” the technological boost for

this application.

 Battery management and Low Voltage power supply management

As the main goal is to create a controller in a VHDL environment able to replicate human

decisions and behaviours in the control of a small UAV, a limited, but not negligible,

consideration should be given to the “System Power Management”.

At first look, “System Power Management” should be focusing primarily on the system

protection in case of “Battery Overcharged” or “Battery Discharged”, nevertheless it is not

limited only to these operations. Indeed, a human pilot may change the way of driving the

vehicle by external variables in order, for instance, to save energy. The estimated SoC value

is the crisp value of an input membership function which will be used as a secondary variable

in the rule block for the powertrain motor throttle control.

For the study case, it is assumed that the only vehicle source of power is the “Main

Battery”, which is defined as “Low Voltage REESS” because it has a maximum output

voltage below 60V [16]. From the last statement, it is possible to adapt the architecture

described in “paragraph 3.2” for the proposal. The safety legislation and the international

standards do not require a “galvanic isolation” between the main source of power (REESS,

primary PSU) and the controller electronics (secondary PSU) when the primary source of

energy is defined as “Low Voltage” (according to “Chapter 3” analysis). Dedicated power

electronics circuitries, or “secondary PSU block”, are required to convert the “REESS

Voltage” to several secondary low voltage power rails in order to power-up all the vehicle’s

electronic components.

It assumed that the “Secondary PSU Block” shall operate with an input voltage in the

range between 24VDC and 48VDC and generate the following secondary power rails:

• 12V ± 5%, rated to 2A;

• 5V ± 2%, rated to 2.2A;

• 3V3 ± 2%, rated to 2.2A;

• 1V2± 2%, rated to 4A.

102

As well, it is assumed a “Secondary PSU Block” design compliant to the following basic

requirements:

• ESD (IEC 61000-4-2, level 4);

• load dump protection (ISO 16750-2, Test A and B);

• pulse (ISO 7637-3, Pulse 3a and 3b).

In the automotive industries, it is common to have similar requirements for the low

voltage power management of the vehicle’s ECUs (Electronic Control Unit). A widely used

design strategy is shown in Figure 5.11. For the HW proposal, the Author advocates using

slightly over-rated power supplies to increase the system’s efficiency and robustness. The

implementation of the block diagram drawn in Figure 5.11 represents a feasible option,

compatible with the power budget typical of a system like a vehicle’s control unit.

Figure 5.11: proposed HW PSU block diagram for the control unit.

“Paragraph 3.7” described the structure of automotive REESS (“Automotive Powertrain

Battery Pack”) and of “Battery Management Systems”. The most common architecture

described is based on multiple “Battery Modules” connected in parallel and in series

accordingly to the target application. In this architecture, each “Battery Module” has a

dedicated “EBM module” responsible for cell monitoring and balancing.

The vehicle’s “REESS”, which is the unique system’s energy source, due to the limited

complexity101 and due to the low voltage nature of the system, is reduced to a single battery

module (thus a single EBM).

101 In the specific, the total number of cells in series per EBM less than 16.

103

For the proposal hardware setup, the assumptions are:

• the use of a single EBM module (electronic battery monitor) instead of a more

complex BMS;

• that the EBM uses an ASIC chip (there is a wide range of devices available in

the market);

• the EBM is capable of enforcing several protection features and is capable of

broadcasting the battery module parameters via an SPI interface.

These assumptions require a dedicated “VHDL Block” to interface the FPGA’s

controller to the EBM through an SPI protocol. As well will be necessary to pre-process the

EBM’s information before to be transferred to the neuro-fuzzy controller.

In this configuration, the controller entirely relies on the EBM to enforce protection and

safety mechanisms to the REESS. Indeed, the EBM will operate the battery cell balancing,

the battery monitoring and the battery protection functions autonomously. The practical result

is that the vehicle’s control unit can only observe the REESS’s SoC.

5.2 Human Remote Control

The principles behind utilising a human remote control have their roots in the necessity

of gathering the conditions for deep controller learning through a training process. Moving

from the drawn hypothesis and from the strategy described in “Chapter 4”, a learning/training

prerequisite is that an RC plane controlled by a human will generate and record the “raw

data”. Telemetry, stored into a dedicated memory, at the end of the flight shall be opportunely

recovered (extracted from the external physical memory to the designer PC), verified and

then loaded to into the “GUI” that, as an ultimate outcome, will build (and export in VHDL

language) the final “neuro-fuzzy controller algorithm”.

This approach entails that the RC plane hardware needs to fulfil a set of technical

requirements, such as:

• a human pilot shall control the RC plane via a remote radio-controller;

• the whole hardware (control unit) described in paragraph 5.1 shall be integrated

with the remote control unit hardware;

• the fuzzy logic controller shall be flexible enough to be opportunely modified to

read, process and store all vehicle’s actuators and flights parameters.

The strategy behind these requirements is based on the compulsion to elaborate a

manoeuvre with the environmental parameters (system input parameters), with the human

104

pilot behaviours (pilot commands), the navigation monitoring parameters and, the flight’s

parameters.

The Author proposal solution relies on the FPGA’s flexibility and the controller’s

hardware description language (VHDL). For these reasons, the VHDL controller’s algorithm

shall include the following features:

• a dedicated “Flight Parameters Memory Interface Block”, in charge of the SPI

interface that connects the FPGA to the memory storage device (an independent

2Mbit EEPROM);

• a dedicated “Telemetry Memory Interface Block”, in charge of the SPI interface

that connects the FPGA to the memory storage device (an independent 2Mbit

EEPROM);

• “Telemetry Memory Interface Block” receives as input the “Fuzzy Controller

Inputs”, the “Fuzzy Controller Output”, the status of the physical actuators and

powertrain torque demands.

Specialised RC plane component stores offer a wide range of affordable remote control

units, complete of actuators and actuators drivers, capable of plug and play solutions. This

detail, in conjunction with the fact that the “PhD Thesis focus” is the research on “Neuro-

Fuzzy Controllers” to be designed using VHDL as “controller’s hardware description

language”, make marginal a detailed description of the plug-in remote control units and their

actuator drivers.

Such kind of plug-in systems are easily exchangeable, and usually, users privileges

customised solutions in order to maximise their comfort102 or their entertainment. The Author

decision is: to do not restrict the selection process to a particular remote control system for

the RC plane. The efforts will focus merely on the VHDL controller algorithm functionality

since it is the only relevant research.

102 It may be useful to remind that the human pilot of the RC plane, perhaps is not trained to use a particular system, or he will be
more effective with a solution on which he matured most of his expertise.

105

6 Study Case, Controller’s Design Proposal

As previously described, the proposed work scope is to minimise the hardware design

giving the most of the design load to the VHDL-Neuro Fuzzy controller. This design strategy

moves by the minimisation of the sensors installed on the vehicle, seeking for a cost-effective

compromise between mechanical constrains, electronics hardware/sensors available and

flight control principles.

“Chapter 2” introduced the flight’s control principles, while “Chapter 5” articulated the

hardware proposal. “Chapter 4” described the academic and theoretical basis of the decision-

making process that leads to the adoption of basic fuzzy logic principles and neural networks

(as a potential output of the learning process) for the “study case”.

As previously described, the first step of the controller’s design is the identification of

the “System’s Inputs”, as “System’s Environment Variable”103 or as “Shell Variable”104, the

“Actuators” or “System’s Outputs” and then link them with a “Transfer Function”. As the

proposed work targets a neuro-fuzzy controller, the “System Transfer Function” is the set of

all MIFs, all MOFs and all Rulebases105 (FIS). [43]

6.1 Controller’s Inputs

Paragraph 4.2 explores the controller’s technical requirements, defining a set of

“controller’s inputs” and “controller’s outputs”. Each controller’s input represents a

“Physical Quantity”106, and to be utilisable by an FPGA/VHDL system shall be adequately

expressed in a digital form. It means that for each system’s input, or output, will correspond

a sensor, or an actuator, described in “paragraph 5.1”. The interface between the system’s

peripheral and the neuro-fuzzy controller is implanted on a dedicated FPGA’s section by a

“VHDL component’s algorithm”107.

103 An environment variable is a dynamic-named value that can affect the way running processes will behave on a controller.
104 A shell variable is a variable that affects only to the current “Shell” or “Function”. In contrast, an environment variable is
available system-wide and can interact with other functions of the controller.
105 Each “Rulebase” rule’s weights obtained as a result of the “learning/training process”.
106 A “Physical Quantity” is a property of a material or system that can be quantified by measurements. A “Physical Quantity” can
be expressed as a combination of a magnitude and a unit.
107 An appropriate algorithm capable of configuring the sensor and manipulating the sensor’s output data accordingly.

https://en.wikipedia.org/wiki/Dynamic_name_resolution
https://en.wikipedia.org/wiki/Value_(computer_science)
https://en.wikipedia.org/wiki/Computer_process

106

 VHDL Component A3G4250D

Paragraph 5.1.3 described the hardware (ST A3G4250G) characteristics of the vehicle’s

gyroscope and then defined the operational setting on theoretical assumptions.

In order to implement a “Parallel Computing Controller” on an FPGA using VHDL

algorithms, a dedicated “VHDL component” named “A3G4250D” is created. It means that a

dedicated set of FPGA logic gates are programmed to interact only with the physical

gyroscope, and one other set of FPGA logic gates are programmed to process and broadcast

the gyroscope’s information.

The hardware architecture defines the SPI protocol as a communication method and

defines the “FPGA” as “SPI Master” and the peripheral as “SPI Slave”. VHDL component

“A3G4250D” includes a sub-component that expresses the SPI interface and physically

interacts with the peripheral (“SPI_Master” VHDL component). The “A3G4250D”

component includes a second sub-component (it acts as the A3G4250D’s state machine),

which manages the data stream108 (interfaced to the “SPI_Master Component”), the

peripheral’s configuration and, the data digital-processing.

Figure 6.1: RTL view of the “VHDL component” named as “A3G4250D”.

For data processing of the “A3G4250D” gyroscope’s output registers, it is intended that

the algorithm converts each 16-bit value expressed in TWO’s complement format (signed

integer) into a 16-bit STD_LOGIC_VECTOR. The outcomes are a 16-bit yaw angle, a 16-

108 At the power-up “A3G4250D’s state machine” configures the peripheral (according to paragraph 5.1.3 configuration) and then
cyclically (cycles starts with a “Data Refresh” command) reads and processes the peripheral’s output data registers.

107

bit pitch angle and a 16-bit roll angle coming out from the “VHDL component” (as illustrated

in Figure 6.1). It is important to remark that the input clock and the data refresh clock for the

“A3G4250D” come from the highest hierarchal VHDL block.

 VHDL Component LIS3DSH

Paragraph 5.1.2 described the hardware (ST LIS3DSH) characteristics of the vehicle’s

3-axis linear accelerometer and then defined the operational setting on theoretical

assumptions. In order to implement a “Parallel Computing Controller” on an FPGA using

VHDL algorithms, a dedicated “VHDL component” named as “LIS3DSH” is created. It

means that a dedicated set of FPGA logic gates are programmed to interact only with the

peripheral, and one other set of FPGA logic gates are programmed to process and broadcast

the sensor’s information.

Most of paragraph 6.1.1 analysis is valid also for the “LIS3DSH” VDHL component,

and it is possible to reutilize the sub-component which expresses the SPI interface and

physically interacts with the peripheral (“SPI_Master” VHDL component). The “LIS3DSH”

component includes as well a second sub-component (it acts as the LIS3DSH’s state

machine), which manages the data stream (interfaced to the “SPI_Master Component”), the

peripheral’s configuration and, the data digital-processing.

Figure 6.2: RTL view of the “VHDL component” named as “LIS3DSH”.

For data processing of the “LIS3DSH” Electronic compass output registers, it is intended

that the sub-component converts each 16-bit value expressed in TWO’s complement format

(signed integer) into a 16-bit STD_LOGIC_VECTOR. These operations result in a set of

outputs from the “VHDL component”: a 16-bit “DATA_X_ax”, a 16-bit “DATA_Y_ax” and

108

a 16-bit “DATA_Z_ax” (explicated by “Figure 6.2”). The input clock and the data refresh

clock for the “LIS3DSH” come from the highest hierarchal VHDL block.

 VHDL Component TESEO

Paragraph 5.1.5 described the vehicle’s navigation monitor hardware characteristics (ST

TESEO module and the redundant altimeter) and defined the operational setting on

theoretical assumptions. In order to implement a “Parallel Computing Controller” on an

FPGA using VHDL algorithms, a dedicated “VHDL component” named as “TESEO” is

created. It means that a dedicated set of FPGA logic gates are programmed to interact only

with the navigation monitor peripheral, and one other set of FPGA logic gates are

programmed to process and broadcast the peripheral’s information.

“VHDL component TESEO” includes three sub-components: “SPI_Master”,

“LPS25HB” and “Process_Teseo”. The first one expresses the SPI interface and physically

interacts with the GNSS peripheral. The second component manages the redundant altimeter

(it acts as the LPS25HB’s state machine and peripheral SPI interface). The last sub-

component manages the GNSS data stream (interfaced to the “SPI_Master Component”), the

peripheral’s configuration and, the data digital-processing.

Figure 6.3: external RTL view of the “VHDL component” named as “Teseo”.

109

Figure 6.4: internal RTL view of the “VHDL component” named as “Teseo”.

The input clock and the data refresh clock for the “VHDL component TESEO” come

from the highest hierarchal VHDL block.

 VHDL Component, Safety Sensors

The VHDL component “Safety_Sensors” interfaces a set of vehicle’s peripherals with

the controller’s core. The peripherals are:

• BMS;

• short-distance proximity sensor;

• long-distance proximity sensor.

Figure 6.5: internal RTL view of the “VHDL component” named as “Safety_Sensors”.

6.1.4.1 BMS_VHDL Component

The “BMS_VHDL component” directly interfaces the controller with the “EBM” (or

BMS). The design assumption is that the “BMS_VHDL component” acts like the

“SPI_Master” and that the “EBM” acts like the “SPI_Slave”. It allows the controller to

interrogate the “EBM” and obtain the meaningful data associated with the battery module.

The obtained information is digital processed and then broadcast to the controller’s core.

110

6.1.4.2 Proximity Sensor Components

The design assumption made is: as soon as the ground will be detected, the controller

will disable the powertrain. Due to the importance of the information, the Author’s proposal

perseveres a redundant solution.

Both ST VL53L1X plug-in board and VL6180X plug-in board are interfaced with an I2C

protocol. VHDL Proposed design targets the implementation of two independent “I2C Data

Bus”, each one dedicated to a single plug-in board (it is mandatory for a full redundant

scheme). Since that the goal is to implement a parallel and redundant functionality, the VHDL

component “Safety Sensor” code population highlight three different VHDL blocks allocated

for the ground detection:

• VHDL component “VL53L1X”;

• VHDL component “VL6180X”;

• proximity sensor’s logic gates.

“VL53L1X” (as well for the “VL6180X”) VHDL sub-component firstly configures the

peripheral and then reads the output register of the device (according to the peripheral’s

supplier application note). If one detection is observed, the sub-component flags the detection

through an active-high digital signal: “Detection_Flag”.

The “proximity sensor’s logic gates” are associated with logic gates digital processing

structure, which receives three input signals (“Enable_detection”, “VL53L1X_detection” and

“VL6180X_detection”) and generates one output signal, the “Landing_Prox_Flag” (which

will allow disabling the propellers). Follows the truth table of the “proximity sensor’s logic

gates”.

Enable_detection VL53L1X_detection VL6180X_detection Landing_Prox_Flag

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Table 6.1:“Prox_Sensor_logic_gates” truth table.

111

 VHDL Component, Flight Parameters EEPROM

A system’s operation precondition is the definition of the flight route and the sensor’s109

calibration. This procedure results in a user uploading the flight parameters into the memory

storage before the vehicle’s take-off manoeuvre.

“Flight Parameters EEPROM VHDL component”, managing a dedicated SPI interface,

reads the parameters stored and accordingly broadcast the valuable information to the

controller. The consequent digital acceleration process achieved by the “Flight Controller”

will translate these parameters into a flight route. The mandatory parameters to upload are:

• final destination geographical coordinates;

• sensor’s calibration values;

• target flight altitude.

 Controller’s core inputs, summary

According to the assumptions made, the controller’s core requires the following input

parameters:

a) altitude;

b) speed;

c) pitch angle;

d) rolling angle;

e) yaw angle;

f) estimated position;

g) flight reference parameters;

h) proximity sensor;

i) battery’s SoC.

6.2 Controller’s Outputs

Paragraph 4.2 study explores the technical requirements for the “System’s Controller”,

defining a set of “controller’s inputs” and “controller’s outputs”. Each controller’s output is

expressed in a digital form and requires the conversion into a specific actuator’s control

signal.

109 Such as the calibration of the redundant altimeter.

112

For each “actuator” or “motor” described in “Chapter 5” shall be defined a specific

“VHDL component” with an appropriate algorithm able to configure and adequately control

the electromechanical output device.

 VHDL Component SERVO

 Paragraph 5.1.8 described the hardware characteristics of the “SERVO Motors” (Hitec

HS-65MG and HS-125MG) and defined the operational setting on theoretical assumptions.

In order to control such servo motors using FPGA and VHDL algorithms, a dedicated

“VHDL component” named “PWM_SERVO” is created. It means that a dedicated set of

FPGA logic gates are programmed to convert a 7-bit digital value into a PWM signal with a

frequency of 50Hz (refresh time of 20ms) and a TON time between 1500µs and 1900µs as

previously described in paragraph 5.1.8.

Figure 6.6: external RTL view of the “VHDL component” named as “PWM_SERVO”.

 Powertrain’s VHDL Components

Paragraph 5.1.10 described the E-Motor drivers’ hardware characteristics (ST EVAL

BRD) and defined the operational setting on theoretical assumptions. In order to control such

motors using FPGA and VHDL algorithms, a dedicated “VHDL component” named

“MOTOR_INT” is created. Performing this operation a dedicated set of FPGA logic gates

are programmed to convert 8-bit digital value information into an RS232 command which

defines the motor’s torque demand110, as previously described in paragraph 5.1.10.

110 It is a static parameter not available to the vehicle’s controller. It is set by the user together with all the E-Motor configuration
parameters on the motor driver.

113

Figure 6.7: external RTL view of the “VHDL component” named as “MOTOR_INT”.

The VHDL component “MOTOR_INT” is used for both E-Motors. The vehicle’s left E-

Motor is associated with the VHDL component instance “BLDM1”, and the vehicle’s right

E-Motor is associated with the VHDL component instance “BLDM2” (as for “Figure 6.7”).

 VHDL Component, Flight Telemetry EEPROM

A learning/training process assumes paramount importance for the technical proposal.

This procedure requires the capture of the vehicle’s flight parameters while a human-being

pilot controls the vehicle; the consequent action is the memorisation of the captured

information into data memory storage. As well as, this operation may be taken while the

vehicle is flying in “full autonomous mode”; although the data may not be optimal for

learning/training purposes, it may be beneficial for data analysis aims.

“Flight Telemetry EEPROM” VHDL component, managing a dedicated SPI interface,

reads a wide range of system’s parameters and then accordingly writes the physical memory’s

registers. At the flight’s end, as soon as the system is disengaged, the user can access the

EEPROM via the dedicated port. The presented feature allows the user to download the

captured data.

 Controller’s core outputs, summary

By assumptions, the neuro-fuzzy flight controller generates the following output signals:

• left E-Motor torque demand, (RS232 communication interface);

• right E-Motor torque demand, (RS232 communication interface);

• ailerons SERVO-Motor, PWM control signal;

114

• elevator SERVO-Motor, PWM control signal;

• rudders SERVO-Motor, PWM control signal.

6.3 Fuzzy Logic Controller Design

From “paragraph 4.2” theoretical prospects, the controller’s heart is the “FIS” (or Rules

Block) which utilizes a set of 5 “Rulebases” functions. Each “Rulebase” accordingly uses

sets of MIFs crisps values to activate sets of weighted MOFs. [43]

XFUZZY GUI encases a set of membership functions into a “Type”, which is usually

associated with a sensor (MIF association) or with an actuator (MOF association). GUI’s

definition of the controller physical “Input Variables” and “Outputs Variables” requires an

existing environment “Type” to be linked with it.

Patently, the creation of a fuzzy system in the “XFUZZY” (or “XFL3 GUI”)

environment usually starts with the definition of the “Operator Set”. An “Operator Set”

in “XFL3 GUI” is an object containing the mathematical functions assigned to each fuzzy

operator. Fuzzy operators can be binary (like the T-norms and S-norms employed to represent

linguistic variable connections, implication, or rule aggregations), unary (like the C-norms or

the operators related with linguistic hedges), or can be associated with “defuzzification

methods”. [38]

The second step, in the description of a fuzzy system, is the creation of the linguistic

variable types, using the “Type Creation Interface”. A new “Type” necessitates the

introduction of its identifier and universe of discourse (minimum, maximum and cardinality).

The interface includes several predefined types corresponding to the most usual partitions of

the universes. These predefined types contain homogeneous triangular, trapezoidal, bell-

shaped and singleton partitions, shouldered-triangular and shouldered-bell partitions. Other

predefined types are equal bells and singletons, which may be the first option for output

variable types. When one of the aforementioned predefined types is selected, the number of

membership function of the partition must be introduced. [38]

115

Figure 6.8: XFUZZY environment examples of types. [38]

An XFL3 type is an object that describes a type of linguistic variable. It means to define

its universe of discourse, to name the linguistic labels covering that universe, and to specify

the membership function associated with each label. Linguistic labels can be defined in two

modes: free membership functions or members of a family of membership functions. In the

last one, the family of membership functions must be defined in advance. A free membership

function uses its own set of parameters while the members of a family share the list of

parameters of that family. It results helpful to reduce the number of parameters and

representing constraints between the linguistic labels (such as the order or a fixed overlapping

degree). [38]

The types so defined inherit the universe of discourse and the labels of their parents

automatically. The labels defined in the type’s body are either added to the parent labels or

overwrote if they have the same name.

The third step in defining a fuzzy system is the description of each “Rulebase”,

expressing the relationship among the system variables. A dedicated GUI’s interface111

111 The contents of the rules can be displayed in three formats: free, tabular, and matricial. The free format uses three fields for
each rule. The first one contains the confidence weight. The second field shows the antecedent of the rule. It is an auto-editable
field, where changes can be made by selecting the term to modify (a “?” symbol means a blank term) and by using the buttons of
the window. The third field of each rule contains the consequent description. It is also an auto-editable field that can be modified
by clicking the “->” button. New rules can be generated by introducing values on the last row (marked with the “*” symbol).
The button bar at the bottom of the free form allows to create conjunction terms (“&” button), disjunction terms (“|” button),
modified terms with the linguistic hedges not (“!” button), more or less (“~” button), slightly (“%” button), and strongly (“+”

116

could be used to define the “Rulebase” (the lists of input and output variables parameters),

and to structure the functions with the appropriate operator sets and the confidence weight to

be used.

The accurate definition of the “Operator Sets”, “Variable Types”, and “Rulebases” is

propaedeutic for the fuzzy system design progress. The definition of the global input and

output variables, using the “Variable Properties”112 interface (GUI’s window), is the

following design step.

The concluding operation in a fuzzy system definition is the description of its

hierarchical structure.

Figure 6.9: flight controller’s description in XFL3 GUI.

 Type “Rudder_SERVO”, Membership Output Function

The Type “Rudder_SERVO” contains five MOFs, each of them associated with a

specific rudder manoeuvre that a “Human being Pilot” may perform in front of external

conditions while a predefined route is followed. Membership functions are:

a) Left_turn;

button), and single terms relating a variable and a label with the clauses equal to (“==”), not equal to (“!=”), greater than (“>”),
smaller than (“<”), greater or equal to (“>=”), smaller or equal to (“<=”), approximately equal to (“~=”), strongly equal to (“+=”),
and slightly equal to (“%=”). The “->” button is used to add a rule conclusion. The ">..<" button is used to remove a conjunction
or disjunction term (e.g. a term “v == l & ?” is transformed into “v == l”). The free form allows the user to describe more complex
relationships among the variables than the other forms. [32, 37 and 38]
112 The information required to create a variable is its name and type.

117

b) Left_wind_comp;

c) Cruise_rudder;

d) Right_wind_comp;

e) Right_turn.

Figure 6.10: Type “Rudder_SERVO”, graphical representation.

The MOFs design strategy is based on the rudder’s mechanical behaviour steered by the

electromechanical actuator, which is the SERVO-Motor described in paragraph 5.1.8.

Moving from the disserted hardware description of the “Rudder Servo”, the membership

function “Cruise_rudder” is a conventional triangular membership function centred to the

mechanical rudder angle equal to 0°, which corresponds to the +20° of the rudder’s SERVO-

Motor electrical angle. Depending on the SERVO-Motor control signal resolution utilised, it

could be 7-bit or 8-bit (0 to 127 steps of 0 to 255 steps), the 0° rudder mechanical angle

corresponds to an output value of 127 for the case of 8-bit resolution (or 63 for the case of 7-

bit resolution).

 The proposed neuro-fuzzy controller utilises 8-bit resolution data, and then a VHDL

component will perform the information’s digital acceleration, which will be converter in a

PWM signal with a 7-bit resolution.

“Right_turn” is a conventional trapezoidal membership function associated with a heavy

rudder manoeuvre which results in a significant positive “Yaw angle” (“Left_turn” is the

mirror/symmetrical function, associated with a heavy rudder manoeuvre which results into a

significant negative “Yaw angle”). The resulting output control signal for the rudder’s

118

SERVO-Motor theoretically may set the electrical angle in a range between 24° and 40°

(between 0° and 16° for the “Left_turn” function), which corresponds to a mechanical angle

between +4° and +20° (between -4° and -20° for the “Left_turn” function).

“Right_wind_comp” is a conventional triangular membership function associated with

a slight rudder manoeuvre which results in a moderate positive “Yaw angle”

(“Left_wind_comp” is the mirror/symmetrical function, associated with a slight rudder

manoeuvre which results in a moderate negative Yaw angle). Resulting output control signal

for the rudder’s SERVO-Motor, theoretically may set the SERVO-Motor electrical angle in

a range between 20° and 28° (between 12° and 20° for the “Left_wind_comp” function),

which corresponds to a mechanical angle between +0° and +8° (between 0° and -8° for the

“Left_wind_comp” function). This function results particularly beneficial when the vehicle

is flying through moderate turbulence or gusty winds. These conditions, both, can cause yaw

through weather vaning and result in an undesirable vehicle rolling. “Left_wind_comp”

function is intended to compensate undesirable yaw to the right caused by weather conditions,

while “Right_wind_comp” function is intended to compensate undesirable yaw to the left

caused by weather conditions.

Figure 6.11: representation of the rudder working principle.

 Type “Altitude_input”, Membership Input Function

The Type “Altitude_input” contains four MIFs, each of them associated with a specific

“Human being Pilot” interpretation of the altitude indicator while a predefined route is

followed. Membership functions are:

a) Low_ALTD;

b) Cruise_ALTD;

c) Soft_high;

119

d) OVER_ALTD.

The MIFs design strategy is based on the interpretation of the “Altitude_Error” relative

error input value113, defined by:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴__𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 =
(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) − (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)

�(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) + (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣)
2 �

(Equation 39)

By assuming the input signal resolution is set to 8-bit (0 to 255 steps), the centre value

is associated with an Altitude_error = 0 corresponds to an input value of 127.

Figure 6.12: Type “Altitude_input”, graphical representation.

“Low_ALTD” membership function is associated with a “Human Pilot” perception of

an altitude below the reference route altitude value while he is interpreting the sensor’s

feedback and the other environment variables.

“Cruise_ALTD” membership function is associated with a “Human Pilot” perception of

flying at the correct altitude, while the “Soft_high” membership function describes a “Human

Pilot” behavioural, which uses the altitude as energy storage. Seeking the altitude as energy

storage may be a common manoeuvre when a tail-wind increases the vehicle speed or even

favours the vehicle to act as a glider.

113 “Actual Altitude Value” is the value read by the sensor while the “Estimated Altitude Value” is the value required by the
programmed cruise (value read from EEPROM).

120

“OVER_ALTD” membership function is associated with a “Human Pilot” perception of

an undesirable altitude above the reference route altitude value while he is interpreting the

sensor’s feedback and the other environment variables.

 Type “Compass_input”, Membership Input Function

The Type “Compass_input” contains three MIFs, each of them associated with a specific

“Human Pilot” interpretation of the electronic compass while a route shall be followed.

Membership functions are:

a) Negatitive_angle_err;

b) Cruise;

c) Positive_agnle_err.

The MIFs design strategy is based on the interpretation of the “Compass_Error”

differential input value, which is:
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶__𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 = (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸.𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉) − (𝐴𝐴𝑐𝑐𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸.𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉)

(Equation 40)

Figure 6.13: Type “Compass_input”, graphical representation.

The information “Compass_error” is the outcome, according to “Equation 40”, of a

digital process implemented by a bespoke VHDL algorithm, which utilizes few sensors114 to

114 Accelerometer output data, Gyroscope output data and the most critical TESEO GPS module parameters.

121

obtain the optimal vehicle’s direction (𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸.𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉), and the current

vehicle’s heading angle (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸.𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉).

 “Negatitive_angle_err” membership function is associated with the “Human being

Pilot” perception of a plane drifting to the left from the correct direction with the result of

pointing off-target (pointing to the left of the waypoint or final destination). As for the case

of “Figure 6.14”.

Figure 6.14: negative navigation angle error, graphical representation.

“Cruise” membership function is associated with a “Human Pilot” perception of a

vehicle that follows the correct route and flies towards the waypoint (or the final destination).

As for the case of “Figure 6.15”.

122

Figure 6.15: cruise navigation, graphical representation.

“Positive_agnle_err” membership function is associated with the “Human Pilot”

perception of a plane drifting to the right from the correct direction with the result of pointing

off-target (pointing to the right of the waypoint or final destination, according to the

illustration of “Figure 6.16”).

Figure 6.16: positive navigation angle error, graphical representation.

123

 Type “Energy_Status”, Membership Input Function

The Type “Energy_Status” contains four MIFs, designed to influence115 the throttle

management of the vehicle’s powertrain. The outcome is that manoeuvres may be affected

by the Battery SoC to a certain degree116, depending on the environmental conditions.

Membership functions are:

a) Derating;

b) Low_SOC;

c) Healthy_SOC;

d) Overcharged.

Figure 6.17: Type “Energy_Status”, graphical representation.

Assuming that the input signal represents the “Battery State of Charge” (SoC) is an 8-bit

signal, where the value “0” (or “00” in hex format) represents a full discharged battery (SoC

equal to 0%), and the value of “255” (or “FF” in hex format) represents a full charged battery

(SoC equal to 100%).

The membership function “derating” wants to influence the throttle control in order to

prevent the deterioration of the battery (battery protections) during shallow SoC operations.

115 Concur to the neuro-fuzzy logic controller energy-saving future innovations.
116 The environmental variables and the navigation (such as altitude and direction) have a primary influence for the throttle control.
The influence of the “Battery SoC” has a secondary influence for the throttle control.

124

The membership function “Low_SOC” is associated with the “Human being Pilot”

conservative throttle control that prioritizes the power economy on the system performances

during low SoC operations. It may result easily associable to a “Human being Pilot” that in

front of a low fuel level indication changes his driving style to reach his destination.

The membership function “Healthy_SOC” has a negligible influence on the throttle

control because this function is not associated with any safety limitation. It means that the

weight of this membership function is overwhelmed by the weight of the other variables.

The membership function “Overcharged” is associated with the case of a battery fully

charged117. It wants to influence the throttle control, boosting the power output. It results

valuable during the “Take OFF” manoeuvre.

 Type “Speed_Input”, Membership Input Function

The Type “Speed_Input” contains five MIFs, each of them associated with a specific

“Human being Pilot” interpretation of the speed indicator while a predefined route is

followed.

Membership functions are:

a) Stall_speed;

b) Low_speed;

c) Cruise_Speed;

d) High_Speed;

e) Excessive_speed.

The membership function “Stall_speed” is associated with the “Human being Pilot”

interpretation of the speed sensor, resulting in a perception of a too low speed that may result

in a stall.

The membership function “Low_speed” is associated with the “Human being Pilot”

perception of a low speed that shall be addressed before it may degenerate into a vehicle’s

hazardous condition.

The membership function “Cruise_Speed” is associated with the “Human being Pilot”

perception of correct vehicle speed.

117 Depending on the technology (Chemistry) of the battery (cells) may be deteriorative to keep the battery charged above 95%.

125

Figure 6.18: Type “Speed_Input”, graphical representation.

The membership function “High_Speed” is associated with the “Human being Pilot”

perception of a higher speed that may be caused by tail-winds or an excessive throttle. The

function’s goal is to increase the vehicle’s safety (minimising the risks of reaching excessive

speeds) and reduce energy consumptions (extend the range, using, for example, the altitude

as energy storage).

The membership function “Excessive_Speed” is associated with the “Human being

Pilot” perception of a very high speed that may be dangerous for the vehicle’s safety. The

membership function’s goal is to allow a quick correction of the speed parameter, relying not

merely on the throttle control but also on the elevator for a variation of the pitch angle.

 Type “Pitch_angle_Input”, Membership Input Function

The Type “Pitch_angle_input” contains three MIFs, each of them associated with a

specific “Human Pilot” interpretation of the vehicle’s gyroscope (and of the 3-axis vehicle’s

accelerometer) while he is following a pre-defined route. Membership functions are:

a) descending_pitch;

b) cruise_pitch;

c) ascending_pitch.

126

Figure 6.19: Type “Pitch_angle_input”, graphical representation.

Figure 6.20: example of an aerial vehicle’s pitch indicator instrument.

127

The membership function “descending_pitch” is associated with the “Human being

Pilot” interpretation of the vehicle’s pitch attack angle, which results in the perception of a

manoeuvre causing an altitude loss.

The membership function “cruise_pitch” is associated with the “Human being Pilot”

perception of a correct pitch attack angle and that no corrective manoeuvre shall be

implemented.

The membership function “ascending_pitch” is associated with the “Human being Pilot”

interpretation of the vehicle’s pitch attack angle, which results in the perception of a

manoeuvre causing an altitude increase.

 Type “Yaw_angle_Input”, Membership Input Function

The Type “Yaw_angle_input” contains three MIFs, each of them associated with a

specific “Human Pilot” interpretation of the vehicle’s instrumentation (in this case, the 3-axis

vehicle’s accelerometer) while he is seeking for an identified route. Membership functions

are:

a) Yaw_left;

b) Yaw_stable;

c) Yaw_right.

Figure 6.21: Type “Yaw_angle_input”, graphical representation.

The membership function “Yaw_left” is associated with the “Human being Pilot”

perception of a vehicle’s yaw to the left.

128

The membership function “Yaw_stable” is associated with the “Human Pilot” awareness

of negligible yaw influence on the vehicle’s flight (no additional corrective manoeuvre

required to compensate yaw forces acting on the vehicle). The membership function

“Yaw_right” is associated with the “Human being Pilot” perception of a vehicle’s yaw to the

right.

 Type “Rolling_angle_Input”, Membership Input Function

The Type “Rolling_angle_input” contains five MIFs, each of them associated with a

specific “Human Pilot” interpretation of the gyroscope while a route shall be followed.

Membership input functions are:

a) Hard_Rolling_left_angle;

b) Soft_Rolling_left_angle;

c) No_Rolling;

d) Soft_Rolling_right_angle;

e) Hard_Rolling_right_angle.

The membership function “Hard_Rolling_left_angle” is associated with the “Human

being Pilot” interpretation of the vehicle’s rolling angle, which results in the perception of a

manoeuvre causing a heavy rolling to the left.

Figure 6.22: : Type “Rolling_angle_input”, graphical representation.

129

The membership function “Soft_Rolling_left_angle” is associated with the “Human

being Pilot” interpretation of the vehicle’s rolling angle, which results in the perception of a

manoeuvre causing a light rolling to the left.

The membership function “No_Rolling” is associated with the “Human being Pilot”

perception of a not rolling vehicle.

The membership function “Soft_Rolling_right_angle” is associated with the “Human

being Pilot” interpretation of the vehicle’s rolling angle, which results in the perception of a

manoeuvre causing a light rolling to the right.

The membership function “Hard_Rolling_right_angle” is associated with the “Human

being Pilot” interpretation of the vehicle’s rolling angle, which results in the perception of a

manoeuvre causing a heavy rolling to the right.

 Type “Aileron_SERVOs”, Membership Output Function

The Type “Aileron_SERVOs” contains five MOFs, each of them associated with a

specific aileron based manoeuvre that a “Human being Pilot” may perform in front of external

conditions while a predefined route is followed. Membership functions are:

a) Turn_left_rol;

b) Left_wind_Rol_comp;

c) Cruise_Rolling;

d) right_wind_Rol_comp;

e) Turn_right_rol.

The MOFs design strategy is based on the mechanical behaviour of the “ailerons” steered

by the electromechanical actuators, which are the SERVO-Motors described in paragraph

5.1.8. Moving from the disserted hardware description of the ailerons SERVO-Motors, the

membership function “Cruise_rolling” is a conventional trapezoidal membership function

centred to the ailerons mechanical angle equal to 0°, which corresponds to the +20° of the

servo electrical angle. Depending by actuator’s control signal resolution utilised could be of

7-bit or 8-bit (0 to 127 steps or 0 to 255 steps), the 0° ailerons mechanical angle corresponds

to an output value of 127 for the case of 8-bit resolution (or 63 for the case of 7-bit resolution).

The proposed neuro-fuzzy controller utilises 8-bit resolution data, and then a VHDL

component will perform a digital acceleration of the information, which will be converter in

a PWM signal with a 7-bit resolution.

130

Figure 6.23: Type “Aileron_SERVOs”, graphical representation.

“TURN_left_rol” is a conventional trapezoidal membership function associated with a

heavy ailerons manoeuvre which results in a significant positive rolling angle

(“TURN_right_rol” is the mirror/symmetrical function; it is associated to a heavy ailerons

manoeuvre which results into a significant negative rolling angle). The resulting output

control signals for the two ailerons’ actuators are complementary. Theoretically, it may set

the left aileron SERVO-Motor electrical angle in a range between 0° and 11°, while the right

aileron SERVO-Motor electrical angle will be set to the complementary value between 40°

and 29° (for the TURN_right_Rudder function, the left ailerons SERVO-Motor electrical

angle will be set between 40° and 29°, while the right SERVO-Motor angle will be set to the

complementary value between 0° and 11°). The corresponding mechanical angle will be

between +20° and +9° for the left aileron or between -20° and -9° for the right aileron

mechanical angle (for the TURN_right_Rudder function, the corresponding mechanical

angle will be between -20° and -9° for the left aileron or between +20° and +9° for the right

aileron mechanical angle).

“Left_wind_Rol_comp” is a conventional triangular Membership Function associated

with a light ailerons manoeuvre which results in a moderate positive rolling angle

(“right_wind_Rol_comp” is the mirror/symmetrical function, associated with a light Ailerons

manoeuvre which results in a moderate negative rolling angle). The resulting complementary

output control signals for the two Ailerons actuators theoretically may set the left aileron

SERVO-Motor electrical angle in a range between 11° and 20°. In contrast, the right aileron

131

SERVO-Motor electrical angle will be set to the complementary value between 20° and 29°

(for the right_wind_Rol_comp function, the left ailerons servo electrical angle will be set

between 20° and 29°, while the right SERVO-Motor electrical angle will be set to the

complementary value between 11° and 20°). The corresponding mechanical angle will be

between +0° and +9° for the left aileron or between -0° and -9° for the right aileron

mechanical angle (for the right_wind_Rol_comp function, the corresponding mechanical

angle will be between -0° and -9° for the left aileron or between +0° and +9° for the right

aileron mechanical angle).

 Type “ELEV_SERVO”, Membership Output Function

The Type “ELEV_SERVO” contains four MOFs, each of them associated with a specific

elevator manoeuvre that a “Human being Pilot” may perform in front of external conditions

while a predefined route is followed. Membership functions are:

a) STALL

b) Descending

c) Cruise

d) Climb

Figure 6.24: Type “ELEV_SERVO”, graphical representation.

The MOFs design strategy is based on the mechanical behaviour of the “elevator” steered

by an electromechanical actuator, which is the SERVO-Motor described in paragraph 5.1.8.

The proposed neuro-fuzzy controller utilizes 8-bit resolution data, and then a VHDL

132

component will perform a digital acceleration of the information, which will be converter in

a PWM signal with a 7-bit resolution.

Moving from the disserted hardware description of the elevator’s SERVO-Motor, the

membership function “STALL” is a conventional trapezoidal membership function

associated with a large elevator’s manoeuvre, which may cause an outsized negative pitch

attack angle. The resulting output control signal for the elevator’s actuator theoretically may

set the SERVO-Motor electrical angle in a range between 0° and 16°, which corresponds to

a mechanical angle between -20° and -4°.

“Descending” is a conventional triangular membership function associated with a

moderate elevator’s manoeuvre, which may cause a moderate negative or neutral pitch attack

angle. The resulting output control signal for the elevator’s actuator theoretically may set the

SERVO-Motor electrical angle in a range between +8° and +24°, which corresponds to a

mechanical angle between -12° and +4°.

Figure 6.25: graphical representation of the effect of the elevator action on the vehicle’s pitch angle.

“Cruise” is a conventional triangular membership function associated with a moderate

elevator’s manoeuvre, which may establish a moderate positive pitch attack angle. The

resulting output control signal for the elevator’s actuator theoretically may set the SERVO-

Motor electrical angle in a range between +20° and +30°, which corresponds to a mechanical

angle between 0° and +10°.

133

Figure 6.26: graphical elevator operation description.

“Climb” is a conventional triangular membership function associated with a substantial

elevator’s manoeuvre, which may cause a vehicle’s large positive pitch angle. The resulting

output control signal for the elevator’s actuator theoretically may set the Servo electrical

angle in a range between 24° and 40°, which corresponds to a mechanical angle between +4°

and +20°.

Figure 6.27: graphical representation of the effect of the elevator action on the vehicle’s pitch angle.

 Type “M1_THROTTLE”, Membership Output Function

The Type “M1_THROTTLE” contains five MOFs, each of them associated with a

specific throttle regulation of the left-wing powertrain that a “Human being Pilot” may

execute in front of external conditions while a predefined route is followed. Membership

Functions are:

a) glider_1;

b) Descending1;

c) ECOCRUISE1;

134

d) SUPERCRUISE1;

e) TAKE_OFF1.

By assumption, the “Torque Demand command” resolution chosen is 8-bit (0 to 255

steps).

Figure 6.28: Type “M1_THROTTLE”, graphical representation.

The membership function “glider_1” is a conventional trapezoidal membership function

associated with a very low torque demand generated by the “flight controller” to the “3ph

Motor Driver” that manages the left-wing E-Motor. This membership function aims to allow

the vehicle to perform a flight with a minimal thrust. Theoretically, the resulting torque

demand may be set in a range between 0% and +19.5% (0 to 50).

“Descending1” is a conventional trapezoidal membership function associated with a low

torque demand generated by the “flight controller” to the “3ph Motor Drive” that manages

the left-wing E-Motor. The goal of this membership function is to help a safe descending

manoeuvre. Theoretically, the resulting torque demand may set in a range between +9.8%

and +39.8% (25 to 102).

“ECOCRUISE1” is a conventional trapezoidal membership function associated with a

steady torque demand generated by the “flight controller” to the “3ph Motor Drive” that

manages the left-wing E-Motor. This membership function aims to define the most effective

(encouraging the low consumption operation) torque demand for a stable cruise flight.

Theoretically, the resulting torque demand may set in a range between 23.4% and +79.2%

(60 to 203).

135

“SUPERCRUISE1” is a conventional trapezoidal membership function associated with

a consistent torque demand generated by the “flight controller” to the “3ph Motor Drive” that

manages the left-wing E-Motor. This membership function aims to achieve a “fast cruise”

flight or support manoeuvres that require broad thrust. Theoretically, the resulting torque

demand may set in a range between 62.5% and +99.2% (160 to 254).

“TAKE_OFF1” is a conventional trapezoidal membership function associated with a

full-throttle torque demand generated by the “flight controller” to the “3ph Motor Drive” that

manages the left-wing E-Motor. The membership function is associated with particular

manoeuvres such as the take-off manoeuvre or the stall avoiding manoeuvre, where the E-

Motor shall operate at the highest power ratings. Theoretically, the resulting torque demand

may set in a range between 93.8% and +100 % (240 to 255).

 Type “M2_THROTTLE”, Membership Output Function

The Type “M2_THROTTLE” contains five MOFs, each of them associated with a

specific throttle regulation of the right-wing powertrain that a “Human being Pilot” may

execute in front of external conditions while a predefined route is followed. Membership

Functions are:

a) glider_2;

b) Descending2;

c) ECOCRUISE2;

d) SUPERCRUISE2;

e) TAKE_OFF2.

By assumption, the “Torque Demand command” resolution chosen is 8-bit (0 to 255

steps).

136

Figure 6.29: Type “M2_THROTTLE”, graphical representation.

 The membership function “glider_2” is a conventional trapezoidal membership function

associated with a very low torque demand generated by the “flight controller” to the “3ph

Motor Driver” that manages the right-wing E-Motor. This membership function aims to allow

the vehicle to perform a flight with a minimal thrust. Theoretically, the resulting torque

demand may be set in a range between 0% and +19.5% (0 to 50).

“Descending2” is a conventional trapezoidal membership function associated with a low

torque demand generated by the “flight controller” to the “3ph Motor Drive” that manages

the right-wing E-Motor. The goal of this membership function is to help a safe descending

manoeuvre. Theoretically, the resulting torque demand may set in a range between +9.8%

and +39.8% (25 to 102).

“ECOCRUISE2” is a conventional trapezoidal membership function associated with a

steady torque demand generated by the “flight controller” to the “3ph Motor Drive” that

manages the right-wing E-Motor. This membership function aims to define the most effective

(encouraging the low consumption operation) torque demand for a stable cruise flight.

Theoretically, the resulting torque demand may set in a range between 23.4% and +79.2%

(60 to 203).

“SUPERCRUISE2” is a conventional trapezoidal membership function associated with

a consistent torque demand generated by the “flight controller” to the “3ph Motor Drive” that

manages the right-wing E-Motor. This membership function aims to achieve a “fast cruise”

flight or support manoeuvres that require broad thrust. Theoretically, the resulting torque

demand may set in a range between 62.5% and +99.2% (160 to 254).

137

“TAKE_OFF2” is a conventional trapezoidal membership function associated with a

full-throttle torque demand generated by the “flight controller” to the “3ph Motor Drive” that

manages the right-wing E-Motor. The membership function is associated with particular

manoeuvres such as the take-off manoeuvre or the stall avoiding manoeuvre, where the E-

Motor shall operate at the highest power ratings. Theoretically, the resulting torque demand

may set in a range between 93.8% and +100 % (240 to 255).

6.4 Controller’s Rulebases

By definition, to implement a parallel computational capable neuro-fuzzy controller, it

is necessary to create a set of independent “Rulebase” for each output. As described in

“Chapter 4”, the “controller” shall generate five independent outputs; thus, five bespoke

“Rulebases” shall be designed. For a bespoke “Rulebase” is intended the entity which

encloses multiple combinations of rules. Each rule combines and weights sets of independent

membership crisp values and associates a specific membership output function to be activated

with the corresponding elaborated value. [32, 38 and 43]

 “ELEV_SERVO”, Rulebase

The generation of the control signal “SERVO_ELEV” (for the “elevator’s SERVO-

Motor”) passes by the activation of the Type “ELEV_SERVO” MOFs. The rules and the

weights for the membership functions activation are listed in the “Rulebase”:

“ELEV_SERVO”. The activated membership function shall be “de-fuzzified” accordingly.

The definition of the “defuzzification method” is set selecting the “Operatorset” in the “XFL3

GUI”. [38]

For the study case, it is used the “SERVO_DEFUZZY” Operatorset, which uses the

“xfl.CenterOfArea()” defuzzification function.

138

Figure 6.30: “Operatorset” GUI’s interface.

The first step for the “Rulebase’s design” is the definition of the “Rulebase’s inputs” and

the association of each input to a dedicated “Type”. For the “ELEV_SERVO Rulebase”, the

inputs are:

a) PITCH (associated with the Type “Pitch_angle_input” and its 3 MIFs - pitch

angle feedback);

b) ALT (associated with the Type “Altitude_input” and its 4 MIFs - altitude

feedback);

c) V (associated with the Type “Speed_Input” and its 5 MIFs - speed information).

139

Figure 6.31: Table form of the “ELEV_SERVO Rulebase” (GUI’s interface).

The Rulebase’s design targets the minimisation of the number of rules (or combinations)

in order to make more approachable the test of the controller and, more critical, the reduction

of the FPGA logic gates requirements.

The design process is articulated in two steps. The first step uses an implementation that

targets the activation of only one membership function for each determined combination of

MIFs. Indeed, it is acceptable that a specific combination of MIFs shall activate, most likely

with different weights, different MOFs. It represents the second step of the design process,

which focuses on the “fine-tuning”118 of the “Rulebase”.

Current “Rulebase” incorporates “89” rules listed as a matrix of cases of “Human being

Pilot” action-reaction behaviours, where for “action” it is intended the monitoring of the

flight dynamic, and for “reaction” it is intended the elevator correction manoeuvres that a

“Human Being Pilot” would most likely perform119. The level of the reaction severity is

determined by the weight value associated with each rule.

118 It is subject to the simulation outcomes. In fact, it necessary to work on fine-tuning to achieve enough robust controller before
to move to the learning-training process.
119 Assumptions made by the controller’s designer.

140

 “Aileron_SERVO”, Rulebase

The generation of the control signal “AILERONS” (for the “aileron’s SERVO-Motors”)

passes by the activation of the Type “Aileron_SERVO” MOFs. The rules and the weights for

the membership functions activation are listed in the Rulebase: “Aileron_SERVO”.

As previously described, the “defuzzification method” selected in the Rulebase’s

“Operatorset” is the “SERVO_DEFUZZY”, which uses the “xfl.CenterOfArea()”

defuzzification function.

For the “Aileron_SERVO Rulebase”, the inputs are:

a) ALTD (associated with the Type “Altitude_input” and its 4 MIFs – the vehicle’s

altitude feedback);

b) Compass (associated with the Type “Compass_input” and its 3 MIFs - the

vehicle’s heading angle error);

c) ROLLING_angle (associated with the Type “Rolling_angle_input” and its 5

MIFs - rolling angle feedback);

d) YAW (associated with the Type “Yaw_angle_input” and its 3 MIFs - yaw angle

feedback).

The Rulebase’s design targets the minimisation of the number of rules (or combinations)

in order to make more approachable the test of the controller and, more crucial, the reduction

of the FPGA logic gates requirements.

The design process is articulated in two steps. The first step uses an implementation that

targets the activation of only one membership function for each determined combination of

MIFs. As previously described (paragraph 6.4.1), the second step of the design process

focuses on the “fine-tuning” of the “Rulebase”, adding, if necessary, a set of new weighted

rules.

141

Figure 6.32: Table form of the “Aileron_SERVO Rulebase” (GUI’s interface).

“Aileron_SERVO” Rulebase is built on “180” rules, listed as a matrix of cases of

“Human Being Pilot” action-reaction behaviours, where for “action” it is intended the

monitoring of the flight dynamic, and for “reaction” it is intended the rolling correction

manoeuvres that a “Human Being Pilot” would most likely perform120. The level of the

reaction severity is described by the weight value associated with each rule.

 “RUDD_SERVO”, Rulebase

The generation of the control signal “RUDDER” (for the “Rudder SERVO-Motor”)

passes by the activation of Type “Rudder_SERVO” MOFs. The rules and the weights for the

membership functions activation are listed in the Rulebase: “RUDD_SERVO”.

As previously described, the “defuzzification method” selected in the Rulebase’s

“Operatorset” is the “SERVO_DEFUZZY”, which uses the “xfl.CenterOfArea()”

defuzzification function.

For the “RUDD_SERVO Rulebase”, the inputs are:

a) Compass (associated with the Type “Compass_input” and its 3 MIFs - the

vehicle’s heading angle error);

120 Assumptions made by the controller’s designer.

142

b) YAW (associated with the Type “Yaw_angle_input” and its 3 MIFs - yaw angle

feedback);

c) ROLLING_angle (associated with the Type “Rolling_angle_input” and its 5

MIFs - rolling angle feedback);

d) PITCH (associated with the Type “Pitch_angle_input” and its 3 MIFs - pitch

angle feedback).

Figure 6.33: Table form of the “Rudder_SERVO Rulebase” (GUI’s interface).

The Rulebase’s design targets the minimisation of the number of rules (or combinations)

in order to make more approachable the test of the controller and, more critical, the reduction

of the FPGA logic gates requirements.

The design process is articulated in two steps. The first step uses an implementation that

targets the activation of only one membership function for each determined combination of

MIFs. As previously described (paragraph 6.4.1), the second step of the design process

focuses on the “fine-tuning” of the “Rulebase”, adding, if necessary, a set of new weighted

rules.

 “RUDD_SERVO” Rulebase is built on “135” rules, listed as a matrix of cases of

“Human Being Pilot” action-reaction behaviours, where for “action” it is intended the

monitoring of the flight dynamic, and for “reaction” it is intended the yaw correction

143

manoeuvres that a “Human being pilot” would most likely perform121. The level of the

reaction severity is described by the weight value associated with each rule.

 “M1”, Rulebase

The generation of the control signal for the “M1” (the “left-wing E-Motor” control

signal) passes by the activation of Type “M1_THROTTLE” MOFs. The rules and the weights

for the membership functions activation are listed in the Rulebase: “M1”.

For the current “Rulebase”, the “defuzzification method” selected in the Rulebase’s

“Operatorset” is defined as “neural”, which uses the “xfl.CenterOfArea()” defuzzification

function.

For the “M1 Rulebase”, the inputs are:

a) Compass (associated with the Type “Compass_input” and its 3 MIFs - the

vehicle’s heading angle error);

b) YAW (associated with the Type “Yaw_angle_input” and its 3 MIFs - yaw angle

feedback);

c) PITCH (associated with the Type “Pitch_angle_input” and its 3 MIFs - pitch

angle feedback);

d) ROLLING (associated with the Type “Rolling_angle_input” and its 5 MIFs -

rolling angle feedback);

e) ALT (associated with the Type “Altitude_input” and its 4 MIFs - altitude

feedback);

f) V (associated with the Type “Speed_Input” and its 5 MIFs - speed sensor);

g) BATTERY (associated with the Type “Energy_Status” and its 4 MIFs - Battery

SoC information).

121 Assumptions made by the controller’s designer.

144

Figure 6.34: Table form of the “M1 Rulebase” (GUI’s interface).

The Rulebase’s design targets the minimisation of the number of rules (or combinations)

in order to make more approachable the test of the controller and, more critical, the reduction

of the FPGA logic gates requirements.

The presence of 7 inputs for the “Rulebase” makes it unrealistic122 to cover each possible

combination of MIFs. The identification of a method that allows a substantial reduction of

the “Rulebase’s” rules will require a few more design considerations.

The strategy used for the “Rulebase” design process is articulated in two steps. The first

design step utilizes only five of the seven inputs and targets the activation of only one MOF

for each determined combination of MIFs.

The second design step focuses on the definition of a set of combinations and rules from

the most influential conditions that involve the whole set of seven inputs. This operation may

be seen as the “fine-tuning” of the “Rulebase”, adding, where necessary, a set of new

weighted rules.

The generated “M1” Rulebase contains “1216” rules, listed as a matrix of cases of

“Human Being Pilot” action-reaction behaviours, where for “action” it is intended the

monitoring of the flight dynamic and for “reaction” it is intended the “left-wing E-Motor

122 A large number of the input combination and the potential rules will produce a negligible contribution for the definition of the
control quality and performances, but the controller cost (the computational power required; thus FPGA logic gates, will limit the
selection of the physical device to the higher performance family) would increase significantly.

145

Throttle” control that a “Human being pilot” would most likely perform. The level of the

reaction severity is described by the weight value associated with each rule. As previously

described, a specific combination of MIFs may activate, most likely with different weights,

different MOFs.

It is of paramount importance to highlight that the definitions of the rules and the

associated weights does not only aim to perform a correct flight and ensure system protection

and reliability but also targets the minimisation of the energy used. The desired outcome is

the life extension of the system most vulnerable components: the REESS.

 “M2”, Rulebase

The generation of the control signal for the “M2” (the “right-wing E-Motor” control

signal) passes by the activation of Type “M2_THROTTLE” MOFs. The rules and the weights

for the membership functions activation are listed in the Rulebase: “M2”.

For the current “Rulebase”, the “defuzzification method” selected in the Rulebase’s is

the “neural” “Operatorset”, which uses the “xfl.CenterOfArea()” defuzzification function.

For the “M2 Rulebase”, the inputs are:

a) Compass (associated with the Type “Compass_input” and its 3 MIFs - the

vehicle’s heading angle error);

b) YAW (associated with the Type “Yaw_angle_input” and its 3 MIFs - yaw angle

feedback);

c) PITCH (associated with the Type “Pitch_angle_input” and its 3 MIFs - pitch

angle feedback);

d) ROLLING (associated with the Type “Rolling_angle_input” and its 5 MIFs -

rolling angle feedback);

e) ALT (associated with the Type “Altitude_input” and its 4 MIFs - altitude

feedback);

f) V (associated with the Type “Speed_Input” and its 5 MIFs - speed sensor);

g) BATTERY (associated with the Type “Energy_Status” and its 4 MIFs - Battery

SoC information).

146

Figure 6.35: Table form of the “M2 Rulebase” (GUI’s interface).

The Rulebase’s design targets the minimisation of the number of rules (or combinations)

in order to make more approachable the test of the controller and, more critical, the reduction

of the FPGA logic gates requirements.

The presence of seven inputs for the “Rulebase” makes it unrealistic123 to cover each

possible combination of MIFs. The identification of a method that allows a substantial

reduction of the “Rulebase’s” rules will require a few more design considerations.

The strategy used for the “Rulebase” design process is articulated in two steps. The first

design step utilizes only five of the seven inputs and targets the activation of only one MOF

for each determined combination of MIFs.

The second design step focuses on the definition of a set of combinations and rules from

the most influential conditions that involve the whole set of 7 inputs. This operation may be

seen as the “fine-tuning” of the “Rulebase”, adding, where necessary, a set of new weighted

rules.

The generated “M2” Rulebase contains “1216” rules, listed as a matrix of cases of

“Human Being Pilot” action-reaction behaviours, where for “action” it is intended the

monitoring of the flight dynamic and for “reaction” it is intended the “right-wing E-Motor

123 A large number of the input combination and the potential rules will produce a negligible contribution for the definition of the
control quality and performances, but the controller cost (the computational power required; thus FPGA logic gates, will limit the
selection of the physical device to the higher performance family) would increase significantly.

147

Throttle” control that a “Human being pilot” would most likely perform. The level of the

reaction severity is described by the weight value associated with each rule. As previously

described, a specific combination of MIFs may activate, most likely with different weights,

different MOFs.

It is of paramount importance to highlight that the definitions of the rules and the

associated weights does not only aim to perform a correct flight and ensure system protection

and reliability but also targets the minimisation of the energy used. The desired outcome is

the life extension of the system most vulnerable components: the REESS.

6.5 Fuzzy Controller System Structure

“Figure 6.36” shows the high level “fuzzy controller structure” described in the previous

paragraphs, using a hardware description layout. In the picture, it is possible to observe on

the left-side the controller’s inputs and on the right side the controller’s output. The internal

connections between the controller’s blocks, where each block represents a controller’s

“Rulebase”, demonstrate the controller’s parallel computation capability; each “Rulebase”

operates independently and in parallel with all other “Rulebases”.

148

Figure 6.36: “Fuzzy Controller Structure” designed in the XFUZZY environment.

149

6.6 Fuzzy Controller Simulations and preliminary optimisation

Before exporting the “fuzzy controller” in the “VHDL” language, it is recommendable

to implement a series of simulation and, if possible, optimise the “fuzzy controller”. There

are several options available able to perform a fuzzy controller simulation. The Author’s

appreciates the functionalities available in the XFUZZY environment and its GUI124. The

GUI’s functionalities used for the proposed work are:

a) controller’s graphical representation;

b) Type’s membership functions optimisation;

c) Rulebase’s optimisation;

d) fuzzy controller behaviour “Monitorization” (defines the controller’s exact

outputs in front of a predefined set of inputs, it may be associated with a

mathematical solution of the physical controller’s equations).

From the listed functionalities, the Author decides to emphasise the utilisation of the

“Inference Monitor” functionality to perform a controller’s raw simulation. The “goal” of the

raw simulation is to check the “controller response” in certain conditions, such as take-off,

landing, route adjustments, steady-state flight (stable flight), and gusty winds compensation

manoeuvre.

The proposal relies on the outcome of this set of simulations to implement an iteration

based adjustment of the Rulebase’s “weights” and “functions” (or weighted rules) before

exporting the “VDLH” algorithms and perform any learning processes.

 Take-Off simulation

Take-off and landing are the most complex tasks to be performed. Take-off simulations

result in being very complex to simulate without a very detailed and comprehensive model

of the vehicle dynamics behavioural125. The assumption is to identify several manoeuvre

points and check the controller behaviour in those specific moments. Of course, as many

points may be identified as more reliable, it will be the raw simulation outcome.

The procedure for take-off starts with the vehicle accelerating until it reaches enough

speed. The pilot can then rotate the vehicle, and it will start ascending. The determination of

124 The “Digital” description of the “Fuzzy Controller” built on XFUZZY3.5 (version 3.5).
125 Parameters like aero-dynamical coefficients, vehicle acceleration behaviour, stall speed, take-off speed and etc., have paramount
importance for very detailed simulation.

150

this particular speed called rotation speed (𝑉𝑉𝑅𝑅), is a critical factor in determining take-off

performance126. For safety reasons, 𝑉𝑉𝑅𝑅 is usually determined as being:

𝑉𝑉𝑅𝑅 = 1.1 ∙ 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
(Equation 41)127

Alternatively (whichever is greater128):

𝑉𝑉𝑅𝑅 = 1.05 ∙ 𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶
(Equation 42)

It can be calculated based on knowledge of the aircraft take-off configuration and hence

the maximum achievable lift coefficient 𝐶𝐶𝐿𝐿(max). To maintain level flight, the lift produced

must equal the weight; hence the stall speed can be calculated as:

𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = ��
2 ∙ 𝑊𝑊

𝐶𝐶𝐿𝐿(𝑚𝑚𝑚𝑚𝑚𝑚) ∙ 𝜌𝜌 ∙ 𝑆𝑆
�

(Equation 43)

The raw simulation aims to observe the “Controller” behaviour with particular attention

in five critical moments of the take-off manoeuvre (the manoeuvre start in t=t0 may also not

be considered a pivotal moment). Looking at the following pictures, Figure 6.37 and Figure

6.38, it is possible to identify such moments as:

a) manoeuvre start, the vehicle is going to accelerate (speed 𝑣𝑣(𝑡𝑡) = 0, at t=t0=0);

b) the vehicle is at the acceleration’s peak, and it is moving with speed 𝑣𝑣(𝑡𝑡) = 𝑉𝑉𝑎𝑎,

(t = t1, Figure 6.38);

c) the vehicle is moving at speed 𝑣𝑣(𝑡𝑡) = 𝑉𝑉𝑅𝑅
√2

= 𝑉𝑉1, (t = t2, Figure 6.38);

d) the vehicle reaches the “rotation speed”, it is moving with speed 𝑣𝑣(𝑡𝑡) = 𝑉𝑉𝑅𝑅, (t=t3,

Figure 6.37);

e) the vehicle is moving at speed 𝑣𝑣(𝑡𝑡) = 𝑉𝑉2, where 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ √2 ≤ 𝑉𝑉2 ≤ 2 ∙ 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (t

= t4, Figure 6.37);

f) the vehicle moving with speed 𝑣𝑣(𝑡𝑡) = 𝑉𝑉𝑐𝑐; 𝑉𝑉2 < 𝑉𝑉𝑅𝑅 ∙ √2 ≤ 𝑉𝑉𝑐𝑐 ≤ 2 ∙ 𝑉𝑉𝑅𝑅, (t = t5).

126 Take-off rules vary slightly depending on the aircraft category. Small commuter aircraft should be considered as meeting “FAR
23” rules, and transport category aircraft should comply with “FAR 25” rules.
127 Stall speed, Vstall, is the lowest speed that the aircraft can be flown before the airflow starts to separate from wings as the angle
of attack becomes too great. The wing is assumed in this case to be in take-off configuration or “clean”.
128 For a conventional aircraft, there is only a small difference between VR calculations based on stall speed or minimum control
speed. Minimum control speed, VMin,Control is a more complex calculation and requires knowledge of the stall characteristics, of the
tailplane and of the elevator.

151

Figure 6.37: take-off manoeuvre, graphical animation.

Figure 6.38: take-off manoeuvre, acceleration vs velocity graph.

Figure 6.39: Take-off manoeuvre, velocity vs time indicative graph.

6.6.1.1 Simulation at t=t0

For the circumstance “t = t0”, by assumption, it is used a set of controller’s input

parameters compatible with the physical environmental parameters that a human pilot may

observe at the moment of the take-off manoeuvre start. Those parameters are:

152

• “Pitch attack angle” is approximately 0.8 degrees (PITCH_angle);

• “Yaw angle” is approximately 0 degrees (YAW_angle);

• “Rolling angle” is approximately 0 degrees (ROL_angle);

• “Navigation Heading angle error” is 0 degrees (Compass_Error)129;

• “Vehicle’s speed” read is 0%130(Speed);

• “Altitude relative error”131 read is approximately -67% (Altitude error);

• “Battery’s SoC” read is 95.3% (Battery_status).

Those parameters shall be translated into an 8-bit digital form accordingly. A human

pilot looks at the sensors that may appear as values in the previous format. The controller

reads 8-bit resolution digital processed input values, where for digital processing it is meant

the data elaboration disserted in “Chapter 5”. It means that the set of input parameters,

delivered into the “XFUZZY Inference Monitor” tool, are chosen according to the “Chapter

5” definition of the digital processes.

Figure 6.40: simulation’s outputs at t=t0.

“Figure 6.40” represents the result of the simulation taken into a defined instant, where

the input parameters are the previous mechanical parameters listed, opportunely translated in

129 Heading angle error, it is set “null” during the take-off manoeuvre by the “VHDL compass function”.
130 It is used the absolute maximum rated speed of the vehicle as to the 100% reference.
131 It may be addressed as well as “Approximation error”. Reference formulas are : 𝐸𝐸𝑟𝑟 = 𝐸𝐸𝐴𝐴

𝑦𝑦𝑚𝑚
 , where Er is the relative error, EA is

the absolute error and ym is the average value (or reference value). The controller uses the percent error: 𝐸𝐸𝑟𝑟% = 100 ∙ 𝐸𝐸𝑟𝑟.

153

digital form, and the output values are the “fuzzy controller’s output values”. As for the input

values, output values shall be digitally processed before becoming the physical control

signals that could go out of the FPGA, according to the definitions of “Chapter 5”.

Fundamentally, the “fuzzy controller” generates an 8-bit resolution digital information

format for each output, which shall be translated into a PWM signal for the SERVO Motor

or into a torque demand request via RS232 to the powertrain’s driver interface. The

mechanical outcome opportunely translated from “Figure 6.40” are:

• the mechanical angle of the “Ailerons” set to an approximately 0-degree position;

• the mechanical angle of the “Elevator” set to approximately -4 degrees position;

• the mechanical angle of the “Rudder” set to an approximately 0-degree position;

• left motor torque demand set to 96.9%132;

• right motor torque demand set to 96.9%.

6.6.1.2 Simulation at t=t1

The assumptions made for the controller’s behaviour simulation at the moment t=t1 is

that the vehicle is in “full acceleration”133 (graph of Figure 6.38) and that a set of controller’s

input parameters, compatible with the physical environmental parameters that a human pilot

may observe at that moment, are used. Those parameters are:

• “Pitch attack angle” is approximately +0.5 degrees (PITCH_angle);

• “Yaw angle” is approximately 0 degree (YAW_angle);

• “Rolling angle” is approximately 0 degree (ROL_angle);

• “Navigation Heading angle error” is 0 degrees (Compass_Error)134;

• “Vehicle’s speed” read is 7.8% (Speed);

• “Altitude relative error” read is approximately -67% (Altitude error);

• “Battery’s SoC” read is 94.9% (Battery_status).

As previously described, the set of input parameters, delivered into the “XFUZZY

Inference Monitor” tool, are chosen according to “Chapter 5” definition of the digital

132 It is the percentage of the absolute maximum torque achievable by the powertrain motor (it is a safety value set by the user on
the E-Motor driver parametrisation).
133 For “full acceleration” it is intended that the vehicle’s speed is significantly below the parameter “Vstall”, its acceleration reached
the absolute “acceleration peak”, and the vehicle’s acceleration is going to decrease according to the graphs of Figure 6.38 and
Figure 6.39.
134 The vehicle’s heading angle error, it is set to “null” during the take-off manoeuvre by the VHDL SW compass function.

154

processes and according to “paragraph 6.6.1.1” consideration regarding the vehicle’s speed

and altitude relative error.

Figure 6.41: simulation’s outputs at t=t1.

Figure 6.41 represents the result of the simulation taken under the conditions associated

with the instant t=t1. Each value present in the simulation requires a digital process to be

associable with a physical value (as previously described). The mechanical outcomes

opportunely translated from “Figure 6.41” are:

• the mechanical angle of “Ailerons” set to an approximately 0-degree position;

• the mechanical angle of “Elevator” set to approximately -3.6 degrees position;

• the mechanical angle of “Rudder” set to an approximately 0-degree position;

• left motor torque demand set to 96.9%;

• right motor torque demand set to 96.9%.

Previously described, “paragraph 6.6.1.1”, considerations regarding the vehicle’s torque

demand are valid for this simulation and will be valid for all following simulations.

6.6.1.3 Simulation at t=t2

The assumptions made for the controller’s behaviour simulation at the moment t=t2 is

that the vehicle speed is equal to 𝑣𝑣(𝑡𝑡) = 𝑉𝑉𝑅𝑅
√2

= 𝑉𝑉1 (graph of “Figure 6.38”). Furthermore, a set

of controller’s input parameters, compatible with the physical environmental parameters that

a human pilot may observe at that moment, are used. Those parameters are:

• “Pitch attack angle” is approximately 0.3 degrees (PITCH_angle);

155

• “Yaw angle” is approximately 0 degree (YAW_angle);

• “Rolling angle” is approximately 0 degree (ROL_angle);

• “Navigation Heading angle error” is 0 degree (Compass_Error)135;

• “Vehicle’s speed” read is 16.4% (Speed);

• “Altitude relative error” read is approximately -67% (Altitude error);

• “Battery’s SoC” read is 94.5% (Battery_status).

As previously described, the set of input parameters, delivered into the “XFUZZY

Inference Monitor” tool, are chosen according to “Chapter 5” definition of the digital

processes.

Previous, “paragraph 6.6.1.1”, consideration regarding the vehicle’s speed and altitude

relative error are valid and will be valid for all following simulations.

Figure 6.42: simulation’s outputs at t=t2.

Figure 6.42 represents the results of the simulation taken under the conditions associated

with the instant t=t2. Each value present in the simulation requires a digital process to be

associable to a physical value (as previously described). The mechanical outcomes

opportunely translated from “Figure 6.42” are:

• the mechanical angle of “Ailerons” set to an approximately 0-degree position;

• the mechanical angle of “Elevator” set to approximately -2.5 degrees position;

135 The vehicle’s heading angle error, it is set to “null” during the take-off manoeuvre by the VHDL SW compass function.

156

• the mechanical angle of “Rudder” set to an approximately 0-degree position;

• left motor torque demand set to 96.1%;

• right motor torque demand set to 96.1%.

6.6.1.4 Simulation at t=t3

The assumptions made for the controller’s behaviour simulation at the moment t=t3 is

that the vehicle speed is equal to 𝑣𝑣(𝑡𝑡) = 𝑉𝑉𝑅𝑅 (graphs of “Figure 6.37” and “Figure 6.38”).

Moreover, a set of controller’s input parameters, compatible with the physical environmental

parameters that a human pilot may observe when the vehicle reaches the “Rotational Speed”,

are used. Those parameters are:

• “Pitch attack angle” is approximately 0 degree (PITCH_angle);

• “Yaw angle” is approximately 0 degree (YAW_angle);

• “Rolling angle” is approximately 0 degree (ROL_angle);

• “Navigation Heading angle error” is 0 degree (Compass_Error)136;

• “Vehicle’s speed” read is 23.4% (Speed);

• “Altitude relative error” read is -67% (Altitude error);

• “Battery’s SoC” read is 94.1% (Battery_status).

Figure 6.43: simulation’s outputs at t=t3.

136 The vehicle’s heading angle error, it is set to “null” during the take-off manoeuvre by the VHDL SW compass function.

157

As previously described, the set of input parameters delivered into the “XFUZZY

Inference Monitor” tool are chosen according to the “Chapter 5” definition of the digital

processes.

Figure 6.43 represents the results of the simulation taken under the conditions associated

with the instant t=t3. Each value present in the simulation requires a digital process to be

associable with a physical value (as previously described). The mechanical outcomes

opportunely translated from Figure 6.43 are:

• the mechanical angle of “Ailerons” set to an approximately 0-degree position;

• the mechanical angle of “Elevator” set to an approximately 0-degrees position;

• The mechanical angle of “Rudder” set to an approximately 0-degree position;

• left motor torque demand set to 93.8%;

• right motor torque demand set to 93.8%.

6.6.1.5 Simulation at t=t4

The assumptions made for the controller’s behaviour simulation at the moment t=t4 is

that the vehicle speed is equal to 𝑣𝑣(𝑡𝑡) = 𝑉𝑉2, where 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ √2 ≤ 𝑉𝑉2 ≤ 2 ∙ 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (graphs of

“Figure 6.37” and “Figure 6.38”). Then a set of controller’s input parameters, compatible

with the physical environmental parameters that a human pilot may observe when the vehicle

starts the ascending manoeuvre at the beginning of vehicle rotation, are used. Those

parameters are:

• “Pitch attack angle” is approximately +2.8 degrees (PITCH_angle);

• “Yaw angle” is approximately 0 degree (YAW_angle);

• “Rolling angle” is approximately 0 degree (ROL_angle);

• “Navigation Heading angle error” is 0 degree (Compass_Error)137;

• “Vehicle’s speed” read is 34.4% (Speed);

• “Altitude relative error” read is -50.8% (Altitude error);

• “Battery’s SoC” read is 93.8%.

As previously described, the set of input parameters, delivered into the “XFUZZY

Inference Monitor” tool, are chosen according to “Chapter 5” definition of the digital

processes.

137 The vehicle’s heading angle error, it is set to “null” during the take-off manoeuvre by the VHDL SW compass function.

158

Figure 6.44: simulation’s outputs at t=t4.

“Figure 6.44” represents the results of the simulation taken under the conditions

associated with the instant t=t4. Each value present in the simulation requires a digital process

to be associable with a physical value (as previously described). The mechanical outcomes

opportunely translated from “Figure 6.44” are:

• the mechanical angle of “Ailerons” set to an approximately 0-degree position;

• the mechanical angle of “Elevator” set to approximately +5.2 degrees position;

• the mechanical angle of “Rudder” set to an approximately 0-degree position;

• left motor torque demand set to 80.9%;

• right motor torque demand set to 80.9%.

6.6.1.6 Full Climbing manoeuvre at t = t5

The assumptions made for the controller’s behaviour simulation at the moment t=t5 is

that the vehicle speed is equal to 𝑣𝑣(𝑡𝑡) = 𝑉𝑉𝑐𝑐, where 𝑉𝑉2 < 𝑉𝑉𝑅𝑅 ∙ √2 ≤ 𝑉𝑉𝑐𝑐 ≤ 2 ∙ 𝑉𝑉𝑅𝑅 (graphs of

“Figure 6.37” and “Figure 6.38”). Then a set of controller’s input parameters, compatible

with the physical environmental parameters that a human pilot may observe when the vehicle

is in the middle of the ascending manoeuvre, are used. Those parameters are:

• “Pitch attack angle” is approximately +5 degrees (PITCH_angle);

• “Yaw angle” is approximately 0 degree (YAW_angle);

• “Rolling angle” is approximately 0 degree (ROL_angle);

159

• “Navigation Heading angle error” is 0 degree (Compass_Error)138;

• “Vehicle’s speed” read is 41% (Speed);

• “Altitude relative error” read is -43% (Altitude error);

• “Battery’s SoC” read is 92.6% (Battery_status).

As previously described, the set of input parameters, delivered into the “XFUZZY

Inference Monitor” tool, are chosen according to “Chapter 5” definition of the digital

processes.

Figure 6.45: simulation’s outputs at t=t5.

Figure 6.45 represents the result of the simulation taken under the conditions associated

with the instant t=t5. Each value present in the simulation requires a digital process to be

associable with a physical value (as previously described). The mechanical outcome

opportunely translated from “Figure 6.45” are:

• the mechanical angle of “Ailerons” set to an approximately 0-degree position;

• the mechanical angle of “Elevator” set to approximately +8.3 degrees position;

• the mechanical angle of “Rudder” set to an approximately 0-degree position;

• left motor torque demand set to 68%;

• right motor torque demand set to 68%.

138 The vehicle’s heading angle error, it is set to “null” during the take-off manoeuvre by the VHDL SW compass function.

160

6.6.1.7 Take-off simulation Conclusion

The simulations outcome shows that the controller’s decisions are compatible with the

decisions that a human pilot may take in similar environmental conditions.

 Route adjustment Simulation

In order to allow a smooth take-off, a high-level system assumption values the “enable”

of the vehicle’s “heading angle correction. This design assumption complies with all other

design requirements for the VHDL block that generates the heading angle error 8-bit data,

which generates the “fuzzy controller” input “Compass_error”.

Figure 6.46: example of the vehicle’s flight route adjustment.

161

When the vehicle wakes up and starts the take-off preparation, the “heading angle error”

is forced to the fixed value “127” (in binary “0111 1111”), which results in a mechanical 0

degree heading angle error. As soon as the vehicle reaches a speed close enough to the cruise

speed, the VHDL block that implements the electronics compass, and its correlated

functionalities, is enabled to broadcasts the actual “heading angle error” (it is not anymore

forced the fixed value corresponding to a mechanical 0-degree error). From this point, the

vehicle will be enabled to adjust its route and take the correct direction.

 Design assumption is to use, as trigger parameter, the speed value 𝑣𝑣(𝑡𝑡) = 𝑉𝑉𝑥𝑥 = 112.

The value “112” is an 8-bit parameter (value in a range between 0 and 255), corresponding

to 44% of the absolute maximum vehicle’s speed.139

What “Figure 6.46” illustrates is a simple vehicle’s flight operation, which may be used

as a simplified baseline for the controller behaviour simulation and, in particular, for the route

adjustment manoeuvre simulation. It is possible to observe the first take-off operation

(previously described, “paragraph 6.6.1”), a series of route adjustments (it is taken merely as

a simplified benchmark three route adjustments) and landing operation.

6.6.2.1 Heavy negative Heading angle error adjustment, at t=t6

The assumptions made for the controller’s behaviour simulation at the moment t=t6 is

that the vehicle’s speed is close enough to the cruise speed (according to what stated before,

the vehicle’s speed is: 𝑣𝑣(𝑡𝑡) ≥ 𝑉𝑉𝑥𝑥) and the heading angle error is significant (grave) as for the

below picture. The manoeuvre aims to change the vehicle heading angle, assuming that the

vehicle direction is off course by -63.5 degrees.

The controller’s input parameters chosen are compatible with the physical environmental

parameters that a human pilot may observe when, just after the take-off manoeuvre, has to

change the vehicle direction140. Those parameters are:

• “Pitch attack angle” is approximately +4.2 degrees (PITCH_angle);

• “Yaw angle” is approximately 0 degrees (YAW_angle);

• “Rolling angle” is approximately 0 degrees (ROL_angle);

• “Navigation Heading angle error” is -63.5 degrees (Compass_Error)141;

139 The assumption that 𝑉𝑉𝑥𝑥 = 112 is subject to variations after the learning/training process.
140 In this case, changing the vehicle’s direction means a turn to the left, as for “Figure 6.47”.
141 The “Compass_error” value “0” corresponds to a heading angle error of -180°, a “Compass_error” value “127” corresponds
to a heading angle error of 0-degree, a “Compass_error” value “255” corresponds to a heading angle error of +180°. A

162

• “Vehicle’s speed” read is 45.3% (Speed);

• “Altitude relative error” read is -15.6% (Altitude error);

• “Battery’s SoC” read is 88% (Battery_status).

Figure 6.47: graphical representation of the flight route adjustment in t=t6.

As previously described, the set of input parameters, delivered into the “XFUZZY

Inference Monitor” tool, are chosen according to “Chapter 5” definition of the digital

processes.

“Compass_error” input value “82” corresponds to a heading angle error in the range between -63.28° and -63.69°. By assumption,
it is considered a value o -63.5°.

163

Figure 6.48: simulation’s outputs at t=t6.

“Figure 6.48” represents the results of the simulation taken under the conditions

associated with the instant t=t6. Each value present in the simulation requires a digital process

to be associable with a physical value (as previously described). The mechanical outcome

opportunely translated from “Figure 6.48” are:

• the mechanical angle of “Ailerons” set to approximately +6.3 degree position;

• the mechanical angle of “Elevator” set to approximately +4.5 degrees position;

• the mechanical angle of “Rudder” set to approximately -6.2 degrees position;

• left motor torque demand set to 49.6%;

• right motor torque demand set to 53.9%.

6.6.2.2 Mild Positive Heading angle error adjustment, at t=t7

The assumptions made for the controller behaviour simulation at the moment t=t7 is that

the vehicle speed is close to the cruise speed, and a heading angle error is present as illustrated

by “Figure 6.49”. The manoeuvre aims to change the vehicle heading angle, assuming that

the vehicle’s direction is off course by +37 degrees.

164

Figure 6.49: graphical representation of the flight route adjustment in t=t7.

The controller’s input parameters chosen are compatible with the physical environmental

parameters that a human pilot may observe when changing the vehicle direction142. Those

parameters are:

• “Pitch attack angle” is approximately +4.7 degrees (PITCH_angle);

• “Yaw angle” is approximately -2.5 degrees (YAW_angle);

142 In this case, changing the vehicle’s direction means a turn to the right, as for Figure 6.49.

165

• “Rolling angle” is approximately +0.8 degrees (ROL_angle);

• “Navigation Heading angle error” is +37 degrees (Compass_Error)143;

• “Vehicle’s speed” read is 46.1% (Speed);

• “Altitude relative error” read is -7% (Altitude error);

• “Battery’s SoC” of 80.9% (Battery_status).

As previously described, the set of input parameters, delivered into the “XFUZZY

Inference Monitor” tool, are chosen according to “Chapter 5” definition of the digital

processes.

Figure 6.50: simulation’s outputs at t=t7.

“Figure 6.50” represents the results of the simulation taken under the conditions

associated with the instant t=t7. Each value present in the simulation requires a digital process

to be associable with a physical value (as previously described). The mechanical outcomes

opportunely translated from “Figure 6.50” are:

• the mechanical angle of “Ailerons” set to approximately -2.7 degree position;

• the mechanical angle of “Elevator” set to approximately +5.2 degrees position;

• the mechanical angle of “Rudder” set to approximately +4.8 degrees position;

• left motor torque demand set to 52%;

143 The “Compass_error” value “0” corresponds to a heading angle error of -180°, a “Compass_error” value “127” corresponds
to a heading angle error of 0-degree, a Compass_error value “255” corresponds to a heading angle error of +180°. A heading angle
error of +37° corresponds to a Compass_error input value of “161”.

166

• right motor torque demand set to 49.4%.

6.6.2.3 Moderate Negative Heading angle error adjustment, at t=t8

The assumptions made for the controller’s behaviour simulation at the moment t=t8 is

that the vehicle speed is close to the cruise speed, and a moderate heading angle error is

present, as for the below picture. The manoeuvre aims to change the vehicle heading angle,

assuming that the vehicle direction is off course by -20 degrees.

Figure 6.51: graphical representation of the flight route adjustment in t=t8.

167

Input controller parameters chosen shall be compatible with the physical environmental

parameters that a human pilot may observe when, just after the take-off manoeuvre, has to

change the vehicle direction144. Those parameters are:

• “Pitch attack angle” is approximately +5 degrees (PITCH_angle);

• “Yaw angle” is approximately +1.9 degrees (YAW_angle);

• “Rolling angle” is approximately -1.6 degrees (ROL_angle);

• “Navigation Heading angle error” is -20 degrees (Compass_Error)145;

• “Vehicle’s speed” read is 46.5% (Speed);

• “Altitude relative error” read is -12.5% (Altitude error);

• “Battery’s SoC” read is 75% (Battery_status).

As previously described, the set of input parameters, delivered into the “XFUZZY

Inference Monitor” tool, are chosen according to “Chapter 5” definition of the digital

processes.

Figure 6.52: simulation’s outputs at t=t8.

“Figure 6.52” represents the results of the simulation taken under the conditions

associated with the instant t=t8. Each value present in the simulation requires a digital process

144 In this case, changing the vehicle direction means a turn to the left.
145 The “Compass_error” value “0” corresponds to a heading angle error of -180°, a “Compass_error” value “127” corresponds
to a heading angle error of 0-degree, a “Compass_error” value “255” corresponds to a heading angle error of +180°. A heading
angle error of -20° corresponds to a Compass_error input value “113”.

168

to be associable with a physical value (as previously described). The mechanical outcomes

opportunely translated from “Figure 6.52” are:

• the mechanical angle of “Ailerons” set to approximately +1.6 degree position;

• the mechanical angle of “Elevator” set to approximately +5 degrees position;

• the mechanical angle of “Rudder” set to approximately -0.9 degrees position;

• left motor torque demand set to 49.2%;

• right motor torque demand set to 49.6%.

6.6.2.4 Conclusion, route adjustment simulation

Simulations outcomes show that the controller’s decisions are compatible with the

decisions that a human pilot may take in front of similar environmental conditions.

 Steady-state simulation

The assumptions made for the controller’s behaviour simulation at the moment t=t9 is

that the vehicle moves at the cruise speed and the cruise altitude (or close enough). An

insignificant heading angle error is present. The manoeuvre’s goal is to assure that the

controller will keep the vehicle in a stable flight path under such conditions.

The simulation takes as an assumption a set of controller’s input parameters associable

with a steady-state flight. The physical environmental parameters taken as baseline, which a

human pilot may use as a reference, are the following:

• “Pitch attack angle” is approximately +5 degrees (PITCH_angle);

• “Yaw angle” is approximately +0.2 degrees (YAW_angle);

• “Rolling angle” is approximately -0.3 degrees (ROL_angle);

• “Navigation Heading angle error” is approximately -3.9 degrees

(Compass_Error);

• “Vehicle’s speed” set to 46.9% (Speed);

• “Altitude relative error” read is +13.3% (Altitude error);

• “Battery’s SoC” read is 62.5% (Battery_status).

Such parameters are translated into an 8-bit digital form accordingly. A human pilot

looks at the sensors that may appear as values in the previous format. The controller reads an

8-bit resolution digital processed input values, where for digital processing it is intended the

data elaboration disserted in “Chapter 5”.

169

Figure 6.53: simulation’s outputs, at t=t9.

“Figure 6.53” represents the results of the simulation taken into a defined instant, where

the input parameters are the previous mechanical parameters listed opportunely translated in

digital form, and the output values are the fuzzy controller’s output values. The “fuzzy

controller” generates an 8-bit resolution digital information for each output, which shall be

then translated into a PWM signal for the SERVO-Motor or into a torque demand request via

an RS232 interface to the powertrain’s driver interface.

The mechanical outcomes opportunely translated from “Figure 6.53” are:

• the mechanical angle of “Ailerons” set to a 0-degree position;

• the mechanical angle of “Elevator” set to approximately +5.8 degrees position;

• the mechanical angle of “Rudder” set to a 0-degree position;

• left motor torque demand set to 50.2%;

• right motor torque demand set to 50.2%.

 Simulations outcomes show that the controller decisions are compatible with the

decisions that a human pilot may take in similar environmental conditions.

 Adjustment due to gusty winds simulation

The assumptions made for the controller’s behaviour simulation at the moment t=t10 is

that the vehicle is approaching the descending manoeuvre and that a gusty wind suddenly

hits the vehicle. The gusty wind may introduce a consequent heading angle error. The

170

manoeuvre aims to observe how the controller will react to keep the vehicle in a stable flight

path under such conditions.

The physical environmental parameters taken as study cases are associable with a gusty

wind that impacts the vehicle from left to right. Alternatively, a gusty wind may impact the

vehicle from right to left.

6.6.4.1 Case of a gusty wind that impacts on the vehicle from the right to the left

The simulation assumes a set of controller’s input parameters associated with a steady-

state flight perturbed by gusty winds from the right that causes a vehicle to drift to the left.

This results in environmental parameters like the following:

• “Pitch attack angle” is approximately 4.1 degrees (PITCH_angle);

• “Yaw angle” is approximately -2.8 degrees (YAW_angle);

• “Rolling angle” is approximately +2.1 degrees (ROL_angle);

• “Navigation Heading angle error” is approximately +11.3 degrees

(Compass_Error);

• “Vehicle’s speed” read is 44.1% (Speed);

• “Altitude relative error” read is -4.7% (Altitude error);

• “Battery’s SoC” read is 46.1% (Battery_status).

As previously described, the set of input parameters, delivered into the “XFUZZY

Inference Monitor” tool, are chosen according to “Chapter 5” definition of the digital

processes.

Figure 6.54: simulation’s outputs at t=t10.

171

“Figure 6.54” represents the results of the simulation taken under the conditions

associated with the instant t=t10. Every value present in the simulation requires a digital

process to be associable with a physical value (as previously described). The mechanical

outcomes opportunely translated from “Figure 6.54” are:

• the mechanical angle of “Ailerons” set to approximately -1.9 degree position;

• the mechanical angle of “Elevator” set to approximately +4.4 degrees position;

• the mechanical angle of “Rudder” set to approximately +1.7 degrees position;

• left motor torque demand set to 47.3%;

• right motor torque demand set to 47.3%.

6.6.4.2 Alternative case, gusty wind from the left to the right that influences the flight

Alternatively, to the previous case, the simulation takes as assumption a set of

controller’s input parameters associable to a steady-state flight perturbed by gusty winds from

the left that causes a vehicle drift to the right. This results in environmental parameters like

the following:

• “Pitch attack angle” is approximately 4.1 degrees (PITCH_angle);

• “Yaw angle” is approximately +6 degrees (YAW_angle);

• “Rolling angle” is approximately -3.5 degrees (ROL_angle);

• “Navigation Heading angle error” is approximately -25.3 degrees

(Compass_Error);

• “Vehicle’s speed” read is 45.3% (Speed);

• “Altitude relative error” read is -4.7% (Altitude error);

• Battery SoC read is 44.2% (Battery_status).

As previously described, the set of input parameters, delivered into the “XFUZZY

Inference Monitor” tool, are chosen according to “Chapter 5” definition of the digital

processes.

172

Figure 6.55: alternative simulation’s outputs at t=t10.

“Figure 6.55” represents the results of the simulation taken under the alternative

conditions associated with the instant t=t10. Each value present in the simulation requires a

digital process to be associable with a physical value (as previously described). The

mechanical outcomes opportunely translated from “Figure 6.55” are:

• the mechanical angle of “Ailerons” set to approximately a +3.6 degree position;

• the mechanical angle of “Elevator” set to approximately a +4.8 degrees position;

• the mechanical angle of “Rudder” set to approximately a -3 degrees position;

• left motor torque demand set to 46.1%;

• right motor torque demand set to 47.3%.

6.6.4.3 “Controller Behavior” under gusty wind conclusions

Simulations outcomes show that the controller decisions are compatible with the

decisions that a human pilot may take in similar environmental conditions.

 Landing Simulation

Vehicle’s landing simulation results being a challenging manoeuvre to simulate without

a very detailed and comprehensive model of the vehicle’s dynamic behavioural146; it results

146 Parameters like the aero-dynamical coefficient, vehicle acceleration behaviour, stall speed, take-off speed and etc., have
paramount importance for very detailed simulation.

173

evident after the study of “Chapter 2”. The assumption made is to identify several manoeuvre

points147 and check the controller behaviour in those specific moments (similar to the strategy

used to simulate the take-off manoeuvre).

For the proposed work, the landing simulation targets the controller’s behaviour in six

key points of the manoeuvre. The first step is the landing approach148 and, then the

descending manoeuvre will begin. The conclusion of the descending manoeuvre is associated

with the vehicle touch-down with the ground. Between the descending manoeuvre start and

its conclusion (in this case is the so-called touch-down), there are two more crucial points.

The first one is associated with the start of the vehicle’s deceleration, where a pitch

manoeuvre increases drag and decelerate the aircraft (usually achieves this during the flare

portion of the approach, ideally to a minimum flying speed). The other crucial point is when

the powertrain motors are disabled, it happens before the touch-down (according to the theory

elaborated in “paragraph 5.1.4).

The “touch-down velocity” (𝑉𝑉𝑇𝑇𝑇𝑇), ideally, is as close as possible to the stall speed

(slightly superior) of the aircraft in landing configuration. The deceleration on the landing

roll from 𝑉𝑉𝑇𝑇𝑇𝑇 to 𝑉𝑉0 could be accomplished by braking and reverse thrust, but the system

assumption made is to leave the vehicle passively decelerate, keeping the powertrain

disabled. Looking at “Figure 6.56”, it is possible to identify such moments as:

a) the vehicle is approaching the landing manoeuvre, and it is moving with speed

𝑣𝑣(𝑡𝑡) = 𝑉𝑉𝐹𝐹𝐹𝐹, (t=t11, “Figure 6.56”);

b) the vehicle begins the descending manoeuvre (t=t12, “Figure 6.56”), and it is

moving with speed 𝑣𝑣(𝑡𝑡) = 𝑉𝑉𝑆𝑆𝑆𝑆;

c) the vehicle is executing the descending manoeuvre with speed 𝑣𝑣(𝑡𝑡) = 𝑉𝑉𝐷𝐷, (t=t13,

“Figure 6.56”);

d) the vehicle is executing a deceleration149 before disengaging the powertrain, and

it is moving with speed 𝑣𝑣(𝑡𝑡) = 𝑉𝑉𝐹𝐹𝐹𝐹, (t = t14, “Figure 6.56”);

e) the vehicle is proxy to the touch-down, it is moving with speed 𝑣𝑣(𝑡𝑡) = 𝑉𝑉𝑇𝑇𝑇𝑇,

where (1.1 ∙ 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) ≤ 𝑉𝑉𝑇𝑇𝑇𝑇 ≤ �𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ∙ √2�, (t = t15, “Figure 6.56”).

147 Obviously, as many points may be identified as more reliable will be the outcome of the raw simulation.
148 Vehicle’s alignment to the target at a sustainable speed. At this point, the assumption is that the vehicle is moving with speed
close enough to the vehicle’s optimal cruise speed.
149 It is expected a pitch manoeuvre during the flare portion of the approach which will increase drag and decelerate the aircraft to
minimum flying speed.

174

f) End of manoeuvre, 𝑣𝑣(𝑡𝑡) = 0, (t = t16, Figure 6.56).

Figure 6.56: landing manoeuvre, graphical animation.

6.6.5.1 Preliminary Landing Approach, simulation at t=t11

The landing manoeuvre starts at “t = t11” when the vehicle performs the final alignment

and begins to engage the descending approach. By assumption, are used a set of controller’s

input parameters compatible with the physical environmental parameters that a human pilot

may observe just before starting the landing manoeuvre. Those parameters are:

• “Pitch attack angle” is approximately +3.8 degrees (PITCH_angle);

• “Yaw angle” is approximately -0.9 degrees (YAW_angle);

• “Rolling angle” is approximately +0.6 degrees (ROL_angle);

• “Navigation Heading angle error” is approximately +12.7 degrees

(Compass_Error);

• “Vehicle’s speed” read is 43.4% (Speed);

• “Altitude relative error” read is +39.1% (Altitude error);

• “Battery’s SoC” read is 41.1% (Battery_status).

Those parameters are translated into an 8-bit digital form accordingly. A human pilot

looks at the sensors that may appear as values in the previous format. The controller reads 8-

bit resolution digital processed input values, where for digital processing it is meant the data

elaboration disserted in “Chapter 5”. It means that the set of input parameters, delivered into

the “XFUZZY Inference Monitor” tool, are chosen according to the “Chapter 5” definition

of the digital processes.

175

Figure 6.57: simulation’s outputs at t=t11.

“Figure 6.57” represents the simulation results taken into a defined instant, where the

input parameters are the previous mechanical parameters listed opportunely translated in

digital form, and the output values are the fuzzy controller output values. According to the

definitions of “Chapter 5”, those output values are digitally processed before becoming the

physical control signals broadcasted by the FPGA. The “fuzzy controller” generates an 8-bit

resolution digital information format for each output, which is translated into a PWM signal

for the SERVO-Motor or into a torque demand request via RS232 to the powertrain’s E-

Motor driver interface.

The mechanical outcome opportunely translated from “Figure 6.57” are:

• the mechanical angle of “Ailerons” set to approximately -1.1 degree position;

• the mechanical angle of “Elevator” set to approximately +0.3 degrees position;

• the mechanical angle of “Rudder” set to approximately +0.3 degree position.

• left motor torque demand set to 41%;

• right motor torque demand set to 40.6%.

6.6.5.2 Landing Descending Approach, simulation at t=t12

When the landing manoeuvre begins, the vehicle shall start to change the pitch attack

angle; it is assumed to observe a null pitch angle at “t = t12”, and the vehicle may be still

performing the final alignment to the target. By assumption, are used a set of controller input

176

parameters compatible with the physical environmental parameters that a human pilot may

observe at the beginning of the landing manoeuvre. Those parameters are:

• “Pitch attack angle” is approximately 0-degree (PITCH_angle);

• “Yaw angle” is approximately +0.3 degrees (YAW_angle);

• “Rolling angle” is approximately -0.9 degrees (ROL_angle);

• “Navigation Heading angle error” is approximately +3 degrees

(Compass_Error);

• “Vehicle’s speed” read is 47.3% (Speed);

• “Altitude relative error” read is +43.8% (Altitude error);

• “Battery’s SoC” read is of 39.9% (Battery_status).

As previously described, the set of input parameters, delivered into the “XFUZZY

Inference Monitor” tool, are chosen according to “Chapter 5” definition of the digital

processes.

Figure 6.58: simulation’s outputs at t=t12.

“Figure 6.58” represents the result of the simulation taken under the alternative

conditions associated with the instant t=t12. Each value present in the simulation requires a

digital process to be associable with a physical value (as previously described).

The mechanical outcome opportunely translated from “Figure 6.58” are:

• the mechanical angle of “Ailerons” set to approximately +0.5 degree position;

• the mechanical angle of “Elevator” set to approximately -0.6 degrees position;

177

• the mechanical angle of “Rudder” set to a 0-degree position;

• left motor torque demand set to 37.1%;

• right motor torque demand set to 37.1%.

6.6.5.3 Descending simulation at t=t13

In the middle of the landing manoeuvre, the vehicle is full descending and most likely

with a negative pitch attack angle, which might accentuate a vehicle speed increase. For the

study case “t = t13”, the vehicle is most likely aligned to the target, under acceleration (this

behaviour may be typical for RC plane manoeuvres due to their extreme lightweight), and

the vehicle might start manoeuvres150 to reduce the speed. By assumption, are used a set of

controller’s input parameters compatible with the physical environmental parameters that a

human pilot may observe when during the vehicle descent has to reduce the vehicle’s speed.

Those parameters are:

• “Pitch attack angle” is approximately -2.6 degrees (PITCH_angle);

• “Yaw angle” is approximately -0.7 degrees (YAW_angle);

• “Rolling angle” is approximately +0.4 degrees (ROL_angle);

• “Navigation Heading angle error” is approximately -2.8 degrees

(Compass_Error);

• “Vehicle’s speed” read is +53.9% (Speed);

• “Altitude relative error” read is +39.1% (Altitude error);

• “Battery’s SoC” read is 36.8% (Battery_status).

As previously described, the set of input parameters delivered into the XFUZZY

Inference Monitor tool are chosen according to “Chapter 5” definition of the digital

processes.

“Figure 6.59” represents the results of the simulation taken under the alternative

conditions associated with the instant t=t13. Each value present in the simulation requires a

digital process to be associable with a physical value (as previously described).

The mechanical outcome opportunely translated from “Figure 6.59” are:

• the mechanical angle of “Ailerons” set to a 0-degree position;

• the mechanical angle of “Elevator” set approximately to +2.8 degrees position;

150 By presumption, it is the point where the vehicle needs to change the pitch angle sign, from negative to positive.

178

• the mechanical angle of “Rudder” set to a 0-degree position;

• left motor torque demand set to 34.4%;

• right motor torque demand set to 34.4%.

Figure 6.59: simulation’s outputs at t=t13.

6.6.5.4 Descending simulation at t=t14

When the vehicle is approaching the end of its descent, it most likely has a positive pitch

attach angle, and it is decelerating. A pitch manoeuvre is expected during the flare portion of

the approach, which increases the vehicle’s drag and decelerates the aircraft (up to the touch-

down velocity).

For the study case “t = t14”, the vehicle is aligned to the target within an acceptable error,

and it is close to detect the “ground” with the proximity sensor. According to the “Chapter

5” avowals, after that the take-off is performed, as soon as the proximity sensor detects the

ground, both E-Motors (left and right) will be disabled. The vehicle’s altitude is slightly

above the detection altitude (proximity sensors did not detect the ground yet), and E-Motors

are still active.

By assumption, are used a set of controller’s input parameters compatible with the

physical environmental parameters that a human pilot may observe when the vehicle

approaches the end of the descent. Those parameters are:

• “Pitch attack angle” is approximately +1.3 degrees (PITCH_angle);

• “Yaw angle” is approximately -0.5 degrees (YAW_angle);

179

• “Rolling angle” is approximately +0.2 degrees (ROL_angle);

• “Navigation Heading angle error” is approximately -2.8 degrees

(Compass_Error);

• “Vehicle’s speed” read is 43.4% (Speed);

• “Altitude relative error” read is -16.5% (Altitude error);

• “Battery’s SoC” read is 35.5%.

As previously described, the set of input parameters delivered into the XFUZZY

Inference Monitor tool are chosen according to “Chapter 5” definition of the digital

processes.

Figure 6.60: simulation’s outputs at t=t14.

“Figure 6.60” represents the results of the simulation taken under the alternative

conditions associated with the instant t=t14. Each value present in the simulation requires a

digital process to be associable to a physical value (as previously described).

The mechanical outcome opportunely translated from “Figure 6.60” are:

• the mechanical angle of “Ailerons” set to a 0-degree position;

• the mechanical angle of “Elevator” set approximately to +5.2 degrees position;

• the mechanical angle of “Rudder” set to a 0-degree position.

• left motor torque demand set to 51.2%;

• right motor torque demand set to 51.2%.

180

6.6.5.5 Descending simulation at t=t15

As soon as the vehicle detects the proximity of the ground, both motors are disabled. A

pitch manoeuvre is still expected during the flare portion of the final approach to the ground,

which increases drag and decelerate the aircraft to minimum flying speed.

For the study case “t = t15”, the vehicle is aligned to the target within an acceptable error,

and it is in the “touch-down” proximity. The vehicle’s altitude is below the ground detection

altitude (as “Figure 6.56” illustrates) but higher than “0m”.

By assumption, are used a set of controller’s input parameters compatible with the

physical environmental parameters that a human pilot may observe a moment before touching

the ground. Those parameters are:

• “Pitch attack angle” is approximately +4.3 degrees (PITCH_angle);

• “Yaw angle” is approximately -0.5 degrees (YAW_angle);

• “Rolling angle” is approximately +0.2 degrees (ROL_angle);

• “Navigation Heading angle error” is approximately -2.8 degrees

(Compass_Error);

• “Vehicle”s speed” read is +36.8% (Speed);

• “Altitude relative error” read is -28.9% (Altitude error);

• “Battery’s SoC” read is 34.4%.

As previously described, the set of input parameters delivered into the XFUZZY

Inference Monitor tool are chosen according to “Chapter 5” definition of the digital

processes.

“Figure 6.61” represents the results of the simulation taken under the alternative

conditions associated with the instant t=t15. Each value present in the simulation requires a

digital process to be associable to a physical value (as previously described).

The mechanical outcome opportunely translated from “Figure 6.61” are:

• the mechanical angle of “Ailerons” set to a 0-degree position;

• the mechanical angle of “Elevator” set approximately to +8.2 degrees position;

• the mechanical angle of “Rudder” set to a 0-degree position.

• although left motor torque demand set to 51.6%, Motor is disabled;

• although right motor torque demand set to 51.6%, Motor is disabled.

181

Figure 6.61: simulation’s outputs at t=t15.

6.6.5.6 Descending simulation at t=t16

After that, the vehicle touches the ground, is achievable a very limited controllability of

the vehicle since it is left passively decelerating until the “End of Manoeuvre”, which is

associated with 𝑣𝑣(𝑡𝑡) = 0, (t = t16).

6.6.5.7 Landing simulation, Conclusions

Moving by the outcome of the previous simulation and using as reference the landing

paths of below “Figure 6.62”, it is feasible to state that the controller most likely will replay

a human pilot behaviour while performing the landing manoeuvre151.

In fact, at t=t11 controller begins to slowly move the vehicle’s nose down, decreasing the

powertrain power demand and then slowly decreasing the elevator’s attack angle. At t=t12,

the vehicle reaches a null pitch attach angle, and the controller continues to decrease the pitch

attach angle and the power demand for the motors. At t=t13, the vehicle has a negative pitch

angle and is accelerating, and the controller reacts, continuing to decrease the motors’ power

and moving up the elevator. At t=t14, the vehicle’s pitch is going up, and the speed is

decreasing; the controller’s reaction is to continue increasing the elevator attack angle and

151 It is essential to highlight that the environmental conditions of the simulations are not taking into account heavy

meteorological interference.

182

increase the motor power demand because the vehicle crossed the reference altitude. As soon

as the proximity sensor detects the ground, according to “Chapter 5” design system

requirements, both motors are disabled, and the vehicle is moving passively. The

controllability of the vehicle after t=t14 is limited to the SERVO-Motors. Between t14 and t15,

the controller performs a pitch manoeuvre during the flare portion of the approach, which

increases drag and decelerates the aircraft. As soon as the vehicle hits the ground in t15, the

vehicle passively decelerates until it reaches the terminal speed 𝑣𝑣(𝑡𝑡) = 0 in t = t16.

Figure 6.62: reference landing manoeuvre altitude against a vehicle’s manoeuvre position, graphical animation.

6.7 Controller

Previous paragraphs have paramount importance for the physical preliminary controller

design (the controller’s algorithm core of the learning/training process152). The physical

VHDL controller design has a multi-layer structure, associable to any hierarchical hardware

schematics design.

The “Top Layer” describes the peripherals interfaces and the interaction between the

peripherals with the flight controller’s core. A typical VHDL schematics RTL view,

generated after the algorism’s synthesis, allows the user to observe the whole system as an

array of blocks connected each other with data bus and independent digital signals. “Figure

6.63” exposes the RTL view of the complete system’s VHDL algorithm, generated after the

main algorithm’s synthesis (through the SW “Synplify Pro”).

152 The definition of a correct set of preliminary parameters capable of performing the essential tasks is beneficial for a reliable
learning/training process.

183

The consequent step is the VHDL code population for each block. Since the previous

paragraphs describe the peripherals interface blocks, the focus moves on the core of the flight

controller, which is the VHDL component called by the Author “NEURAL” (VHDL

component instance: “N0”). The VHDL component “NEURAL” code represents a second

hierarchical layer of the algorithm’s structure and, as “Figure 6.64” illustrates, is divided into

a few sub-components:

a) “Digital_Processing” (it accordingly computes the input data in order to establish

the correct digital connection between the heart of the controller and its

peripherals);

b) “Fuzzy” (it contains the neuro-fuzzy flight controller);

c) “Neural_Block_StateMachine” (it accordingly coordinates the system’s

peripherals with the heart of the controller);

d) “Neural_enable” (it manages the system’s safety routines and peripheral’s

enables).

The first two components merit an exhaustive analysis due to their algorithms’

complexity, while the last two components scrutiny results irrelevant for the dissertation.

184

Figure 6.63: RTL view, the outcome of the main VHDL algorithm’s synthesis.

185

Figure 6.64: RTL view, the outcome of the “NEURAL” VHDL component algorithm’s synthesis.

186

 Digital_Processing VHDL component

The VHDL component “Digital_Processing” receives a large amount of raw data from

the vehicle’s sensors (from the VHDL components defined in “paragraph 6.1”). The raw data

to be utilizable require an appropriate manipulation of the information. “Figure 6.65”

expresses the RTL view of the VHDL component “Digital_Processing”153. Eight bespoke

VHDL components, listed below, implement this operation.

a) ANGLE_input;

b) SPEED_input;

c) ALTITUDE_input;

d) ENERGY_input;

e) ROLLING_input;

f) YAW_input;

g) PITCH_input;

h) COMPASS_input.

The VHDL code population of these blocks embodies a third hierarchical layer of the

physical controller structure.

153 Obviously, the RTL view is an outcome of the “Digital_Processing” VHDL component algorithm’s synthesis, which is encased
within the main algorithm. Thus it is an operation subsequent to the synthesis of the system’s entire algorithm.

187

Figure 6.65: RTL view, the outcome of the “Digital_Processing” VHDL component algorithm’s synthesis.

6.7.1.1 “ANGLE_input”, VHDL component

The VHDL component “ANGLE_input” receives an array of multiple 16-bit

independent information from the VHDL components: “A3G4250D”, “LIS3DSH”, and

“TESEO”. It also receives an array of logic signals: enable, primary clock, secondary clock

and take-off enable. “Compass_angle” is the component’s 8-bit output, which will be used

by “Telemetry EEPROM” and by a few more sub-components within the

“Digital_Processing” VHDL component. The output expresses the vehicle’s heading angle.

Component’s safety mechanisms analysis are irrelevant for the dissertation.

6.7.1.2 “SPEED_input”, VDHL component

The VHDL component “SPEED_input” receives a 16-bit “DATA_IN” input information

from the VHDL component “TESEO” and an array of logic signals (primary clock, secondary

clock, operation enable, and take-off enable). Component’s algorithm generates an 8-bit

“Speed” output value in a form utilizable by the neuro-fuzzy controller.

In fact, the 16-bit input information expresses an absolute measure of the vehicle’s speed

in meter per second, while the neuro-fuzzy controller needs 8-bit information that expresses

a relative vehicle’s speed. For relative vehicle speed, it is intended that given a scale between

0 and 255 (8-bit resolution), the vehicle’s maximum allowed speed would correspond to

“255” while the vehicle’s null speed will correspond to “0”. It allows expressing the vehicle’s

speed in percentage in order to adapt the control algorithm to other vehicles efficiently.

188

Component’s safety mechanisms analysis are irrelevant for the dissertation.

6.7.1.3 “ALTITUDE_input”, VHDL component

The VHDL component “ALTITUDE_input” receives an array of multiple 16-bit

independent information from the VHDL components: “COMPASS_input”,

“Flight_Parameters_EEPROM” and “TESEO”. It also receives an array of logic signals:

enable, primary clock, secondary clock and take-off enable. Component’s algorithm

generates an 8-bit “Altitude_error” output value in a form utilizable by the neuro-fuzzy

controller.

The first component’s algorithm operation is the calculation of a weighted average

between the 16-bit information obtained by the GPS module (from VHDL component

“Process_Teseo”) with the 16-bit information obtained by the redundant altimeter (from

VHDL component “LPS25HB”), according to the following equation:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
35 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 + 65 ∙ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐿𝐿𝐿𝐿𝐿𝐿25𝐻𝐻𝐻𝐻𝑑𝑑

100

(Equation 44)

The second operation performed is to check the “take-off enable” logical input, then in

parallel read the “landing information” broadcasted by the VHDL component

“COMPASS_input” (DATA_OUT_Landing) and the reference altitude value broadcasted by

the VHDL component “Flight_Parameters_EEPROM” (“TARGET_ALT”). In the case of

active “take-off enable” (it acts like an automotive KL30 logic signal more than an

automotive KL15 logic signal), a bespoke multiplier coefficient will accordingly modify the

“DATA_OUT_Landing” value154, else the “DATA_OUT_Landing” value will be

untouched.

Consequently, the resulting altitude reference value is calculated according to:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 =
𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇_𝐴𝐴𝐴𝐴𝐴𝐴 ∙ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷_𝑂𝑂𝑂𝑂𝑂𝑂_𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿

65535

(Equation 45)

Then, obtained values 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 and 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 are used to solve the

“Equation 34” (paragraph 5.1.5).

154 The value of the bespoke multiplier coefficient depends on the vehicle’s flights dynamic, its mechanical design and its typical
take-off requirements.

189

The final operation is to digital process the calculated solution of the “Equation 34” in

order to deliver to the neuro-fuzzy controller (“Altitude_error” information) 8-bit information

that expresses a compatible relative vehicle’s altitude error. For compatible relative altitude

error, it is intended that given a scale between 0 and 255 (8-bit resolution), the vehicle’s

relative altitude error will correspond to a spectrum of values within the following

boundaries:

• “0” in case of a relative error ≤ −100%;

• between “1” and “126” in case of −100% < 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 < 0;

• “127” in case of null relative error;

• between “128” and “254” in case of 0 < 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 < +100%;

• “255” in case of a relative error ≥ +100%.

It allows expressing the vehicle’s altitude relative error in percentage in order to

comfortably adapt the control algorithm to other vehicles and various flight plans.

Component’s safety mechanisms analysis are irrelevant for the dissertation.

6.7.1.4 “ENERGY_input”, VHDL component

The VHDL component “ENERGY_input” receives an 8-bit “DATA_IN” input

information from the component “BMS_VHDL” and an array of logic signals (primary clock,

secondary clock, operation enable, and take-off enable). Component’s algorithm generates

an 8-bit “Battery_status” output value in a form utilizable by the neuro-fuzzy controller.

Given a scale between 0 and 255 (8-bit resolution), for compatible 8-bit “Battery_status”

output, it is intended that the vehicle’s REESS SoC will correspond to a spectrum of values

within the following boundaries:

• “0” in case of 𝑆𝑆𝑆𝑆𝑆𝑆 = 0%;

• between “1” and “254” in case of 0% < 𝑆𝑆𝑆𝑆𝑆𝑆 < +100%;

• “255” in case of 𝑆𝑆𝑆𝑆𝑆𝑆 = 100%.

Component’s safety mechanisms analysis are irrelevant for the dissertation.

6.7.1.5 ROLLING_input, VHDL component

The VHDL component “ROLLING_input” receives an array of multiple 16-bit

independent information from the VHDL components: “A3G4250D” and “LIS3DSH”.

Therefore, it receives 8-bit information from the VHDL component “ANGLE_input”,

representing the vehicle’s heading angle. It also receives an array of logic signals: enable,

primary clock, secondary clock and take-off enable.

190

“ROL_angle” is the component’s 8-bit output information generated by the

“ROLLING_input” VHDL component algorithm. This output information is used by the

“neuro-fuzzy controller” and the “Flight Telemetry EEPROM” VHDL component. The 8-bit

resolution output signal expresses the vehicle’s rolling angle in a bespoke arrangement,

according to the following guidelines:

• “0” in case of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≤ −20°;

• between “1” and “126” in case of 20° < 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 < 0°;

• “127” in case of a null rolling angle;

• between “128” and “254” in case of 0° < 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 < +20°;

• “255” in case of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≥ 20°.

Component’s safety mechanisms analysis are irrelevant for the dissertation.

6.7.1.6 YAW_input, VHDL component

The VHDL component “YAW_input” receives an array of multiple 16-bit independent

information from the VHDL components: “A3G4250D” and “LIS3DSH”. Therefore, it

receives 8-bit information from the VHDL component “ANGLE_input”, representing the

vehicle’s heading angle. It also receives an array of logic signals: enable, primary clock,

secondary clock and take-off enable.

“YAW_angle” is the component’s 8-bit output information generated by the

“YAW_input” VHDL component algorithm. This output information is used by the “neuro-

fuzzy controller” and the “Flight Telemetry EEPROM” VHDL component. The 8-bit

resolution output signal expresses the vehicle’s YAW angle in a bespoke arrangement,

according to the following guidelines:

• “0” in case of 𝑌𝑌𝑌𝑌𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≤ −20°;

• between “1” and “126” in case of 20° < 𝑌𝑌𝑌𝑌𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 < 0°;

• “127” in case of a null yaw angle;

• between “128” and “254” in case of 0° < 𝑌𝑌𝑌𝑌𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 < +20°;

• “255” in case of 𝑌𝑌𝑌𝑌𝑌𝑌𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≥ 20°.

Component’s safety mechanisms analysis are irrelevant for the dissertation.

6.7.1.7 PITCH_input, VHDL component

The VHDL component “PITCH_input” receives an array of multiple 16-bit independent

information from the VHDL components: “A3G4250D” and “LIS3DSH”. Therefore, it

191

receives 8-bit information from the VHDL component “ANGLE_input”, representing the

vehicle’s heading angle. It also receives an array of logic signals: enable, primary clock,

secondary clock and take-off enable.

“PITCH_angle” is the component’s 8-bit output information generated by the

“PITCH_input” VHDL component algorithm. This output information is used by the “neuro-

fuzzy controller” and the “Flight Telemetry EEPROM” VHDL component. The 8-bit

resolution output signal expresses the vehicle’s PITCH angle in a bespoke arrangement,

according to the following guidelines:

• “0” in case of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≤ −20°;

• between “1” and “126” in case of 20° < 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 < 0°;

• “127” in case of a null pitch angle;

• between “128” and “254” in case of 0° < 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 < +20°;

• “255” in case of 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 ≥ 20°.

Component’s safety mechanisms analysis are irrelevant for the dissertation.

6.7.1.8 COMPASS_input, VHDL component

The VHDL component “Compass_input” is the most complex sub-component within the

VHDL component “Digital_Processing”.

The VHDL component “Compass_input” receives an array of multiple 16-bit

independent information from the VHDL components: “A3G4250D”, “LIS3DSH”,

“Flight_Parameters_EEPROM” and “TESEO”. Therefore, it receives 8-bit information from

the VHDL component “ANGLE_input”, representing the vehicle’s heading angle. It also

receives an array of logic signals: enable, primary clock, secondary clock and take-off enable.

The VHDL component “Compass_input” reads the vehicle’s current position (from the

VHDL component “TESEO”) and reads the vehicle’s target position (from the VHDL

component “Flight_Parameters_EEPROM”), then computes the captured data. This data

computation produces the ideal vehicle’s heading angle and the distance between the vehicle

and the target position. Obtained data is the input of a new data manipulation process. The

ideal vehicle’s heading angle is compared with the actual vehicle’s heading angle (current

vehicle’s heading angle) read from the VHDL component “ANGLE_input”. The outcome is

a simple differential value, which allows the neuro-fuzzy controller to adjust its routes

accordingly.
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖′𝑠𝑠_𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 − 𝑉𝑉𝑉𝑉ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖′𝑠𝑠_𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

(Equation 46)

192

 “Compass_error” is an 8-bit information output signal that the VHDL components

“Compass_input” broadcasts to the neuro-fuzzy controller. The resulting 8-bit information

expresses the vehicle’s heading angle error in a bespoke arrangement, according to the

following guidelines:

• “0” in case of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = −180°;

• between “1” and “126” in case of −180° < 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 < 0°;

• “127” in case of a null heading angle error;

• between “128” and “254” in case of 0° < 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 < +180°;

• “255” in case of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 180°.

The second output generated by the VHDL component “Compass_input” is the

“DATA_OUT_Landing”, which is a piece of 16-bit resolution information transmitted to the

VHDL component “ALTITUDE_input”. This information has paramount importance during

the landing operation because it defines the reference flight altitude’s correction factor that

the VHDL component “ALTITUDE_input” shall use to calculate the “Altitude_error”.

This parallel computation performed by the VHDL component “Compass_input” starts

with the reading of the input information “DATA_LANDING”, received from the VHDL

component “Flight_Parameters_EEPROM, which sets the distance155 to the final position

that the controller will use to start the landing manoeuvre. As shorter the distance will be as

more severe reference altitude correction will be requested to the VHDL component

“ALTITUDE_input”. When the Distancereference (input value “DATA_LANDING” read) is

larger than the Distanceread (actual vehicle’s distance to the target), it is valid the “Equation

47”.

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷_𝑂𝑂𝑂𝑂𝑂𝑂_𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟
∙ 65535

(Equation 47)

The resulting 16-bit “DATA_OUT_Landing” information generated by VHDL

component “Compass_input” provides a piece of landing information to the VHDL

component “ALTITUDE_input” in a bespoke arrangement, as following:

• “0” in case of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = 0;

• between “1” and “65534” according to “Equation 47”;

155 The distance between the target landing position and the instantaneous vehicle’s position expressed in meters.

193

• “65535” in case of 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ≤ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟.

 “Fuzzy”, VHDL component

“Xfuzzy environment” contains the tool “xfvhdl”, which uses the high-level hardware

description language VHDL to facilitate the hardware implementation, through FPGAs or

ASICs, of inference systems. The “tool”156 allows the direct synthesis of complex fuzzy

systems composed of different inference modules and crisp blocks. [44]

The GUI’s “FPGA implementation section” collects information regarding the definition

options157 for FPGAs. For the rule memory, it can be chosen to implement them with ROM,

RAM or logical blocks. Once all “Rulebases” and crisp blocks of the system are defined, it

is possible to generate the VHDL code of the components associated with the fuzzy system.

The generation of a “testbench” file, also described in VHDL, follows the fuzzy system

VHDL code generation and allows verifying its functionality.

For hierarchical systems, each “Rulebase” requires a VHDL description, as well as a

“testbench” that allows obtaining the control surface corresponding to each of them. In this

case, a VHDL file corresponding to the upper level of the hierarchy is also generated, which

describes the interconnection of the different “Rulebases” and crisp blocks that make up the

system, as well as a “testbench” that allows simulating the whole system.[38]

What described impacts on the final VHDL assembly directly. By definition, proposal

work uses a hierarchical design (“Figure 6.63” and “Figure 6.64”) and the final VHDL code

constructions strategy targets a parallel computation for each independent “Rulebase”.

Using the “xfvhdl” tool of the “XFuzzy” environment, a set of five independent, code

populated VHDL components are exported. Those components are encased in the central

“flight controller”, and the interconnections between the different “Rulebases” and the

corresponding upper hierarchical level input/output ports are defined and then refined.

The “Rulebases” parallel computational design relies on the allocation of the hardware

described by the VHDL code will be implemented in a sheathed area of the physical FPGA.

“Figure 6.66” demonstrates such concepts.

156 The tool allows the generation of standardised membership functions of triangular, sh_triangular, and trapezoid types by means
of arithmetic techniques. If input membership functions are not normalised, the arithmetic calculation option for antecedents is
disabled.
157 Among them, the type of RAM and ROM to be used.

194

Figure 6.66: RTL view, the outcome of the “Fuzzy” VHDL component algorithm’s synthesis.

The study case application VHDL algorithm encases the VHDL components associable

to the five “Rulebases” into the VHDL component “Fuzzy”, as it is possible to observe in the

RTL view of “Figure 6.66”; which is the outcome of the “Fuzzy” VHDL component

algorithm’s synthesis. An array of three more sub-components are created and encased within

the VHDL component “Fuzzy”, those are:

a) AILERON_output

b) ELEVATOR_output

c) RUDDER_output.

The first subcomponent converts a single 8-bit resolution signal into two complementary

7-bit resolution signals, according to what previously described (“paragraph 4.2.2”,

“paragraph 5.1.8” and “paragraph 6.3.9”). The second and third subcomponents merely

convert 8-bit resolution information into 7-bit resolution information.

6.8 Data Capture for the learning Process

Data collection is generally achieved as the vehicle is guided via remote control (RC)

through an area defined as the “selected environment”, which simulates the environment and

the flight conditions in which the vehicle will most likely operate. Therefore, appropriate

195

hardware is required to provide the RC features of the learning process, according to the

assumptions and the choices described in “paragraph 5.2”.

The operator guides the vehicle through a series of flight pre-defined route, simulating

as many as possible manoeuvres to establish a base and bias pattern for the algorithm. A

dedicated on-board data collection algorithm is compulsory, and it results in a spin-off

functionality of the controller described in the previous paragraph. As a benchmark, the

VHDL algorithm shall capture the flight sensors data, the flight actuators output and the

torque demand for the E-Motors, during the allocated learning period Tlearn (or time available

for the flight telemetry monitor), during which time the on-board memory chip retains the

received data. By definition, Tlearn must not exceed MOB maximum as in “Equation 48” 158

(which is a bespoke adaptation of “Equation 29” of “paragraph 2.5.1”).

𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 < �
𝑀𝑀𝑀𝑀𝑀𝑀

𝑁𝑁𝑁𝑁𝑁𝑁 ∙ 𝑆𝑆𝑝𝑝𝑝𝑝
�

(Equation 48)

Where:

𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 → maximum run time expressed in seconds

𝑀𝑀𝑀𝑀𝑀𝑀 → on-board memory expressed in bytes

𝑁𝑁𝑁𝑁𝑁𝑁 → Number of Registers Read for each sample (1 Register = 1 byte)

𝑆𝑆𝑝𝑝𝑝𝑝 → samples per second

For the proposed configuration, a vehicle diagnostics and monitor VHDL bespoke

algorithm is designed to read all the vehicle’s parameters and store the data on external

memory, with a sampling frequency of 8Hz. It is assumed that the external memory is a

standard 2Mbit EEPROM (as for “paragraph 5.1.9”, an alternative159 may be a NOR FLASH

memory with a standard SPI interface) connected with the FPGA using an SPI BUS160. The

integration of the external memory, and its related functionalities, within the main VHDL

algorithm is achieved via the VHDL component “Telemetry_EEPROM” (as shown in the

RTL view of Figure 6.63). Selected SPI BUS clock161 shall compile with the equation:

158 Because it will result in corrupted data, due to the undesirable registers overwriting.
159 Especially in the case of a larger data storage shall be guaranteed.
160 It is assumed that the FPGA is the “SPI MASTER” and the memory is the “SPI SLAVE”.
161 It is assumed the value of 1 MHz as an upper limit because the maximum SPI clock allowed may change with the memory P/N
(it is recommended to use a value that may be accepted by a large number of devices) and, the potential distance between the FPGA
and the memory may affect the robustness of the data stream when a higher clock frequency is used.

196

𝑓𝑓𝑆𝑆𝑆𝑆𝑆𝑆 > (8 ∙ 𝑁𝑁𝑁𝑁𝑁𝑁) ∙ �8 ∙ 𝑆𝑆𝑝𝑝𝑝𝑝� ≤ 1𝑀𝑀𝑀𝑀𝑀𝑀
(Equation 49)

According to “Equation 49”, the VHDL component “Telemetry_EEPROM” utilizes an

SPI BUS communication clock of 512KHz.

Figure 6.67: macro of the RTL view outcome of the main VHDL algorithm’s synthesis (macro of Figure 6.63).

197

Reference Description Num. of Registers
AILERON SERVO Input and Output Value – SERVO angle 4

ELEVATOR SERVO Input and Output Value – SERVO angle 2

RUDDER SERVO Input and Output Value – SERVO angle 2

M1 Input and Output Value – L. motor torque 2

M2 Input and Output Value – R. motor torque 2

Gx Input – X axle angular acceleration sensor 2

Gy Input – Y axle angular acceleration sensor 2

Gz Input – Z axle angular acceleration sensor 2

Lx Input – X axle linear acceleration sensor 2

Ly Input – Y axle linear acceleration sensor 2

Lz Input – Z axle linear acceleration sensor 2

YAW Input – digitally processed YAW feedback 1

PITCH Input – digitally processed Pitch feedback 1

ROLLING Input – digitally processed Rolling feedback 1

BATTERY Input – digitally processed Battery SoC 1

COMPASS Input – digitally processed compass error 1

HEADING ANGLE Input – digitally processed compass error 1

ALTITUDE Input – absolute altitude value 2

ALTITUDE_ERR Input – digitally processed altitude error 2

GPS Module SPEED Input – absolute speed value 2

SPEED Input – digitally processed speed value 1

GPS Position Input – digitally processed position value 4

STATUS_Register Input – System monitoring register 1

Timing Output Value – Sampling Timing value 2

Table 6.2: VHDL component “Telemetry_EEPROM” registers map.

According to “Table 6.2”, VHDL algorithm requires to write 44 memory registers for

each sampling (NRR=44), making it possible to estimate the maximum data memorisation

198

time (or maximum run time) according to the “Equation 48”, since the assumed EEPROM

(or Flash) memory size is of 2Mbit (or 256kB as described in the “paragraph 5.1.9”). The

result is a maximum run time of 727.27 seconds (approximately 12 minutes). It means a

second training flight time limitation after the limitation of the battery’s energy. The Author’s

recommendation is to operate training data mining (RC driving) for not more than 10 minutes.

Particular attention requires the data capture algorithm of the VHDL component

“Telemetry_EEPROM”. By definition, the algorithm is a bespoke added functionality to the

primary “Flight Controller”. The “Telemetry_EEPROM” VHDL component is designed to

operate in both circumstances: in case the system is working in “autonomous mode” or in

“training mode” (with a “Human Pilot”).

The Author’s technical requirements definition of the data mining operation implies

ensuring that the following rules are respected:

• The “Telemetry_EEPROM” VHDL component encase a set of new VHDL sub-

components capable of reading a PWM control signal (the SERVO-Motors PWM

control signal generated directly by the RC equipment and the powertrain’s

feedback PWM signals generated by each E-Motor Driver);

• for the “training mode” operation, it is necessary to ensure the hardware

separation of the SERVO-Motors FPGAs outputs with the actuators control

signal feedback (it may happen within the FPGA with an algorithm variant or

externally with the depopulation of the resistor between the FPGA’s output pin

and the SERVO-Motor driver circuit);

• The “Telemetry_EEPROM” VHDL requires a sub-component that will read an

array of eight logic signals and will associate its value to a particular bit of the

“STATUS Register”162.

Implementing these operations allows obtaining all the information needed since all the

data described in “Table 6.2” will be associated with a defined time.

162 “STATUS_Register” map: Helth_Prox_sensor [BIT_0], Ground_detection_Flag [BIT_1], ESTOP_Monitoring [BIT_2],
SFTY_SENSOR_RST [BIT_3], Operation_EN_monitoring [BIT_4], Take_OFF_Sig_monitoring [BIT_5], SERVO_RESET_EN
[BIT_6], SYSTEM_EN_monitoring [BIT_7].

199

6.9 Learning/Training Process Description

The tuning stage is usually one of the most complex tasks when designing fuzzy systems.

The system behaviour depends on the logic structure of its “Rulebases” and the membership

functions of its linguistic variables. The tuning process focuses on adjusting the different

membership function parameters that appear in the system definition. The simulations’

outcome shows that the preliminary systems can perform basic tasks and behave according

to what is expected from a “human being pilot” facing the same environmental conditions.

In conclusion, the preliminary tuning is successful.

Since the number of parameters to simultaneously modify is high, advanced manual

tuning is undoubtedly a cumbersome, and automatic techniques may be required. The two

learning mechanisms most widely used are “supervised learning” and the “reinforcement

learning”.

In supervised learning techniques, the desired system behaviour is given by a set of

training (and test) input/output data, while in reinforcement learning, what is known is not

the exact output data but the effect that the system has to produce on its environment, thus

making necessary the monitoring of its on-line behaviour. [38]

Both techniques are appropriate to the Thesis principles, although the Author privileges

the “supervised learning techniques” because more congenial to the work mindset.

“Xfuzzy 3” GUI is used as a baseline; the software environment includes four tools for this

design stage:

• “xfdm” allows obtaining the structure of inference systems used as fuzzy

approximators or classifiers;

• “xftsp” focuses on time series prediction applications163 [45];

163 The tool xftsp generates fuzzy inference systems that implement autoregressive models for the short- and long-term prediction
of time series. To do this, it applies a methodology based on the use of non-parametric noise or residual variance estimates (to
select the optimal number of input variables) in combination with Xfuzzy supervised learning and identification tools (to determine
the structure of the systems). This methodology responds to a direct prediction strategy, which implies the construction of an
autoregressive model for each of the terms of the desired prediction horizon. In each case, the optimal subset of inputs is selected
a priori by a non-parametric noise estimate (for example, the Delta Test). The specification of the fuzzy system corresponding to
each prediction horizon is then obtained through an iterative process in which successive identification and adjustment phases are
carried out, increasing the number of linguistic labels of the inputs, until the system error enters the previously estimated range.
xftsp can be executed in graphic mode, using the option “Time Series Prediction” of the “Tuning Menu” or the corresponding
icon in the main window of the environment, or from the command line using a configuration file. [38]

200

• “xfsl” is a parameter adjustment tool based on the use of supervised learning

algorithms164;

• “xfsp” is a simplification tool that allows reducing the number of membership

functions and compacting the rules bases of a fuzzy system to facilitate its

software or hardware implementation and to increase its linguistic

interpretability.

[38]

 Knowledge acquisition tool (“xfdm” tool)

It is noteworthy to highlight that the tool “xfdm” facilitates the identification of fuzzy

systems from numerical data through the use of different algorithms grouped into two

categories.

Structure-oriented algorithms165 represent the first group. These algorithms perform a

fixed or variable partition of the input variables’ universes discourse and analyse the

numerical data that describe the system’s behaviour to assign a rule for each line of the input

file. Subsequently, they resolve the conflicts that may have occurred while selecting the fuzzy

system rules based on their activation degrees and the configuration parameters defined by

the user. “xfdm” includes three identification algorithms that work with fixed partitions

(Wang & Mendel, Nauck and Senhadji) and one that includes a variable number of partitions

(Incremental Grid). Additionally, the “Flat System” option allows the generation of fuzzy

system specifications with a flat I/O behaviour that can be useful as input to the training tool

or other Xfuzzy facilities.

The specific options and parameters of these algorithms are:

a) Nauck:

o Number of rules: number of rules to identify

o Type of selection: “Best rules” or “Best per class

b) Sendhadji:

o Number of rules: number of rules to identify

c) Incremental Grid:

164 In supervised learning techniques, the desired behaviour of the system is described by a set of training (and test) patterns.
Supervised learning attempts to minimise an error function that evaluates the difference between the actual system behaviour and
its desired behaviour defined by the set of input/output patterns. [38]
165 Matrix partitioning (Grid Partitioning).

201

o Limit of MFCs, Limit of Rules, Limit of RMSE (the execution of the

algorithm ends when one of these limits is reached)

o Learning option, activated/not activated

[38]

Cluster-oriented algorithms166 represent the second classification group. “xfdm” tool

includes other algorithms to generate a fuzzy system from a series of data using clustering

techniques. By grouping sets of points in clusters represented by prototype points, it is

possible to reduce the algorithm’s information load and allowing fuzzy systems with fewer

rules. The tool includes four algorithms that use a fixed number of clusters (Hard C-Means,

Fuzzy C-Means, Gustafson-Kessel and Gath-Geva) and two algorithms that allow iteratively

varying the number of clusters until the limit defined by the user is reached (Incremental

Clustering and ICFA).

The specific options and parameters of these algorithms are:

a) Incremental Clustering:

o Neighbourhood radius

o Maximum number of clusters

b) Fixed Clustering:

o Clustering algorithm167

o Number of clusters

o Limit on iterations

o Fuzziness index

o Limit on cluster variation

o Learning option, activated/not activated

c) ICFA (Incremental Clustering for Function Approximation):

o Number of clusters

o Maximum Iterations

o Fuzziness index

o Limit on cluster variation

o Activate migration, activated/not activated

[38]

166 Data grouping (Cluster Partitioning) techniques.
167 Hard C-Means, Fuzzy C-Means, Gustafson-Kessel and, Gath-Geva.

202

 The supervised learning

Supervised learning algorithms aim to reduce the error function that defines the

deviation between the actual and the desired system behaviour; they can be considered

optimisation algorithms.

The supervised learning tool “xfsl”168 allows applying supervised learning algorithms

to adjust (training process) fuzzy systems into the design flow of “Xfuzzy 3.5”. The learning

process configuration starts with the (it is the first step) selection of a training file that

contains the input/output data of the desired behaviour (a test file, whose data check the

generalisation of the learning, is discretionary to the end-user169). [46]

The second step in the tuning process configuration is the selection of the learning

algorithm (“xfsl” admits many learning algorithms170). Once the algorithm is selected, an

error function must be chosen. The tool offers several error functions171 capable of

expressing the deviation between the actual and the desired behaviour.

“xfsl” contains two processing algorithms to simplify the designed fuzzy system. The

first algorithm prunes the rules and reduces the membership functions that do not reach

a significant activation or membership degree. There are three versions of the algorithm:

a) pruning all rules that are never activated over a certain threshold;

b) pruning the worst N-rules;

c) pruning all rules except the best N-ones.

The second algorithm clusters the membership functions of the output variables.

The number of clusters can be fixed to a certain quantity or computed automatically. These

two processing algorithms are applicable to the system before the tuning process (pre-

processing option) or after it (post-processing option). An end condition172 has to be

specified to finish the learning process.

168 “xfsl” contains many different supervised learning algorithms.
169 The format of these two patterns files is just an enumeration of numeric values that are assigned to the input and output variables
in the same order that they appear in the definition of the system module in the “XFL3 description”.
170 Regarding gradient descent algorithms, it admits Steepest Descent, Backpropagation, Backpropagation with Momentum,
Adaptive Learning Rate, Adaptive Step Size, Manhattan, QuickProp and RProp. Among conjugate gradient algorithms, the
following are included: Polak-Ribiere, Fletcher-Reeves, Hestenes-Stiefel, One-step Secant and Scaled Conjugate Gradient. The
second-order algorithms included are: Broyden-Fletcher-Goldarfb-Shanno, Davidon-Fletcher-Powell, Gauss-Newton and
Mardquardt-Levenberg. Regarding algorithms without derivatives, the Downhill Simplex and Powell’s method can be applied.
Finally, the statistical algorithms included are Blind Search and simulated annealing (with linear, exponential, classic, fast, and
adaptive annealing schemes).
171 By default, the Mean Square Error is selected.
172 This condition is a limit imposed over the number of iterations, the maximum error goal, or the maximum absolute or relative
deviation (considering both the training and the test error).

203

“xfsl” can be applied to any fuzzy system described by the XFL3 language, even to

systems that employ particular functions defined by the user. Vital is the scrutiny of the

system’s feature that may impose limitations over the learning algorithms to apply (for

instance, a non-derivative system cannot be tuned by a gradient-descent algorithm). [38]

6.9.2.1 Gradient Descent Algorithms

The similarity between fuzzy systems and neural networks led to apply the neural

learning processes to fuzzy inference systems. Under these circumstances, a well-known

algorithm employed in fuzzy systems is the “Back Propagation algorithm”, which adjusts the

parameter values proportionally to the gradient of the error function in order to reach a local

minimum. Since this algorithm’s convergence speed is slow, several modifications could be

beneficial, like using a different learning rate for each parameter or adapting the control

variables of the algorithm heuristically. An exciting modification that improves the

convergence speed takes into account the gradient value of two successive iterations. It makes

available information about the curvature of the error function. The algorithms QuickProp

and RProp follow this idea. “xfsl” admits:

a) Backpropagation;

b) Backpropagation with Momentum;

c) Adaptive Learning Rate;

d) Adaptive Step Size;

e) Manhattan;

f) QuickProp;

g) RProp.

[38]

6.9.2.2 Conjugate Gradient Algorithms

The gradient-descent algorithms generate a change step in the parameter values that is a

function of the gradient value at each iteration (and possibly at previous iterations). Since the

gradient indicates the direction of maximum function variation, it may be convenient to

generate not only one step but several steps, which minimise the function error in that

direction. The illustrated strategy, which is the basis of the steepest-descent algorithm, has

the detriment of producing a zig-zag advancing because the optimisation in one direction may

deteriorate previous optimisations. The solution is to advance by conjugate directions that do

204

not interfere with each other. The several conjugate gradient algorithms reported in the

literature differ in the equations used to generate the conjugate directions.

The main drawback of the conjugate gradient algorithms is the implementation of a

linear search in each direction, which may be costly in terms of function evaluations. It is

possible to avoid the linear search by using second-order information, that is, by

approximating the second derivative with two close first derivatives. Illustrated idea defines

the basis of the scaled conjugate gradient algorithm. Among conjugate gradient algorithms,

“xfsl” includes the following:

a) Steepest Descent;

b) Polak-Ribiere;

c) Fletcher-Reeves;

d) Hestenes-Stiefel;

e) one-step Secant;

f) Scaled Conjugate Gradient.

[38]

6.9.2.3 Second-Order Algorithms

A valid approach capable of speeding up the convergence of learning algorithms

considers the second-order information of the error function, that is, of its second derivatives

or, in matricial form, of its Hessian. Considering complicated the computation of the second

derivatives may be beneficial to approximate the Hessian employing the gradient values of

successive iterations. It is the idea of Broyden-Fletcher-Goldarfb-Shanno and Davidon-

Fletcher-Powell algorithms.

A meaningful case is when the function to minimise is a quadratic error because the

Hessian can be approximated by only the first derivatives of the system outputs, as done by

the Gauss-Newton algorithm. Since this algorithm can lead to instability when the

approximated Hessian is not-positive defined, the Marquardt-Levenberg algorithm solves

this problem by introducing an adaptive term. The second-order algorithms included in the

tool are:

a) Broyden-Fletcher-Goldarfb-Shanno;

b) Davidon-Fletcher-Powell;

c) Gauss-Newton;

d) Mardquardt-Levenberg.

[38]

205

6.9.2.4 Algorithms Without Derivatives

The gradient of the error function is not always obtainable (calculated) because it

can be too costly or not defined. In these cases, it is possible to employ optimisation

algorithms without derivatives. An example is the “Downhill Simplex algorithm”, which

considers a set of function evaluations to decide a parameter change. Another example is

Powell’s method, which implements linear searches by a set of directions that evolve to be

conjugate. The algorithms of this kind are too much slower than the previous ones. An

optimal solution could be to estimate the derivatives from the secants or to employ not the

derivative value but its sign (as RProp does), which allows the estimations from small

perturbations of the parameters. [38]

All the above-commented algorithms do not reach the global but a local minimum of the

error function. The statistical algorithms can discover the global minimum because it is

possible to generate different system configurations that spread the search space. One way of

broadening the space explored is to generate random configurations and choose the best one.

It applies the “Blind Search algorithm”, whose convergence speed is plodding. Another way

is to perform small perturbations in the parameters to find a better configuration, such as the

iterative improvements algorithm. A better solution is to employ “simulated annealing

algorithms”. The strategy exploits the analogy between the “learning process”173 and the

evolution of a “physical system”174. Simulated annealing provides good results when the

number of parameters to adjust is low. When it is high, the convergence speed can be so slow;

beneficial could be the generation of random configurations, apply gradient descent

algorithms and select the best solution.

There are applicable algorithms without derivatives: the Downhill Simplex and Powell’s

method. As well are available statistical algorithms: “blind search” and “simulated

annealing” (with linear, exponential, classic, fast, and adaptive annealing schemes).

When optimising a differentiable system, Broyden-Fletcher-Goldarfb-Shanno and

Mardquardt-Levenberg algorithms are the most adequate. If it is not possible to compute the

system derivatives, as in hierarchical fuzzy systems, the best choice is to use these algorithms

with the option of estimating the derivative. Simulated annealing is recommendable when

173 The “learning process” is intended to minimise the error function.
174 The “physical system” tends to lower its energy as its temperature decreases.

206

there are a few parameters to tune, and the second-order algorithms drive the system to a non-

optimal minimum.

[38]

 Error function

The error function expresses the deviation between the actual behavior of the fuzzy

system and the desired one by comparing the input/output patterns with the output of the

system for those input values. “xfsl” defines seven error functions:

a) mean_square_error (MSE);

b) weighted_mean_square_error (WMSE);

c) mean_absolute_error (MAE);

d) weighted_mean_absolute_error (WMAE);

e) classification_error (CE);

f) advanced_classification_error (ACE);

g) classification_square_error (CSE).

Listed functions are normalised by the number of patterns, the number of output

variables, and the range of each output variable so that the error function's range is between

0 and 1. MSE, WMSE, MAE and WMAE are eligible for systems with continuous output

variables. While CE, ACE and CSE are the best fit for classification systems. These are the

equation for the first functions:

𝑀𝑀𝑀𝑀𝑀𝑀 < 𝑆𝑆𝑆𝑆𝑆𝑆�
�𝑌𝑌 − 𝑦𝑦
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟� ⋆⋆ 2

(𝑛𝑛𝑛𝑛𝑛𝑛_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⋆ 𝑛𝑛𝑛𝑛𝑛𝑛_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)
�

 (Equation 50)

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 < 𝑆𝑆𝑆𝑆𝑆𝑆�
𝑤𝑤 ⋆ �𝑌𝑌 − 𝑦𝑦

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟� ⋆⋆ 2

�𝑛𝑛𝑛𝑛𝑛𝑛_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⋆ 𝑆𝑆𝑆𝑆𝑆𝑆(𝑤𝑤)�
�

 (Equation 51)

𝑀𝑀𝑀𝑀𝑀𝑀 < 𝑆𝑆𝑆𝑆𝑆𝑆�
� � 𝑌𝑌 − 𝑦𝑦
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟� �

(𝑛𝑛𝑛𝑛𝑛𝑛_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⋆ 𝑛𝑛𝑛𝑛𝑛𝑛_𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)
�

 (Equation 52)

207

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 < 𝑆𝑆𝑆𝑆𝑆𝑆�
𝑤𝑤 ⋆ � � 𝑌𝑌 − 𝑦𝑦

𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟� �

�𝑛𝑛𝑛𝑛𝑛𝑛_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ⋆ 𝑆𝑆𝑆𝑆𝑆𝑆(𝑤𝑤)�
�

 (Equation 53)

[38]

The output of a fuzzy classification system is the linguistic label that has the most

significant activation degree. A common way of expressing these systems’ deviation is the

number of classification failures (classification_error, CE). It is not an optimal choice for

tuning because many system configurations produce the same number of failures. A valid

improvement adds a term that measures the selected label’s distance to the desired one

(advanced_classification_error, ACE). These two error functions are not differentiable, so

they cannot be used with derivative-based learning algorithms (which are the fastest). A

better choice is to consider each linguistic label’s activation degree as the actual output and

the desired output as “1” for the correct label and “0” for the others. The error function

estimation may use the system’s square error (classification_square_error, CSE), which is

differentiable and functional with derivative-based learning algorithms. [38]

 The Simplification tool - Xfsp

The tool “xfsp” allows applying simplification algorithms, both to the membership

functions and to the neuro-fuzzy system “Rulebases”, to obtain a more forthright description

or one that is easier to comprehend from the linguistic point of view. [47]

6.9.4.1 Membership functions simplification

There are several Membership functions simplification methods available in the

scientific literature; the proposed work uses as baseline three simplification processes:

a) “Purge”;

b) “Clustering”;

c) “Similarity”.

The “Purge Mechanism” looks for those membership functions which are not used in

any “Rulebase” and eliminates them. It may happen not only as a consequence of previous

simplification processes but also with a fuzzy system definition based on translating heuristic

knowledge.

The “Clustering Method” uses the “Hard C-Means algorithm” to search for a small

number of clusters (prototype membership functions) that allow grouping several of the

208

original functions. The clusters’ evaluation occurs in the space formed by the different

parameters that define the membership functions, being possible to apply weights to each one

of them. The user can define the final number of prototypes, or in the alternative

automatically calculated by applying different validity indices: Dunn separation index,

Davies-Bouldin index and Dunn generalised indexes.

The third technique examines a merging process based on the similarity between the

different functions. This process iteratively searches for the pair of most similar functions

and replaces them with a single function if the degree of similarity exceeds a threshold

defined by the user. The process ends when it is not possible to merge more functions. [38]

6.9.4.2 Rulebases simplification

There are several “Rulebases” functions simplification methods accessible in the

scientific literature; there are four applicable processes to the “Ruleset”:

a) compress;

b) pruning;

c) expand;

d) tabular simplification.

The “compression method” combines all the rules that share the same consequent,

connecting their antecedents by disjunctions (“or” connective).

The “expansion method” implements the process complementary to compression. Both

methods can help the user to visualize better and understand the “Rulebase”, but in reality,

they do not perform an adequate simplification. The simplification operation can perform the

pruning method and (or) the tabular simplification.

The “pruning process”175 is usually a pre-processing method applied ere any

simplification. This process evaluates the degree of activation of the rules to eliminate:

a) the “n” worst rules;

b) all rules except the “n” best rules;

c) all rules whose degree of activation is below a threshold (the user sets both the

number “n” and the threshold).

The last of the simplification mechanisms examined is the “tabular simplification

method” of the “Rulebases” on an extension of the Quine-McCluskey algorithm. This

175 Pruning allows reducing the number of rules by selecting the most important in the context of a particular application.

209

method performs an ordered linear search176 to find all combinations of logically adjacent

minterms of the n-variable function to be simplified. [38]

6.10 Proposed Learning Tool Configuration

Moving from the hardware assumptions made in “paragraph 5.2” and using as baseline

the theoretical studies of “paragraph 6.9”, it is possible to operate the proposed “learning

tool” configuration.

A preliminary condition is the utilisation of a training file compatible with the “learning

tool”. It requires that the raw data stored in the external memory shall be transferred on the

user PC and then processed in order to ensure the conformation of the input/output

information pattern with the “learning tool” standards (as well shall be given to the file the

extension “.trn”).

Configuration starts with the selection of the learning technique. The Author justifies its

predilection for supervised learning techniques because this technique focuses on the

system behaviour given by a set of training input/output data (physical information captured).

It matches the training file goals and its generation’s modality because the “data

collection177” outcome allows replicating a human being pilot flight behaviours under certain

flight conditions.

The successive configuration step is the selection of the learning algorithm. The Author

proposes to opt for “Gradient Descent algorithms”, which are well-known algorithms

employed in fuzzy systems learning processes. Although the most common variant is the

“Back Propagation algorithm”, it is preferred to use the “Manhattan algorithm”. The root

of the decision is in the principles behind the algorithms. “Back Propagation algorithm”

modifies the parameter values proportionally to the gradient of the error function in order to

reach a local minimum. Since this algorithm’s convergence speed is slow, modifications such

as a different learning rate for each parameter or adapting, heuristically, the control variables

of the algorithm are beneficial. “RProp algorithm” follows this strategy and improves

significantly the convergence speed taking into account the gradient value of two successive

iterations providing information about the curvature of the error function. The “Manhattan

176 It begins with a list of all the minterms of the function to later obtain successively lists with (n-1)-, (n-2)-, ..., variable implicants
until no more implicants can be formed, thus obtaining the so-named “prime implicants” of the function. The last step is to select
the minimum number of prime implicants that cover all the minterms. [38]
177 It is achieved as the vehicle is guided via remote control (RC) through an area defined as the “selected environment”.

210

algorithm” is chosen because it represents a good trade-off between the algorithm’s accuracy

and the computational power required.

The subsequent configuration step is the selection of the error function. The Author

assumes the default function, “Mean Square Error” function, as an appropriate option. The

decision’s aim attempts to avoid the unnecessary heavy computational process.

Following configuration tool selection is the identification of the best processing

algorithm to use for the designed fuzzy system simplification. Since the processing

algorithms can be applied to the system before the tuning process (pre-processing option) or

after it (post-processing option).

The Author’s choice is to use the “post-processing option”. In order to complete the

process, it is necessary to select the pruning algorithm that prunes the rules and reduces the

membership functions. Author preference is for the method of pruning the worst “N”178

rules.

The last configuration step is the definition of the end condition179; it is mandatory to

specify how shall conclude the learning process. This condition limits the number of

iterations, the maximum error goal, or the maximum absolute or relative deviation

(considering both the training and the test error). The end condition can be one of the

following:

a) Limit on Iterations;

b) Limit on Training Error;

c) Limit on Training RMSE;

d) Limit on Training MXAE;

e) Limit on Training Rel. Variation;

f) Limit on Test Error;

g) Limit on Test RMSE;

h) Limit on Test MXAE;

i) Limit on Test Rel. Variation.

178 Each “Rulebase” has a different number of functions; Author targets a reduction in the range between 10% and 20% of the
“Rulebase” number of functions.
179 This condition is a limit imposed over the number of iterations, the maximum error goal, or the maximum absolute or relative
deviation (considering both the training and the test error).

211

The Author preliminary “end condition” setup imposes a limit of 25 iterations. Further

Author researches may focus on the enhancements quantification of more complex and

application customised application’s setups.

Not mandatory tool configurations are not considered in this dissertation, although

they may potentially be used in further investigation.

212

7 Conclusions and Further Researches

The “Thesis” consists of three parts; the first part, which covers the first three chapters,

introduces the work and describes a comprehensive picture that frames the Thesis (defines

the technical proposal’s background) and Author’s researches. The second part includes

“Chapter 4” and defines the theoretical framework of the technical proposal strategy. The

third part consists of the “Chapter 5” and “Chapter 6” and debates the technical proposal.

Work’s introduction starts with a quick overview of Unmanned Vehicles currently

available technologies and future technological evolutions. The first introductive Chapter

concludes with the analysis of the Author’s investigations, where are exposed:

• Dissertation’s Topicality;

• Dissertation’s primary “hypothesis” and “intentions”;

• Methods of Research and Development;

• Dissertation’s scientific novelty;

• Dissertation’s practical application of research results;

• Dissemination of research results.

The second Chapter gives a short exposition of conventional UVs control techniques

with a focus on UAVs. Besides, the final introduction’s stage scrutinises the current

integration of autonomous technologies on next-generation automotive vehicles. Particular

attention is given to the electrification process of automotive technologies and the contextual

evolution of the functional safety requirements with the relative international legislation. The

“Thesis” introduction produces the following avowals:

• AV’s (autonomous vehicle) technology is developing extremely fast;

• AV’s technology is the centre of enormous investments;

• a large number of big corporations are allocating a consistent part of their budget

for AV’s R&D;

• currently, a critical industrial effort is the validation180 of the autonomous vehicle

technology and the cost reduction of the system built with a large variety of

“ECUs” (electronic control units);

• software development represents the highest R&D cost for AV’s architecture.

180 In fact, considerable risks are associated with future autonomous vehicles technology, in particular, the incomplete international
legislation and international standards currently available;

213

The second part of the work builds up a theoretical framework for the application

proposal associated with the Thesis. This section clearly defines the goals of the work and

draws the strategy to achieve them. Significant attention is given to the academic research

analysis of “fuzzy logic controllers” and “neuro-fuzzy controllers” applications and

implementations. Efforts aim to construct the fundaments on which to build the controller’s

design strategy proposal. The outcomes of this preliminary study are:

• the final goal of the proposed work is to implement a controller capable of

replaying the behaviour of a human pilot while he is driving a small RC

aeroplane;

• a second target of the proposed work is to create a controller capable of being

tuned in the function of the hardware (the small physical UAV, or RC aeroplane

capable of autonomous operations);

• a “neuro-fuzzy controller”181 is the control strategy aimed for the small UAV;

• the assumptions made is that the “neuro-fuzzy controller” has seven inputs and

five outputs;

• a detailed study of the academic literature suggests the use of an FPGA to process

the controller;

• the choice of FPGA is driven by its flexibility and by its capability to process

multiple functions in parallel (parallel computation capability);

• VHDL will be used as the working platform for the systems182, although the

VHDL language imposes some limitations if compared with the flexibility and

expressiveness of other fuzzy logic oriented languages;

• in order to achieve behavioural modelling, the Author’s suggestion is to use a

VHDL description style where the system’s structure description (fuzzy sets, rule

base) and the operator’s description (connectivity, fuzzy operations) are defined

separately (This makes it possible to describe both the fuzzy system structure and

the processing algorithm independently);

• the description format makes it possible the use of linguistic hedges in order to

compact the rules defining the system behaviour (A significant advantage of

181 The ideal “neuro-fuzzy controller” shall be capable of parallel computation.
182 It implies that the fuzzy system description must be synthesisable (a synthesisable VHDL algorithm requires to adapt and tune
the characteristics of the controller) to the physical hardware implementation (FPGA printing).

214

using this approach is the availability of a tool able to translate a fuzzy logic

oriented language with a GUI interface into a VHDL code);

• proposed work, to describe the fuzzy logic controller and then translate this

description into a valid VHDL code, utilises the “XFUZZY XFL3.5” GUI (or

XFL3) developed by Instituto de Microelectrónica de Sevilla (IMSE-CNM); [38]

• XFL3 description language is a development environment that eases the

specification, verification and synthesis of fuzzy inference systems;

• a set of essential functions, called the XFL library, performs the parsing and

semantic analysis of XFL specifications and stores them using an abstract syntax

tree183.

The third Thesis section moves from the hardware description of a small RC plane

transformable into a small AUAV. The Hardware description covers the electronics hardware

description and marginally the mechanical hardware description. The mechanical description

includes the description of a simple RC plane powered by a low voltage REESS (according

to “Reg.100” definition of low voltage REESS) and a set of two independent low voltage

BLCD E-Motors. The description of the electronic systems results comprehensive due to the

efforts made for the definition. The proposal’s primary goal, which targets to move the

design’s load from the mechanical design to the controller’s design, is the use of the neuro-

fuzzy controller to adapt itself to the vehicle’s characteristics, allowing the simplified

mechanical design of the drone (or RC plane).

The core of the research work and of the technical proposal is the controller’s design

based on a multi-layer structure. The design starts with the identification of the “system’s

inputs”, the “actuators”, or “system outputs”, and then links them with a “Transfer Function”.

Since that the proposed work is oriented on a neuro-fuzzy controller, the “System Transfer

Function” is implemented by a specific set of MIFs, MOFs, FIS (“Rulebases”) and a learning

process from a training file184.

The VHDL controller’s multi-layer structure is associable with any hierarchical

hardware schematics design. The “Top Layer” describes the peripherals interfaces and the

interaction between the peripherals with the core of the flight controller.

183 This format is used inside the environment when handling system descriptions.
184 A simplified “Hedge Block” with rules and weights obtainable following a “Learning Process” and “Optimisation Process”.

215

The first VHDL “Top Layer” section is populated with a set of independent blocks

specifically designed to process the “System’s Inputs”. Each block, independently (in

parallel), manages a determined sensor and then digital process the relative information

before broadcasting the data to the “neuro-fuzzy controller” (the core of the controller).

The second section of the VHDL “Top Layer” algorithm incorporates the VHDL

algorithms exported from the “XFUZZY GUI”. The neuro-fuzzy flight controller is encased

in a bespoke VHDL component called “NEURAL” (from Figure 6.63, VHDL component

instance: “N0”), and its VHDL code represents a second hierarchical layer of the algorithm’s

structure. The “NEURAL” VHDL component” utilises a set of five sub-components, each of

them built on a specific “Rulebase”. For hierarchical systems, a VHDL description185 is

generated for each “Rulebase”, which acts independently, and populates the linked sub-

component. The VHDL code population of these sub-components embodies a third

hierarchical layer of the physical controller structure.

The third VHDL “Top Layer” algorithm’s section is populated with a set of independent

components specifically designed to process the “system’s outputs”. Each VHDL component

is associated with a single neuro-fuzzy controller’s output. Each block, independently (in

parallel), is interfaced with the neuro-fuzzy controller and digital processes the relative

information before broadcasting to the electro-mechanical actuators the control signals.

The primary focus of the controller design is the “neuro-fuzzy unit”. For this design, the

XFUZZY GUI results exceptionally effective for the controller description, design,

simulation, optimisation and the learning/training process. The technical proposal pre-

requisites are:

• by assumption, a significant hardware design simplification (mechanical and

electronic) is pursued;

• the final goal is to compensate the hardware simplification with a controller

capable of being easily tuned and capable of learning;

• it is defined the mechanical hardware architecture as a baseline for the controller

design;

• it is defined the electronic hardware architecture as a baseline for the controller

design.

185 It is the outcome of the translation in VHDL of the XFUZZY GUI neuro-fuzzy controller description.

216

“Chapter 6” investigations deliver the following significant results:

• the RTL views of the synthesisable system’s VHDL code (Figure 6.63);

• a full description of the “neuro-fuzzy” controller;

• an optimisation strategy for the “Controller”;

• a controller’s learning/training execution strategy;

• a detailed simulation analysis of the raw, fuzzy flight controller.

With the presented researches and the derivative “neuro-fuzzy” controller’s design, the

Author aims a precise final delivery: demonstrate the feasibility of a flexible and cost-

effective controller able to mimic the driving behaviour of a human pilot and also be capable

of behaviours corrections with learning/training processes.

The Author relies on the simulation analysis presented in “Chapter 6” to demonstrate the

controller’s basic behaviours, flexibility, robustness, and potential future developments.

Although the simulation analysis covers a wide range of cases, a particular emphasis is given

to the controller behaviours during complex manoeuvres such as the take-off and the landing.

Take-off and landing due to the manoeuvres’ complexity require a set of assumptions

due to the absence of the physical model of the RC plane used. These assumptions are

associated with a set of unique physical parameters that may be obtained from a

learning/training process or from the mechanical hardware manufacturers datasheet.

For each analysed manoeuvre, the analysis describes a controller that takes time by time

the expected decision, the expected decision that a human being pilot may most likely take if

facing similar environmental conditions. It results remarkable that a controller not yet

optimised and not yet trained can produce such results. Although the outcome is in line

with the theoretical research done, it may be expectable that a series of learning/training

operations may be necessary before establishing a system capable of performing a fully

autonomous flight.

The description made gives all the information necessary to progress with the project

and obtain the necessary economic resources required for the high development cost of such

systems. The sourcing of all components required for the complete system’s physical

realisation is not the only cause of the delay, ensuring the proper testing environment and

facilities allocation results being significant braking elements for physical tests

implementation. Physical installation of the system in a real-world environment is currently

underway and is a consequence of the Thesis work.

An Analysis and Conclusions of the proposed Control Strategy Quality:

217

the appraisal of the proposed “controller’s quality” in the field of AUAV constructed on

an adapted small RC plane is both varied and subjective. Many claims are made regarding

the “controller’s quality” to perform individual manoeuvres outside sets of pre-defined

environmental conditions. The learning/training process limitation is that in front of

unpredictable conditions, a learning/training process, by definition, is not applicable (by

definition, it is not possible to define training for unpredictable conditions). It means that the

Author cannot rely entirely on the learning process’s contribution, although it is an important

strategic asset.

So far as relates to the controller ability to perform manoeuvres under pre-defined

environmental conditions where the landscape is known, where the vehicle position in the

space is under control, and the target manoeuvre is known (it is intended a manoeuvre that

a human being is capable of defining and then mimicking), it is possible to expect that the

controller will, with a reasonably good margin of error, react accordingly.

 The controller efficiencies may be affected by the accuracy/reliability of the particular

type of sensors, the quality of the information associate with the “system’s environmental

variables” (or “global environmental information”). The learning/training process quality

targets to mitigate such risk. With future researches is expected a “characterisation” of this

mitigation factor.

Future research will involve the addition of a fully neural network fruit of the availability

of a “physical vehicle”186 and the results of a learning/training process described in “Chapter

6”. Supplementary plans are to adapt different models of RC planes to carry the electronic

hardware described in “Chapter 5” and then verify the flexibility of the controller and its

capability to adapt to new mechanical characteristics using the learning/training process.

Future research including but not limited to:

• industrial applications of the “Neuro-Fuzzy Controller” built on FPGA;

• Cloud-based neural networks for industrial applications;

• Cloud-based neural networks for environment safety-critical monitoring;

• automotive application of “neuro-fuzzy controller” built on FPGA;

• FPGA automotive applications for ADAS;

• FPGA automotive applications for powertrain;

186 It was not possible to implement due to the absence of an RC place capable of being modified to act as AUAV, and
simultaneously capable of being driven by remote and store the flight diagnostics.

218

• automotive applications for Artificial Intelligence;

• self-driving system for automotive applications;

• data collection for pseudo-memory applications;

• practical applications for swarm robotics manipulation through memory

harvesting;

• long-range exploration technologies for fully autonomous vehicles;

• safety modelling for closed environment robotics;

• an investigation into appropriate control methods for data access, including

MOB, cloud or other access methods for single robots, swarm robots or remote

exploration robots.

219

REFERENCES

[1] How J.P., Frazzoli E., Chowdhary G.V. (2015) Linear Flight Control Techniques for

Unmanned Aerial Vehicles. In: Valavanis K., Vachtsevanos G. (eds) Handbook of

Unmanned Aerial Vehicles. Springer, Dordrecht.

[2] Randel J. Gordon, USAF, “OPTIMAL DYNAMIC SOARING FOR FULL SIZE

SAILPLANES”, AIR FORCE INSTITUTE OF TECHNOLOGY, Wright-Patterson Air

Force Base, Ohio (USA), September 2006.

[3] Saeed, Adnan & Bani Younes, Ahmad & Islam, Shafiqul & Dias, Jorge & Seneviratne,

Lakmal & Cai, Guowei. (2015). A Review on the Platform Design, Dynamic Modeling

and Control of Hybrid UAVs. 2015 International Conference on Unmanned Aircraft

Systems, ICUAS 2015. 10.1109/ICUAS.2015.7152365.

[4] R. C. Nelson, Flight Stability and Automatic Control, 2nd ed., McGraw Hill, ch. 7-10,

pp. 236-394.

[5] Girish C.V., Emilio F., Jonathan H.P., Hugh L. (2015) Nonlinear Flight Control

Techniques for Unmanned Aerial Vehicles. In: Valavanis K., Vachtsevanos G. (eds)

Handbook of Unmanned Aerial Vehicles. Springer, Dordrecht.

[6] Michael S. Branicky. Multiple Lyapunov functions and other analysis tools for

switched and hybrid systems. IEEE Transactions on Automatic Control, 43(4):475{482,

April 1998.

[7] Daniel Liberzon. Handbook of Networked and Embedded Control Systems, chapter

Switched Systems, pages 559-574. Birkhauser, Boston, 2005.

[8] Wassim M. Haddad and Vijay Sekhar Chellaboina. Nonlinear Dynamical Systems and

Control: A Lyapunov-Based Approach. Princeton University Press, Princeton, 2008.

[9] L. Rodrigues and J. P. How. Observer-based control of piecewise-affine systems.

International Journal of Control, 76(5):459-477, 2003.

[10] García, Andrés Gabriel & Agamennoni, Osvaldo & Figueroa, Jose. (2009). Applying

continuous piecewise linear approximations to affine non-linear control systems. IFAC

Proceedings Volumes (IFAC-PapersOnline). 6. 114-119. 10.3182/20090616-3-IL-

2002.0028.

[11] Andrés G. García and Osvaldo E. Agamennoni, (2008). Continuous Piecewise Linear

Control for Nonlinear Systems: The Parallel Model Technique. WSEAS Conferences in

Istanbul, Turkey, May 27-30, 2008, pages 39-44.

220

[12] L. R. Adrian, D. Repole and L. Rbickis, “Proposed neuro-guided learning for obstacle

avoidance in AMBO a robotic device”, 2015 56th International Scientific Conference

on Power and Electrical Engineering of Riga Technical University (RTUCON), Riga,

2015, pp. 1-5.

[13] L. R. Adrian and D. Repole, “Intelligent autonomous environmental monitoring based

on the AMBOA robot sensory system”, 2017 IEEE 58th International Scientific

Conference on Power and Electrical Engineering of Riga Technical University

(RTUCON), Riga, 2017, pp. 1-6.

[14] McClelland, J. L. & Rumelhart, D. E. (1988). A simulation-based tutorial system for

exploring parallel distributed processing. Behaviour Research Methods, Instruments &

Computers, 2, 263-275.

[15] Reed, R. D., & Marks, R. J. (1999). Neural Smithing: supervised learning in feed forward

artificial neural networks. Cambridge, MA: MIT Press.

[16] UN/ECE-R100/Rev.2, Regulation No. 100, Revision 2.

[17] D. Repole and L. R. Adrian, “Fuzzy nano piezo hybrid for fault detection in automotive

power PCB”, 2017 IEEE 37th International Conference on Electronics and

Nanotechnology (ELNANO), Kiev, 2017, pp. 400-404.

[18] Schulz-Harder, Jürgen. (2003). Advantages and new development of direct bonded

copper substrates. Microelectronics Reliability. 43. 359-365. 10.1016/S0026-

2714(02)00343-8.

[19] Inorganic Substrates for Power Electronics Applications, Anton Miric, M. Sc., Peter

Dietrich, M Sc., M.A., Heraeus Deutschland GmbH and Co. KG, 63450 Hanau

Germany.

[20] K. Tanaka (Translated by T. Niimura), 1997, “An Introduction to Fuzzy Logic for

Practical Applications”, Springer- Verlag, New York, Ch. 4, 5, pp. 86-136.

[21] IEEE. IEEE Standard VHDL Language Reference Manual. IEEE, NY, 1988. IEEE

Standard 1076-1987.5.

[22] Zadeh, L.A., "Fuzzy Sets," Information and Control, 8, 338-353, 1965.

[23] Brubaker, David I., "Fuzzy Logic Basics: Intuitive Rules Replace Complex Math,"

EDN, June 18, 1992, pp.111.

[24] Glenn A, “Fundamentals of Fuzzy Logic Part I & II”, SENSORS, April 1993.

[25] Earl Cox, The Fuzzy Systems Handbook (1994), ISBN 0-12-194270-8.

[26] SHABIUL ISLAM, NOWSHAD AMIN, M.S.BHUYAN, MUKTER ZAMAN “FPGA

Realization of Fuzzy Temperature controller for industrial application” WSEAS

221

TRANSACTIONS on SYSTEMS and CONTROL Manuscript received June 16, 2007;

revised Sep. 17, 2007.

[27] Brown, S.D., Francis, R.J., Rose, J., and Vranesic, Z.G., Field-Programmable Gate

Arrays, Kluwer Academic Publishers,1996.

[28] K.T. Tho, K.H. Yeow, F. Mohd-Yasin, M.S. Sulaiman, and M.I. Reaz, VHDL

Modeling of Boolean Function Classification Schemes for Lossless Data Compression,

WSEAS Transactions on Computers, Vol.3, No.2, 2004, pp. 365-368.

[29] D. Repole and L. R. Adrian, “Introduction to Parallel MAS Control for MAS - Smart

Sensor Networks”, 2019 IEEE 60th International Scientific Conference on Power and

Electrical Engineering of Riga Technical University (RTUCON), Riga, Latvia, 2019,

pp. 1-5.

[30] Bosque, Guillermo & del Campo, Inés & Echanobe, Javier. (2014). Fuzzy systems,

neural networks and neuro-fuzzy systems: A vision on their hardware implementation

and platforms over two decades. Engineering Applications of Artificial Intelligence. 32.

10.1016/j.engappai.2014.02.008.

[31] de Oliveira, José. (1995). A Design Methodology for Fuzzy System Interfaces. Fuzzy

Systems, IEEE Transactions on. 3. 404 - 414. 10.1109/91.481949.

[32] A. Barriga, S. Sánchez-Solano, P. Brox, A. Cabrera, I. Baturone, “Modelling and

implementation of fuzzy systems based on VHDL”, International Journal of

Approximate Reasoning, Volume 41, Issue 2, 2006, Pages 164-178, ISSN 0888-613X,

https://doi.org/10.1016/j.ijar.2005.06.018.

[33] A. Zamfirescu, C. Ussery, VHDL and fuzzy logic if-then rules, in: Proceedings of the

Euro-VHDL, Hamburg, 1992, pp. 636–641.

[34] D. Galan, C.J. Jimenez, A. Barriga, S. Sanchez-Solano, VHDL package for description

of fuzzy logic controllers, European Design Automation Conference, Brighton, 1995,

pp. 528–533.

[35] T. Hollstein, S.K. Halgamuge, M. Glesner, Computer-aided design of fuzzy systems

based on generic VHDL specifications, IEEE Transactions on Fuzzy Systems 4 (4)

(1996).

[36] E. Lago, C.J. Jimenez, D.R. Lopez, S. Sanchez-Solano, A. Barriga, Xfvhdl: A tool for

the synthesis of fuzzy logic controllers, Design Automation and Test in Europe,

DATE’98, Paris, 1998, pp. 102–107.

[37] F.J. Moreno Velo, S. Sanchez-Solano, A. Barriga, I. Baturone, D.R. Lopez, XFL3: A

new fuzzy system specification language, WSES/IEEE Multiconference on Circuits,

https://doi.org/10.1016/j.ijar.2005.06.018

222

Systems, Communications and Computers (CSCC’2001), Creta, July 2001, pp. 361–

366.

[38] FUZZY LOGIC DESIGN TOOLS, Xfuzzy 25th, V. 3.5, March 2018, Instituto de

Microelectrónica de Sevilla (IMSE-CNM), http://www2.imse-

cnm.csic.es/Xfuzzy/Xfuzzy_3.5/download.html#DISTRIBUTION.

[39] ST Microelectronics, “A3G4250D :3-axis digital output gyroscope”, Application Note:

AN5148 (Rev.1 - May 2018).

[40] ST Microelectronics, Teseo-LIV3 GNSS module User Manual, UM2229 (Rev.4 -

17.12.2019).

[41] ST Microelectronics, LPS25HB MEMS pressure sensor: 260-1260 hPa absolute digital

output barometer, datasheet – production data, (Rev.4 – 16.08.2016).

[42] D. Repole and L. R. Adrian, “Evaluation of GaN MOSFET for Unmanned Aerial

Vehicles BLDC Motor Drive”, 2018 IEEE 59th International Scientific Conference on

Power and Electrical Engineering of Riga Technical University (RTUCON), Riga,

Latvia, 2018, pp. 1-4.

[43] Silvio Cammarata, “Reti Neuronali, Dal Perceptron alle reti caotiche e neuro-fuzzy”,

seconda edizione, ETASLIBRI, 1997.

[44] M. Brox, S. Sánchez-Solano, E. del Toro, P. Brox, F. J. Moreno-Velo CAD Tools for

Hardware Implementation of Embedded Fuzzy Systems on FPGAs IEEE Transactions

on Industrial Informatics 2012 DOI: 10.1109/TII.2012.2228871.

[45] F. Montesino, A. Lendasse, A. Barriga, Autoregressive time series prediction by means

of fuzzy inference systems using nonparametric residual variance estimation Fuzzy Sets

and Systems 2010, DOI: 10.1016/j.fss.2009.10.018.

[46] F. J. Moreno-Velo, I. Baturone, A. Barriga, S. Sánchez-Solano Automatic Tuning of

Complex Fuzzy Systems with Xfuzzy Fuzzy Sets and Systems 2007 DOI:

10.1016/j.fss.2007.03.006.

[47] I. Baturone, F. J. Moreno-Velo, A. Gersnoviez, “A CAD Approach to Simplify Fuzzy

System Descriptions 2006 IEEE International Conference on Fuzzy Systems”, DOI:

10.1109/FUZZY.2006.1682033.

[48] Fullér R. (2000), “Artificial neural networks”. Introduction to Neuro-Fuzzy Systems.

Advances in Soft Computing, vol 2. Physica, Heidelberg. DOI:

https://doi.org/10.1007/978-3-7908-1852-9_2.

[49] Vieira, José & Morgado-Dias, F. & Mota, Alexandre. (2004). Neuro-Fuzzy Systems: A

Survey.

http://www2.imse-cnm.csic.es/Xfuzzy/Xfuzzy_3.5/download.html#DISTRIBUTION
http://www2.imse-cnm.csic.es/Xfuzzy/Xfuzzy_3.5/download.html#DISTRIBUTION
https://doi.org/10.1007/978-3-7908-1852-9_2

223

[50] Syed, M & Bensenouci, Ahmed & Alghamdi, Saleh & Ghany, A.M.. (2001). SHORT-

TERM LOAD FORECASTING USING ADAPTIVE NEURO-FUZZY INFERENCE

SYSTEM (ANFIS) APPLICATION TO ALEPPO LOAD DEMAND.

[51] D. Nauck, F. Klawon; R. Kruse, “Foundations of Neuro-Fuzzy Systems”, J. Wiley &

Sons, 1997.

[52] B. Kosko, “Neural Networks and Fuzzy Systems: A Dynamical System Approach to

Machine Intelligence”, Prentice Hall, Englewood Cliffs, New Jersey, 1992.

[53] E. Czogala and J. Leski, “Neuro-Fuzzy Intelligent Systems, Studies in Fuzziness and

Soft Computing”, Springer Verlag, Germany, 2000.

[54] Szandała, Tomasz. (2015). Classification Based on Lingual Variables Using Expert

Matrix Obtained with Genetic Algorithm. Procedia Computer Science. 71. 143-149.

10.1016/j.procs.2015.12.180.

[55] J.M.Zurada, Introduction to Artificial Neural Systems (West Publishing Company, New

York, 1992).

[56] Robert Fullér, Neural Fuzzy Systems, Donner Visiting professor Abo Akademi

University, ISBN 951-650-624-0 ISSN 0358-5654, 1995, pages. 157-160.

[57] D. Nauck, F. Klawon; R. Kruse, “Foundations of Neuro-Fuzzy Systems”, J.Wiley &

Sons, 1997.

[58] T. C. Lin, C. S. Lee, “Neural Network Based Fuzzy Logic Control and Decision

System”, IEEE Transactions on Computers, 1991, Vol.40, no. 12, pp. 1320-1336.

[59] R. Jang, “Neuro-Fuzzy Modelling: Architectures, Analysis and Applications”, PhD

Thesis, University of California, Berkley, July 1992.

[60] H. R. Berenji and P. Khedkar, “Learning and Tuning Fuzzy Logic Controllers through

Reinforcements”, IEEE Transactions on Neural Networks, 1992, Vol. 3, pp. 724-740.

[61] D. Nauck, R, Kurse, “Neuro-FuzzySystems for Function Approximation”, 4th

International Workshop Fuzzy-Neuro Systems,1997.

[62] S. Tano, T. Oyama, T. Arnould, “ Deep Combination of Fuzzy Inference and Neural

Network in Fuzzy Inference”, Fuzzy Sets and Systems, 1996, Vol. 82(2), pp. 151- 160.

[63] S. Sulzberger, N. Tschichold e S. Vestli, “FUN: Optimization of Fuzzy Rule Based

Systems Using Neural Networks”, Proceedings of IEEE Conference on Neural

Networks, San Francisco, March 1993, pp. 312-316.

[64] F. C. Juang, T. Chin Lin, “An On-Line Self Constructing Neural Fuzzy Inference

Network and its applications”, IEEE Transactions on Fuzzy Systems, 1998, Vol. 6, pp.

12-32.

224

[65] M. Figueiredo and F. Gomide; "Design of Fuzzy Systems Using Neuro-Fuzzy

Networks", IEEE Transactions on Neural Networks, 1999, Vol. 10, no. 4, pp.815- 827.

[66] N. Kasabov e Qun Song, “Dynamic Evolving Fuzzy Neural Networks with ‘m- out-of-

n’ Activation Nodes for On-Line Adaptive Systems”, Technical Report TR99/04,

Department of Information Science, University of Otago, 1999.

225

APPENDICES

A. Abbreviations

ABC → Artificial Bees Colony
ACE → Advanced Classification Error

ADAS → Advanced Driver Assistant

Ah → Ampere-hours

AI → Artificial Intelligence

Al2O3 → Aluminium Oxide

AlN → Aluminium Nitride

AMB → Active Metal Brazing

ANN → Artificial Neural Network

ARB → Assessment Rules Block

ARMA → Autoregressive Moving Average

ASIC → Application-Specific Integrated Circuit

AR → Autonomous Robots

AUAV → Autonomous Unmanned Arial Vehicle

AUV → Autonomous Underwater Vehicles

AV → Autonomous Vehicles

BDU → Block Data Update

BLDC → Brushless DC Electric Motor

BMS → Battery Management System

CE → Classification Error

CEP → Circular error probable

CLB → Configurable Logic Block

CPWL → Continuous Piecewise Linear Approximation

COG → Centroid Method (Fuzzy Logic)
CSE → Classification Square Error

CTDs → Conductivity-Temperature-Depth sensors

CVT → Continuously Variable Transmission

DBC → Direct bonded copper

226

DC → Direct Current

DCU → Drive Control Unit

DES → Decentralized Control System

DM → Distance Modes

DPS → Degree Per Second

DSP → Digital Signal Processor

EBM → Electronic Battery Monitor

ECU → Electronic Control Unit

EDA → Electronic Design Automation tools

e.g. → exempli grata - the abbreviation of a Latin phrase meaning: “for example”

E-Motor → Electric Powertrain’s Motor

ESD → Electro-Static Discharge

EV → Electric Vehicle

FAR → Federal Aviation Regulations

FFT → Fast Fourier Transform

FIR → Finite Impulse Response

FIS → Fuzzy Inference System

FMEA → Failure Modes and Effects Analysis

FOB → Fuzzy Output Block

FoV → Field of View

FPD → Field Programmable Device

FPAA → Field Programmable Analog Array

FPGA → Field Programmable Gate Array

FR → Front Engine – Rear-Wheel Drive

FR4 → Flame Retardant, glass-reinforced epoxy laminate material

GA → Genetic Algorithms

GaN → Gallium Nitride

GBP → Gain Bandwidth Product

GNSS → Global Navigation Satellite System

GUI → Graphical User Interface

HEV → Hybrid Electric Vehicle

HLGA → Holed Land Grid Array

227

HSD → TOYOTA’s Hybrid Synergy Drive

HV → Hybrid Vehicle

HW → Hardware

ICA → Independent Component Analysis

ICNN → Independent Component Neural Network

ICE → Internal Combustion Engine

I2C → Inter-Integrated Circuit, serial communication protocol

IC → Integrated Circuit

i.e. → id est - the abbreviation of a Latin phrase meaning: “in other words”

IGBT → Insulated-Gate Bipolar Transistor

iPM → Intelligent Power Management

ISA → International Society of Automation - Standard

ISH → Industrial Service Hybrid Robots

ITAR → International Traffic in Arms Regulations

KL15 → Terminal 15 or “run bus” which corresponds to the ignition position 1

KL30 → Terminal 30 or “battery bus” which corresponds to the ignition position 2

LBC → Learning-Based Control

LGA → Land Grid Array

Li-Ion → Lithium-ion

LMI → Linear Matrix Inequalities

LNA → Low-Noise Amplifier

LPV → Linear Parameter Varying

LST → Least Significant Bit

LTI → Linear Time-Invariant

MAE → Mean Absolute Error

MCU → Microprocessor Control Unit

MEMS → Microelectromechanical Systems

MFC → Membership Functions Circuits.

MHEV → Mild Hybrid Electric Vehicle

MIF → Membership Input Function

MLP → Multilayer Perceptron

MOA → Midpoint of Area

228

MOB → on-board memory size expressed in bytes

MOF → Membership Output Function

MOM → Medium of Maxima

MPPT → Maximum Power Point Tracker

MSB → Most Significant Bit

MSE → Mean Square Error

MXAE → Maximum Absolute Error

NiMH → Nickel-Metal Hydride Battery

NMEA → National Marine Electronics Association

NN → Neural Network

NRR → Number of Registers Read

OA → Obstacle Avoidance

ODR → Output Data Rate

OEM → Original Equipment Manufacturer

OMF → Output Membership function

OR → Obstacle Recognition

PC → Personal Computer

PCB → Printed Circuit Board

PHEV → Plug-In Hybrid Electric Vehicle

PID → Proportional-Integral-Derivative controller

PFC → Power Factor Correction

PIR → Pyroelectric Infrared Radiation Sensor

PP → Polypropylene Film capacitor

PMSM → Permanent Magnetic Synchronous Motor

PSU → Power Supply Unit

PV-module → Photo-Voltaic cells mounted in a frame for work installation

PWL → Piece Wise Linear models

PWM → Pulse Width Modulation

P/N → Manufacturer’s Part Number

RC → Radio-Controlled

REESS → Rechargeable Energy Storage System

REOMP → Reconfigurable Orthogonal Multi-processor Memory

229

RMSE → Root Mean Square Error

ROI → Region of Interest

ROM → Remotely Operated Machine

ROUV → Remotely Operated Underwater Vehicles

ROV → Remotely Operated Vehicle

RTL → Register-Transfer Level (VHDL schematics view)

R&D → Research and Development

Si → Silicon

Si3N4 → Silicon Nitride

SiC → Silicon Carbide

SIM → Serial Interface Mode

SM → State Machine

SoC → State of Charge

SoF → State of Function

SoH → State of Health

STNFC → Self-Tuning Non-linear Function Control

SW → Software

ToF → Time-of-Flight

ToV → Field of view

UAV → Unmanned Arial Vehicle

UART → Universal Asynchronous Receiver-Transmitter

UGV → Unmanned Ground Vehicle

USAF → The United States Air Force

UUGV → Utility Unmanned Ground Vehicle

UUV → Unmanned Underwater Vehicles

UV → Unmanned Vehicle

Va → Vehicle’s Velocity in the moment of maximum take-off acceleration

VAR → Variable Resistor

VLSI → Very Large Scale Integration

VMC → Minimum control speed,

VHDL → Very High-Speed Integrated Circuit Hardware Description Language

VFC → Final Cruise Velocity

230

VSD → Starting Descending Velocity (during the landing manoeuvre)

VTD → Touch-down Velocity

WBG → Wide Band Gap

WMAE → Weighted Mean Absolute Error

WMSE → Weighted Mean Square Error

ZTA → Zirconia Toughened Alumina

3ph → 3 phase (electric motor)

B. Non-Linear System Linearization Technique

A common approach could be to achieve a “Non-Linear Controller” by approximating

the “Non-Linear System” with a linear one. To reach this goal could be helpful the use the

Hartman-Grobman Theorem, which states that:

If the Jacobian of the system 𝑋̇𝑋(𝑡𝑡) = 𝑓𝑓(𝑋𝑋) possess no pure complex or zero eigenvalues,

and the system can be locally represented by a linear approximation (Guckenheimer-

Holmes).

One method could be utilising a linear system to design the control law for the non-linear

one. For example, for a system:

 𝑋̇𝑋(𝑡𝑡) = �
𝑥̇𝑥(𝑡𝑡)
𝑦̇𝑦(𝑡𝑡)
𝑧̇𝑧(𝑡𝑡)

� = �
𝑐𝑐𝑐𝑐𝑐𝑐(𝜗𝜗) ∙ 𝑢𝑢1
𝑠𝑠𝑠𝑠𝑠𝑠(𝜗𝜗) ∙ 𝑢𝑢1

𝑢𝑢2
� , 𝑈𝑈(𝑡𝑡) = [𝑢𝑢1,𝑢𝑢2]

(Equation 54)

Could be approximated to a new System, such as:

𝑋𝑋�̇(𝑡𝑡) = 𝐴𝐴 ∙ 𝑋𝑋�(𝑡𝑡) = 𝐵𝐵 ∙ 𝑈𝑈�(𝑡𝑡)
(Equation 55)

The new system should guarantee the necessary accuracy for the correct “System

Working”, the accuracy is inversely proportional to the value “ε”, and it is defined as:
𝑋𝑋(𝑡𝑡) −𝑋𝑋�(𝑡𝑡) ≤ 𝜀𝜀

(Equation 56)

The problem could be to understand if the vector fields are close enough to ensure the

right trajectory bound. Practically:

 𝑋𝑋(𝑡𝑡) = 𝑓𝑓(𝑋𝑋,𝑈𝑈)
𝐹𝐹(𝑋𝑋,𝑈𝑈) − (𝐴𝐴 ∙ 𝑋𝑋 + 𝐵𝐵 ∙ 𝑈𝑈) ≤ 𝜀𝜀 ⇔ 𝑋𝑋(𝑡𝑡) −𝑋𝑋�(𝑡𝑡) ≤ 𝜀𝜀

(Equation 57)

231

The problem is that with the traditional Jacobian approximation, there is no general rule

that can determine an accurate region of validity. An approach could be to use only the vector

field information (not considering the trajectories).
𝑋𝑋(𝑡𝑡) = 𝑓𝑓(𝑋𝑋,𝑈𝑈)

(Equation 58)

𝐹𝐹(𝑋𝑋,𝑈𝑈) − (𝐴𝐴 ∙ 𝑋𝑋 + 𝐵𝐵 ∙ 𝑈𝑈) ≤ 𝜀𝜀
(Equation 59)

Then could be used the Theorem of Taylor, which says: given a function of several

variables 𝑓𝑓(𝑋𝑋,𝑈𝑈) the polynomial vector field that better approximate 𝑓𝑓 in a set point

(𝑋𝑋∗,𝑈𝑈∗) is given by:

𝑓𝑓(𝑋𝑋∗,𝑈𝑈∗) +
𝜕𝜕𝜕𝜕(𝑋𝑋,𝑈𝑈)

𝜕𝜕𝜕𝜕
∙ (𝑋𝑋 − 𝑋𝑋∗) +

𝜕𝜕𝜕𝜕(𝑋𝑋,𝑈𝑈)
𝜕𝜕𝜕𝜕

∙ (𝑈𝑈 − 𝑈𝑈∗) + 𝜊𝜊(2)
(Equation 60)

In a general linear system, there are some points of particular interest, called equilibrium

points; where for equilibrium point is intended:

𝑋̇𝑋(𝑡𝑡) = 0 = 𝑓𝑓(𝑋𝑋∗,𝑈𝑈∗)
(Equation 61)

The equilibrium point research is vital to define a correct approximation function;

indeed, at the equilibrium point, the states and controls reach the reference. In the specific

are researched the matrices:

𝐴𝐴 =
𝜕𝜕𝜕𝜕(𝑋𝑋,𝑈𝑈)

𝜕𝜕𝜕𝜕
�
𝑋𝑋∗,𝑈𝑈∗

(Equation 62)

𝐵𝐵 =
𝜕𝜕𝜕𝜕(𝑋𝑋,𝑈𝑈)

𝜕𝜕𝜕𝜕
�
𝑋𝑋∗,𝑈𝑈∗

(Equation 63)

It is expected that the matrix 𝐴𝐴 is null and to obtain valuable matrices for the research of

the equilibrium points, could be necessary to operate a change of coordinate, as could be new

variables as 𝑒𝑒(𝑡𝑡), 𝑈𝑈�(𝑡𝑡)

and 𝑈𝑈�𝑟𝑟(𝑡𝑡) . Thus the new system could be written as:

𝑒̇𝑒(𝑡𝑡) = 𝐴𝐴 ∙ 𝑒𝑒(𝑡𝑡) + 𝐵𝐵 ∙ 𝑈𝑈�(𝑡𝑡)
(Equation 64)

 Then the following matrices are defined:

232

𝐴𝐴∗ =
𝜕𝜕𝑓𝑓(𝑒𝑒,𝑈𝑈�)

𝜕𝜕𝑒𝑒
�
𝑒𝑒∗=0,𝑈𝑈�∗=0

(Equation 65)

𝐵𝐵∗ =
𝜕𝜕𝑓𝑓(𝑒𝑒,𝑈𝑈�)
𝜕𝜕𝑈𝑈�

�
𝑒𝑒∗=0,𝑈𝑈�∗=0

(Equation 66)

Once it is defined, an LTI system could utilise the pole placement (for instance):
𝑈𝑈� = 𝐾𝐾 ∙ 𝑒𝑒

(Equation 67)

Thus it is possible to rewrite the system, according to the relation:
𝑒̇𝑒(𝑡𝑡) = [𝐴𝐴∗ + 𝐵𝐵∗ ∙ 𝐾𝐾] ∙ 𝑒𝑒(𝑡𝑡)

(Equation 68)

Then it is possible to define the Matrix 𝐴𝐴𝑙𝑙𝑙𝑙 = [𝐴𝐴∗ + 𝐵𝐵∗ ∙ 𝐾𝐾] and recall that in order to

find 𝐾𝐾, in that way it is necessary to calculate the eigenvalues of 𝐴𝐴𝑙𝑙𝑙𝑙. To anticipate the

existence of the matrix 𝐾𝐾, could be used the “Kalman Theorem” which states that: the pole-

placement problem (find matrix 𝐾𝐾) possesses a solution if the matrix “𝐶𝐶” has full-rank.

Practically the Theorem states that:
𝑋𝑋(𝑡𝑡) = (𝐴𝐴 + 𝐵𝐵 ∙ 𝐾𝐾) ∙ 𝑋𝑋 ⇔ 𝐶𝐶 = [𝐵𝐵 𝐴𝐴 ∙ 𝐵𝐵 𝐴𝐴2 ∙ 𝐵𝐵 𝐴𝐴3 ∙ 𝐵𝐵 ⋯ 𝐴𝐴𝑛𝑛−1 ∙ 𝐵𝐵] , 𝐴𝐴 ∈ §𝑛𝑛 𝑥𝑥 𝑛𝑛

(Equation 69)

Which matrix 𝐶𝐶 is called the controllability matrix. “Matlab” allows tools to check

controllability, and a way to realize that could be to lose rank through taking both reference

controls null.

C. Lyapunov Theorem

Supposing an autonomous non-linear dynamic system: 𝑥̇𝑥 = 𝑓𝑓�𝑥𝑥(𝑡𝑡)� and, 𝑥𝑥(0) = 𝑥𝑥0.

Where, 𝑥𝑥(𝑡𝑡) ∈ 𝔻𝔻 ⊆ ℝ𝑛𝑛 denotes the system state vector, 𝔻𝔻 an open set containing the origin

and, 𝑓𝑓:𝔻𝔻 → ℝ𝑛𝑛 continuous on 𝔻𝔻.

Presuming that 𝑓𝑓 has an equilibrium at 𝑥𝑥𝑒𝑒 so that 𝑓𝑓(𝑥𝑥𝑒𝑒) = 0, then this equilibrium is

alleged to be Lyapunov stable, if, for every 𝜀𝜀 > 0, there exists a 𝛿𝛿 = 𝛿𝛿(𝜀𝜀) > 0, such that,

if ‖𝑥𝑥(0) − 𝑥𝑥𝑒𝑒‖ < 𝛿𝛿 for every 𝑡𝑡 > 0, will result ‖𝑥𝑥(𝑡𝑡) − 𝑥𝑥𝑒𝑒‖ < 𝜀𝜀.

The equilibrium of the above system is said to be asymptotically stable if it is Lyapunov

stable and if there exists, 𝛿𝛿 > 0 such that if, ‖𝑥𝑥(0) − 𝑥𝑥𝑒𝑒‖ < 𝛿𝛿 , then lim
𝑡𝑡→∞

‖𝑥𝑥(𝑡𝑡) − 𝑥𝑥𝑒𝑒‖ = 0.

http://en.wikipedia.org/wiki/State_space_representation

233

The equilibrium of the above system is said to be exponentially stable if it is

asymptotically stable and if there exists, 𝛼𝛼,𝛽𝛽, 𝛿𝛿 > 0 such that if, ‖𝑥𝑥(0) − 𝑥𝑥𝑒𝑒‖ < 𝛿𝛿,

then, ‖𝑥𝑥(0) − 𝑥𝑥𝑒𝑒‖ < 𝛼𝛼 ∙ ‖𝑥𝑥(0) − 𝑥𝑥𝑒𝑒‖ ∙ 𝑒𝑒−𝛽𝛽𝛽𝛽 for 𝑡𝑡 ≥ 0.

 Practically, the meanings of the above terms are the following: Lyapunov stability of

at an equilibrium means that solutions starting “close enough” to the equilibrium (within a

distance 𝛿𝛿 from it) remain “close enough” forever (within a distance 𝜀𝜀 from it)187.

Asymptotic stability means that solutions that start close enough, not only remain close

enough but also eventually converge to the equilibrium. Exponential stability means that

solutions not only converge but converge faster than or at least as fast as a mainly known

rate 𝛼𝛼 ∙ ‖𝑥𝑥(0) − 𝑥𝑥𝑒𝑒‖ ∙ 𝑒𝑒−𝛽𝛽𝛽𝛽 .

Designates 𝑦𝑦(𝑡𝑡) the system output, the consequent trajectory 𝑥𝑥 is (locally) attractive if

‖𝑦𝑦(𝑡𝑡) − 𝑥𝑥(𝑡𝑡)‖ → 0 for 𝑡𝑡 → ∞ for all trajectories that start close enough, and globally

attractive if this property holds for all trajectories.

That is, if 𝑥𝑥 belongs to the interior of its stable manifold, it is asymptotically stable if it

is both attractive and stable.

D. Lyapunov Stability Technique

The first step to describe the Lyapunov Stability Techniques is to describe the Lyapunov

Functions and Theorems. The first Lyapunov function is called “Weak Lyapunov Function”,

and the function 𝑉𝑉(𝑋𝑋) is addressable as a “Weak Lyapunov Function” only if:
𝑉𝑉(0) = 0

(Equation 70)

𝑉𝑉(𝑋𝑋) > 0,∀𝑋𝑋 ≠ 0
(Equation 71)

𝑉𝑉(𝑋𝑋) ∈ §1 (𝐵𝐵𝑟𝑟)
(Equation 72)

𝜕𝜕𝜕𝜕(𝑋𝑋)
𝜕𝜕𝜕𝜕

 ∙ 𝑓𝑓(𝑋𝑋) ≤ 0, ∀ 𝑋𝑋 ∈ (𝐵𝐵𝑟𝑟)
(Equation 73)

187 It must be true for any 𝜀𝜀 chosen.

http://en.wikipedia.org/wiki/State_space_representation
http://en.wikipedia.org/wiki/Stable_manifold

234

Moreover, the equilibrium point is zero where 𝐵𝐵𝑟𝑟 is the “ball” of radius 𝑟𝑟, described

according to the following relation:
𝐵𝐵𝑟𝑟 = {𝑋𝑋 ∶ ‖𝑋𝑋‖ ≤ 𝑟𝑟}

(Equation 74)

To be valid the last statements, the function 𝑉𝑉(𝑋𝑋) should be semi-definite negative along

trajectories of the system 𝑋̇𝑋(𝑡𝑡) = 𝑓𝑓(𝑋𝑋), it means that:

𝑉̇𝑉(𝑡𝑡) ≤ 0
(Equation 75)

Similarly, it is possible to define the “Lyapunov Function”, which differs from the

“Weak Lyapunov Function” described by the system of Equations built with the Equations

70, 71, 72 and 73. The “Lyapunov Function” differs by a strict inequality of “Equation 73”,

which is replaced with “Equation 76”.
𝜕𝜕𝜕𝜕(𝑋𝑋)
𝜕𝜕𝜕𝜕

 ∙ 𝑓𝑓(𝑋𝑋) < 0, ∀ 𝑋𝑋 ∈ (𝐵𝐵𝑟𝑟)
(Equation 76)

Once that are defined the Lyapunov functions, it is possible to analyse the Lyapunov

theorems. The “First Lyapunov Theorem” says that: if exists a Lyapunov function smooth

and weak, then the system is “Lyapunov Stable”. It means that finding 𝑋̇𝑋(𝑡𝑡) = 𝑓𝑓(𝑋𝑋), it

ensures stability but not asymptotic stability. In order to guarantee the asymptotic stability, it

is necessary to use the “Second Theorem of Lyapunov, which states that: if there exists a

“Lyapunov Function” smooth, then the system 𝑋̇𝑋(𝑡𝑡) = 𝑓𝑓(𝑋𝑋) is asymptotically stable. This

powerful theorem does not indicate how to obtain the function 𝑉𝑉(𝑋𝑋); therefore, a system

might be stable without the “Lyapunov Function”. In the study case for the instance:

�𝑥̇𝑥1
(𝑡𝑡) = −𝑥𝑥1(𝑡𝑡) − 𝑥𝑥1(𝑡𝑡)𝑥𝑥2(𝑡𝑡)2

𝑥̇𝑥2(𝑡𝑡) = −𝑥𝑥2(𝑡𝑡) − 𝑥𝑥2(𝑡𝑡)𝑥𝑥1(𝑡𝑡)2

(Equation 77)

If the origin is an equilibrium point, 𝑥𝑥1∗ = 0 and 𝑥𝑥2∗ = 0, it will be possible to state that:

�0 = −𝑥𝑥1∗ − 𝑥𝑥1∗ ∙ 𝑥𝑥2∗2

0 = −𝑥𝑥2∗ − 𝑥𝑥2∗ ∙ 𝑥𝑥1∗2

(Equation 78)

Then be considered the “Lyapunov Function” 𝑉𝑉(𝑥𝑥1, 𝑥𝑥2) that should satisfy the relations

of the “Lyapunov Function” (Equations 70, 71, 72 and 76). It means that:
𝜕𝜕𝜕𝜕(𝑋𝑋)
𝜕𝜕𝜕𝜕

∙ 𝑓𝑓(𝑋𝑋) = 2𝑥𝑥1(−𝑥𝑥1(𝑡𝑡) − 𝑥𝑥1(𝑡𝑡) ∙ 𝑥𝑥2(𝑡𝑡)2) + 2𝑥𝑥2(−𝑥𝑥2(𝑡𝑡) − 𝑥𝑥2(𝑡𝑡) ∙ 𝑥𝑥1(𝑡𝑡)2)
(Equation 79)

235

Thus it will be possible to write:
𝜕𝜕𝜕𝜕(𝑋𝑋)
𝜕𝜕𝜕𝜕

∙ 𝑓𝑓(𝑋𝑋) = −2(𝑥𝑥1(𝑡𝑡)2 + 𝑥𝑥2(𝑡𝑡)2 − 𝑥𝑥1(𝑡𝑡)2 ∙ 𝑥𝑥2(𝑡𝑡)2) < 0,∀ (𝑥𝑥1,𝑥𝑥2) ≠ (0, 0)
(Equation 80)

If the last relation is verified, it will affirm that the System is “asymptotically stable”. A

helpful way to produce the “Lyapunov Function” could be to redefine the system, through

mathematical artifices, in order to redesign the system in a way that could fit with the

definition of the “Lyapunov Function” and “Lyapunov Theorem”.

E. CPWL Function introduction

A piecewise linear function is a function composed of some number of linear segments

defined over an equal number of intervals, usually of equal size. The process-model output

using the CPWL approximation is defined as:

𝑦𝑦𝑚𝑚𝑚𝑚 ≤ ℎ�𝑚𝑚𝑚𝑚�𝜗𝜗(𝑡𝑡)� = Θ𝑇𝑇Λ�𝜗𝜗(𝑡𝑡)�
(Equation 81)

Where, 𝛩𝛩𝑇𝑇 ∈ ℜ 𝜎𝜎+1 and 𝛬𝛬 ∈ ℜ 𝜎𝜎+1.

Using the CPWL approximation, any non-linear function “h” can be uniquely

represented by the segmentation of its input domain. Let consider the segmentation into 𝜎𝜎

segments by the parameters 𝛼𝛼𝑖𝑖 , with 𝛼𝛼0 ≤ 𝛼𝛼1 ≤ . . .≤ 𝛼𝛼𝜎𝜎. Additionally, the elements of the

primary function can be expressed as:

𝛬𝛬 =

⎣
⎢
⎢
⎢
⎢
⎡

1
1
2
∙ (𝜗𝜗 − 𝛼𝛼0 + |𝜗𝜗 − 𝛼𝛼0|)

⋮
1
2
∙ (𝜗𝜗 − 𝛼𝛼𝜎𝜎−1 + |𝜗𝜗 − 𝛼𝛼𝜎𝜎−1|)⎦

⎥
⎥
⎥
⎥
⎤

(Equation 82)

At the same time, the parameters’ vector is : 𝛩𝛩𝑇𝑇 = [𝜗𝜗0,𝜗𝜗1, . . . ,𝜗𝜗𝜎𝜎]. Clustering

algorithms choose the segments’ locations, and the vector of the parameters can be calculated

using standard least-square algorithms.

F. Fuzzy logic Introduction

The Author of the fuzzy logic was usual to describe his invention with the phrase:

<<…computing with words…>>. It was easy to understand, by that definition of fuzzy logic,

that this kind of logic is exciting and innovative because it uses qualitative inferences in the

design of artificial systems (control or decision support) when the mathematical model is

236

unknown or does not exist or is too complex to run appropriately in real-time. The main target

of fuzzy logic was to find solutions to problems, even complex, through the use of empirical

and qualitative rules that affect a world of “grey” or “fuzzy” (hence the term fuzzy logic)

actions, instead of the logic “white” or “black”. In practice, the traditional logic is

characterised by a “bivalent logic”, which associates with each element a value that can be

“0” or “1”, so that indicates that belonging to a given set is true or false. In contrast, the fuzzy

logic is “polyvalent”, i.e. the degree of membership (Membership) MI (X) of an element “X”

to a fuzzy set “I” can assume any value in the range between 0 and 1. “Membership Function”

is defined as the relation that represents this kind of memberships. Those functions are

designed upon expert’s recommendations or, in the most elementary case, using accessible

empirical functions dictated by common sense. These functions could take many forms, but

for less complicated cases are preferable to use only triangles and trapezoids. [43]

Usually, the design of fuzzy algorithms is achieved in three steps:

a) acknowledgement of “Membership Input Functions” (“MIF” - fuzzification);

b) acknowledgement of the “FIS”;

c) acknowledgement of “Membership Output Functions” (“MOF” -

defuzzification).

Fuzzy Logic Membership Input Functions

The “Membership Input Functions” (MIFs) are most commonly associated with physical

and sometimes non-physical variables and therefore are not strictly “fuzzified values”, but

almost undoubtedly, numerical values can be referred to as “crisp parameters”. It is necessary

to convert each numeric value to the corresponding input fuzzy sets, or in other words,

convert to an input fuzzification.

By an input with a generic value 𝑥𝑥0 and a fuzzy set 𝐴𝐴, there is an establishment of a

degree of truth of 𝐴𝐴 not exceeding 𝑀𝑀𝐴𝐴(𝑥𝑥0) and with a sub-set 𝐴𝐴′ of 𝐴𝐴 having as a maximum

ordinate 𝑀𝑀𝐴𝐴(𝑥𝑥0); as illustrated in [43].

𝑀𝑀𝐴𝐴′(𝑥𝑥) = 𝑀𝑀𝑀𝑀𝑀𝑀�𝑀𝑀𝐴𝐴(𝑥𝑥0),𝑀𝑀𝐴𝐴(𝑥𝑥)�
(Equation 83)

What this means is that if the membership function input is a triangle 𝑀𝑀𝐴𝐴(𝑥𝑥0) , then

𝑀𝑀𝐴𝐴′(𝑥𝑥) will be a trapezoid, and this trapezoid will have a maximum value 𝑀𝑀𝑀𝑀𝑀𝑀�𝑀𝑀𝐴𝐴(𝑥𝑥0)�

which is valid if 0 ≤ 𝑀𝑀𝑀𝑀𝑀𝑀�𝑀𝑀𝐴𝐴(𝑥𝑥0)� ≤ 1.

237

Figure F.1: General purpose fuzzy controller flow chart. [43]

In a standard process, the received crisp values will be the generic values and the input

membership functions 𝐴𝐴 that return fuzzy sets triggered by those values 𝐴𝐴′. In practice, rather

than activated sets 𝐴𝐴′ it is preferable to use their maximum degree of truth 𝑀𝑀𝑀𝑀𝑀𝑀�𝑀𝑀𝐴𝐴′(𝑥𝑥0)�,

which incidentally coincides with 𝑀𝑀𝑀𝑀𝑀𝑀�𝑀𝑀𝐴𝐴(𝑥𝑥0)�, with the last result being defined as the

fuzzy input. [43]

Fuzzy Hedges

In front of a fully defined fuzzy input set, those values can be computed within a block

of assessment rules where each combination of fuzzy input activates a particular rule. To

every single rule corresponds a particular degree of activation (weight). This value could be

equal to the minimum degree of truth of the fuzzy input sets that define the combination.

What illustrated describes a truth table, where to each combination of the fuzzy sets is

associated with a unique weight value, which in turn activates a fuzzy set for each type of

output with a certain degree of truth. What described is called “Fuzzy Inference”, precisely

defined as the process that receives the fuzzy controller’s inputs and, through the use of the

“Fuzzy Rules”, returns the fuzzy output sets inferred [43].

In the fuzzy logic environment design tool Xfuzzy 25th (V. 3.5), the “Fuzzy Inference”

(FIS) is described by a, or by an assembly of many, “Rulebase”.

Fuzzy Output Defuzzification

The union of all output sets defines the “Membership Output Functions” (MOFs). The

“Fuzzy Output Block” (FOB) elaborates the output data of the “Assessment Rules Block”

(ARB), according to a specific method. Whatever is the method used, in the case of a set

238

associated with more degrees of truth, by definition, the target is to maximise the values.

Generally, most popular approaches used are: the “composition method”, where the fuzzy

output sets obtained are the subject of a logical “OR operation”, and the “sum composition

method”, where the fuzzy output sets obtained are, simply, added together.

There is a final step required to get a usable output function, and this is called

defuzzification. In this step, a determination is made in establishing the numerical value most

representative of the whole final output through the use of a specific method. The most

common methods are:

• the “Centroid method” (COG) where the defuzzification takes as output value

the centroid abscissa of the solid figure bounded by all fuzzy output;

• the “MAX method” where the defuzzified output value corresponds with the

maximum of the output;

• the “Medium of Maxima method” (MOM), where the defuzzified output value

is the average of the values corresponding to the maximum of the output.

[43]

G. Fuzzy Logic applications in smart electrical systems

Nowadays, there are ceaseless applications of fuzzy logic in endless fields because this

control approach is giving excellent feedbacks, especially for applications on which the

process is not available or not modelled (in part or in full), or it is affected by disturbs due to

external variables that can influence the model. In fact, in order to achieve an accurate,

reliable and stable control for a complex system, the mathematical model 𝑃𝑃(𝑠𝑠) that describes

the physical system process could be not appropriate; because it is based on a specific set of

hypothesis, and, usually, it is calculated with approximation under specific environmental

conditions. It means that should be used for the control design the process:

𝑃𝑃𝐷𝐷(𝑠𝑠) = �𝑃𝑃
~

(𝑠𝑠) = 𝑃𝑃(𝑠𝑠)�1 + 𝛱𝛱(𝑠𝑠)∆(𝑆𝑆)�, �∆(𝑆𝑆)�∞ ≤ 1�
 (Equation 84)

 where 𝛱𝛱(𝑠𝑠) is a weight function and ∆(𝑆𝑆) is an adaptive function with a resonance peak

≤ 1; both functions could have only negative poles and zeros.

It is easy to understand how it could be useful to use fuzzy logic when 1 + 𝛱𝛱(𝑠𝑠)∆(𝑆𝑆) is

not very small. Therefore, the control theory and stability theory are based on the LTI

hypothesis. Discussed particulars result in a primary advantage of the fuzzy logic control

method, making the fuzzy logic a competitive choice when the “Lyapunov Theorem” results

239

too complicated to comply, or there is not enough information available for the

implementation of the “Lyapunov Stability Technique”. In this case, fuzzy logic is very

useful for values of 𝜀𝜀 that are not extremely small.

Some interesting examples of fuzzy logic applications are:

• fuzzy control design for gas absorber system;

• large scale fuzzy controller (Appliances);

• PFC;

• trending and prediction;

• biomedical applications;

• ground vehicle engineering;

• smart modelled fuzzy logic “Maximum Power Point Tracker” (MPPT) for

photovoltaic applications;

• application of fuzzy logic in smart distributed power systems or micro-grids with

a high penetration of renewable energy.

H. Neuro-Fuzzy introduction

Artificial neural systems’ interpretation may concur to simplified mathematical models

of brain-like systems, functioning as parallel distributed computing networks. Nevertheless,

creatively to traditional computers, which are programmed to perform a specific task, most

neural networks must be prepared or trained. They can acquire new associations, new

functional boundaries and new patterns. Although computers outclass both biological and

artificial neural systems for tasks based on well-defined and fast arithmetic operations,

artificial neural systems express the promising new generation of information processing

networks. [48]

The modern techniques of artificial intelligence have potential applications in almost all

fields of human knowledge. Despite a great emphasis given to the fundamental sciences,

perhaps the most noticeable explanation of the success of these techniques is in the

engineering field. Combining the two techniques, neural networks and fuzzy logic, is often

preferred for solving engineering problems where the traditional techniques do not provide a

comfortable and accurate solution. The neuro-fuzzy term was born by the fusing of these two

techniques. As each researcher combines these two tools differently, some confusion occurs

on the terminology meaning. Still, there is no absolute consensus, but in general, the neuro-

fuzzy term means a type of system characterised for a similar structure of a fuzzy controller

240

where the fuzzy sets and rules are adjusted using neural networks iteratively tuning

techniques with data vectors (input and output system data). The before-mentioned systems

show two well-defined behaviours. In the first phase, called the learning phase, it behaves

like neural networks that learn their internal parameters offline. Later, in the execution phase,

it behaves like a fuzzy logic system. Separately, each of these techniques possesses

advantages and disadvantages that, when combined, their cooperage provides better results

than the ones achieved using each isolated technique.

After that, the fuzzy systems become successful in industrial applications; the common

perception was of a complicated development for designing a fuzzy system with good

performance. The problem of finding membership functions and appropriate rules is

frequently a tiring process of attempt and error. This lead to the idea of applying learning

algorithms to fuzzy systems. The neural networks that have efficient learning algorithms had

been presented as an alternative to automate or to support the development of tuning fuzzy

systems. The earliest significant studies of the neuro-fuzzy systems date back to the

beginning of the 90’s decade, and the most significant examples are Jang, Lin and Lee in

1991, Berenji in 1992 and Nauck from 1993. The majority of the first applications were in

process control. Gradually, its application spread for all the areas of human knowledge, and

in particular to data analysis, data classification, imperfections detection and support to

decision-making. Neural networks and fuzzy systems can be combined to join their

advantages and to cure their defectiveness. Neural networks introduce its computational

characteristics of learning in the fuzzy systems and receive from them the interpretation and

clarity of systems representation. The capacities of the neural networks compensate for the

disadvantages of the fuzzy systems. These techniques are complementary, making practical

concurrent use. [49]

Definition of Neuro-Fuzzy modules

Fuzzy logic controllers’ tuning methods are an evolution of fuzzy logic. The neuro-fuzzy

controller uses the neural network learning techniques to tune the membership functions

while keeping the semantics of the fuzzy logic controller intact. Neural networks offer the

possibility of solving the problem of tuning. Although a neural network can learn from the

given data, the trained neural network resembles a black box. Neither can it be possible to

extract structural information from the trained neural network, nor can it integrate certain

information into the neural network to simplify the learning procedure.

241

Contrariwise, a fuzzy logic controller, by assumption, has to work with structured

knowledge in the form of rules, and nearly everything in the fuzzy system remains highly

transparent and easily interpretable. However, there exists no formal framework for the

choice of various design parameters and optimisation of these parameters generally is done

by trial and error. [48 and 50]

A combination of neural networks and fuzzy logic offers the possibility of solving tuning

problems and design difficulties of fuzzy logic. The resulting network will be more

transparent and observable in the form of fuzzy logic control rules or semantics. This

approach combines the well-established advantages of both methods and avoids the

drawbacks of both. [48]

In general, all the combinations of techniques based on neural networks and fuzzy logic

can be called neuro-fuzzy systems. The different combinations of these techniques could be

classified, as illustrated by [51], in the following classes:

• Cooperative Neuro-Fuzzy System, where there is a pre-processing phase where

the neural networks mechanisms of learning determine some sub-blocks of the

fuzzy system; 188

• Hybrid Neuro-Fuzzy System, in this category, a neural network is used to learn

a wide range of parameters of the fuzzy system (parameters of the fuzzy sets,

fuzzy rules and weights of the rules); 189

• Concurrent Neuro-Fuzzy System, where the neural network and the fuzzy

system work continuously together (in general, the neural networks pre-

processes the inputs, or post-processes the outputs, of the fuzzy system).

Definition of Genetic Algorithm

“Genetic Algorithms” (GA) were invented to mimic some of the processes observed in

natural evolution. Many people, biologists included, are astonished that life at the complexity

level that we observe could have evolved in the relatively short time suggested by the fossil

188 For instance, the fuzzy sets and (or) fuzzy rules (fuzzy associative memories [52] or the use of clustering algorithms to determine
the rules and fuzzy sets position [53]). Networks pre-process the inputs (or post-processes the outputs) of the fuzzy system. In
effect, after that, the fuzzy sub-blocks are calculated, the neural network learning methods are taken away, executing only the fuzzy
system. [50]
189 The majority of the researchers uses the neuro-fuzzy term to refer only hybrid neuro-fuzzy system. After that, the fuzzy sub-
blocks are calculated the neural network learning methods are taken away, executing only the fuzzy system. [50]

242

record. The idea with GA is to use this power of evolution to solve optimisation problems.

The father of the original GA was John Holland, who invented it in the early 1970s. [54]

The definition of “Genetic Algorithm” is:

 <<… a method for solving both constrained and unconstrained optimisation problems

based on a natural selection process that mimics biological evolution. The algorithm

repeatedly modifies a population of individual solutions. At each step, the genetic algorithm

randomly selects individuals from the current population and uses them as parents to produce

the children for the next generation. Over successive generations, the population “evolves”

toward an optimal solution…>.

Indeed, the aim is to achieve an adaptive heuristic search algorithm based on the

evolutionary ideas of natural selection and genetics (they represent an intelligent exploitation

of a random search used to solve optimisation problems). Although randomised, GAs are by

no means random; instead, they employ authentic information to instruct the search into the

area of better performance within the search space. Conventional techniques of the GAs aim

to replicate natural systems processes necessary for the evolution, especially those that follow

the principles first laid down by Charles Darwin of “survival of the fittest”. Considering the

nature, competition among individuals for scarce resources results in the fittest individuals

dominating over the weaker ones.

I. TYPES OF NEURO-FUZZY SYSTEMS

Cooperative Neuro-Fuzzy Systems

A cooperative system employs the neural networks only in an initial phase. In this case,

the neural network regulates the fuzzy system’s sub-blocks using training data; consequently,

the neural networks are removed, and only the fuzzy system is executed. “Figure I.1”

illustrates an example of a cooperative neuro-fuzzy system.

Figure I.1: cooperative system. [52]

243

Concurrent Neuro-Fuzzy Systems

A concurrent system, by definition, is not a neuro-fuzzy system in strict terms. Because

the neural network works in symbiosis with the fuzzy system, it implies that the inputs

inflowing the fuzzy system are pre-processed, and then the neural network processes the

concurrent system’s outputs (or in a reverse way). “Figure I.2” shows a “concurrent neuro-

fuzzy system” architecture’s example.

Figure I.2: Concurrent system. [52]

Hybrid Neuro-Fuzzy Systems

In Nauck [57] definition: “A hybrid neuro-fuzzy system is a fuzzy system that uses a

learning algorithm based on gradients or inspired by the neural networks theory (heuristical

learning strategies) to determine its parameters (fuzzy sets and fuzzy rules) through the

pattern’s processing (input and output)”.

It is possible to identify a neuro-fuzzy system as a set of fuzzy rules. This system can be

total created from input-output data or initialised with human knowledge (the same principles

of the fuzzy rules). The resultant system by fusing fuzzy systems and neural networks has as

advantages of learning through patterns and the straightforward interpretation of its

functionality.

There are several distinctive approaches capable of developing hybrid neuro-fuzzy

systems; therefore, being a recent research subject, each researcher has defined its particular

models. These models are similar, but they present fundamental differences.

Many types of neuro-fuzzy systems are represented by neural networks that implement

logical functions. It is not necessary for the application of a learning algorithm in a fuzzy

system; however, the representation through a neural network is more convenient because it

allows us to visualize the flow of data through the system and the error signals that are used

to update its parameters. The additional benefit is to allow the comparison of the different

244

models and visualize their structural differences. There are several neuro-fuzzy architectures,

including:

• Fuzzy Adaptive Learning Control Network

o (FALCON) C. T. Lin and C. S. Lee [58]

• Adaptive Network-based Fuzzy Inference System

o (ANFIS) R. R. Jang [59]

• Generalized Approximate Reasoning based Intelligence Control

o (GARIC) H. Berenji [60]

• Neuronal Fuzzy Controller

o (NEFCON) D. Nauck & Kruse [61]

• Fuzzy Inference and Neural Network in Fuzzy Inference Software

o (FINEST) Tano, Oyama and Arnould [62]

• Fuzzy Net

o (FUN) S. Sulzberger, N. Tschichold and S. Vestli [63]

• Self Constructing Neural Fuzzy Inference Network

o (SONFIN) Juang and Lin [64]

• Fuzzy Neural Network

o (NFN) Figueiredo and Gomide [65]

• Dynamic/Evolving Fuzzy Neural Network

o (EFuNN and dmEFuNN) Kasabov and Song [66]

J. ARTIFICIAL NEURAL SYSTEMS

Artificial neural systems, or neural networks, are (physically) identified as cellular

systems which can acquire, store, and utilize experimental knowledge. The knowledge is in

the form of stable states or mappings embedded in networks that, in response to the

presentation of cues [55], is recallable.

245

Figure J.1: Multi-layer feed-forward NN.

The primary processing elements of neural networks are called artificial neurons or

purely neurons or nodes. Each processing unit has a unique activity level (representing the

state of polarization of a neuron), an output value (representing the firing rate of the neuron),

a set of input connections (representing synapses on the cell and its dendrite), a bias value

(representing an internal resting level of the neuron), and a set of output connections

(representing a neuron’s axonal projections). Each of these unit’s characters is

mathematically defined (by real numbers); thus, each connection has a unique intrinsic

weight (synaptic strength), which determines the effect of the incoming input on the unit’s

activation level. The weights may be positive (excitatory) or negative (inhibitory).

Figure J.2: Processing element with a single output connection. [56]

The signal flow from neuron’s inputs, 𝑥𝑥𝑗𝑗, is considered unidirectional as indicated by

arrows, as it is the neuron’s output signal flow. The following relationship gives the neuron

output signal:

246

𝜊𝜊 = 𝑓𝑓(< 𝑤𝑤, 𝑥𝑥 >) = 𝑓𝑓(𝑤𝑤𝑇𝑇𝑥𝑥) = 𝑓𝑓 ��𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗

𝑛𝑛

𝑗𝑗=1

�

(Equation 85)

Where the weight vector is:
𝑤𝑤 = (𝑤𝑤1,𝑤𝑤2, … ,𝑤𝑤𝑛𝑛) ∈ ℝ𝑛𝑛

(Equation 86)

The function 𝑓𝑓(𝑤𝑤𝑇𝑇𝑥𝑥) is often referred to as an activation (or transfer) function. Its

domain is the set of activation values, net, of the neuron model, we thus often use this function

as 𝑓𝑓(𝑛𝑛𝑛𝑛𝑛𝑛). The variable 𝑛𝑛𝑛𝑛𝑛𝑛 is a scalar product of the weight and input vectors, according to

“Equation 87”.
𝑛𝑛𝑛𝑛𝑛𝑛 =< 𝑤𝑤, 𝑥𝑥 >= 𝑤𝑤𝑇𝑇𝑥𝑥 = 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 + ⋯ + 𝑤𝑤𝑛𝑛𝑥𝑥𝑛𝑛

(Equation 87)

In the simplest case, the output value 𝜊𝜊 is computed as:

𝜊𝜊 = 𝑓𝑓(𝑛𝑛𝑛𝑛𝑛𝑛) = � 1 𝑖𝑖𝑖𝑖 𝑤𝑤𝑇𝑇𝑥𝑥 ≥ 𝜃𝜃
 0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

(Equation 88)

where 𝜃𝜃 is called threshold-level, and this type of node is called the linear threshold unit.

[56]

K. Automotive trend interpretation for EV, PHEV and HEV

At the 2019 Geneva auto show, Gerald Killmann, Toyota’s vice president of research

and development for Europe, enlightened why the automaker has not embraced EVs yet:

battery production capacity. Now, Toyota is not strictly limited in its battery production,

although its capacity is significantly lower than Tesla’s. It is how Toyota is allocating that

production that matters. According to Killmann, Toyota can produce enough batteries for

28,000 electric vehicles each year or 1.5 million HEVs and PHEVs.

For Toyota, selling 1.5 million HEVs and PHEVs reduces carbon emissions by a third

more than selling 28,000 EVs. It allows the company to generate a more positive

environmental impact by selling many times more HEVs cars than it would be selling far

247

fewer EVs (consequently far more conventional ICE vehicles) while also providing its

customers more practical vehicles190 at more affordable prices.

The previously enunciated statement does not go more in-depth in mathematical models

(for example, details around those carbon emissions calculations). It is difficult to say

whether the logic aims to explain away Toyota’s irrelevant EV offerings or if it has been

Toyota’s vision all along to take a pragmatic approach to reduce new-vehicle carbon

emissions globally. Nevertheless, results in a significant explanation for understanding the

strategy behind distributing Toyota’s battery capacity among a more significant number of

HEVs (and PHEVs) vehicles than a smaller number of full-electric models. Although Toyota

does not target the EVs market now, it does not mean Toyota cannot mass produce EVs. It is

merely taking its usual careful, calculated approach to a long game, and hybrids are a vital

bridge to that future.

It is essential to highlight that many other automotive OEMs privilege other business

models and their interpretations are valid, although they are diverging. The Author’s decision

to propose Toyota’s vision has its roots in the Author’s personal beliefs, aligned with

Toyota’s automotive trends interpretations.

L. ANCILLARY RESULTS FROM THE THESIS WORK

Though not explicitly relating to the proposal’s construction, the following annexure outlines

a few Author’s research that might be worthy of disclosing in the function of potential future

researches.

UAV Motor Drive Doctoral Research

The research attempted to eliminate active or heavy passive cooling from the high power

density inverter for small UAV BLDC Motor Drive, achieving high efficiency and dissipating

generated heat via the inverter PCB and the mechanical structure of the UAV itself. [17]

In an attempt to reduce the inverter’s form-factor and weight, the Author attempted to

use the first technological generation of “GaN power MOSFETs” on the inverter’s “power

stage”. The use of GaN power MOSFETs requires particular attention because of their well

know fragility. A technical overview for this particular WBG technology is briefly covered

in [17].

190 Vehicles capable of avoiding charging anxieties and guarantee high reliability at low fuel consumption.

248

The research had a focus on the reliability of the whole system and the relative

comparison with conventional “Si” based alternatives, investigating the “Power Electronics

Packages” and the relative cooling contributions for achieving high reliability and small

form-factors; addressing the PCB design principles to follow to minimise problems related

to EMI/EMC (a WBG Power MOSFETs typical design challenge).

Particular attention was given to what inherent to the “Gate Driver Circuitry

optimisation”. GaN MOSFET’s Gate related issues during the experiments demonstrated to

be the principal limitation for reliable and durable operation, especially involving safety-

critical applications based on this type of converter technology. Such issues could be

associated with the early samples technology used and to the absence, at the time, in the

market of a specifically designed “Gate Driver Device for GaN Power MOSFETs”, and in

this regard, experiments pursued the adaptation of standard “Si” MOSFET’s “Gate Drivers”

in line with recommendations of the GS61008T “GaN Power MOSFET

Datasheet/Application Note”.

UAV Motor Drive Doctoral Research Conclusion

The conclusion of [17] shows that:

a) GaN MOSFET GS61008T is definitively an exciting device, as impressive as is

the GaN Technology;

b) GaN Technology has been demonstrated within several academic works to be

extremely interesting for DC/DC applications since they are capable of work at

very high frequencies;

c) Doctoral Researches focused on a precise application (powertrain driver for UAV

applications), marked up a critical issue referenced either directly or indirectly,

to the MOSFET’s Gates;

d) At that time, investigations address to the GaN Technology that they are not yet

mature enough for this specific application as there are no optimised gate driver

devices currently available on the market;

e) Optimisation of the gate driver circuitry represents a future research opportunity

and will be the focus of future works with GaN.

Concerning the selection of the Motor Drive for a UAV application, it is possible to

confirm that, although the GaN technology in future will no doubt be the King of WBG

technology and will in time improve and grow its quota within the market, at this moment

the most reliable option is still the conventional “Si” Technology.

249

Mechanical Advantages introduced by the GS61008T package are possible to obtain

using:

• for low power/low form-factor applications, the new dual cool packages

introduced by Fairchild/ONSEMI (such as FDMT800120DC) and nowadays also

by ST (such as STLD125N4F6AG);

• for significant current ratings, the best option is given by IXYS with its SMPD

package (such as MMIX1F420N10T or MMIX1F520N075T2);

Few of those conventional components are AEC-Q101 qualified, representing an

assurance in terms of consistency and reliability of the product. It is a common opinion that

the AEC-101 qualification of a GaN MOSFET will represent a waypoint for GaN Technology

and the evidence of technological maturity. A similar conclusion may is valid for “Hybrid

Robot’s E-Motor drive applications”.

[17]

	1 Introduction
	1.1 Unmanned Vehicles Introduction
	1.1.1 Unmanned Ground Vehicles
	1.1.2 Unmanned Aerial Vehicles
	1.1.3 Unmanned Underwater Vehicles

	1.2 Topicality
	1.3 Primary Hypothesis and Intentions
	1.4 Methods of Research and Development
	1.5 Scientific Novelty
	1.6 Practical Application of Research Results
	1.7 Dissemination of Research Results

	2 Unmanned Vehicles Control Strategies Overview
	2.1 Principles of flight dynamics
	2.2 Linear Control
	2.3 Non-Linear Control
	2.4 Practical Non-Linear UAV control strategy, CPWL Mathematical model and controller approximation
	2.5 Neuro-Fuzzy Logic for UV and Robotic applications
	2.5.1 AI, Learning-Based Control
	2.5.2 Data capture for the training process

	3 Typical Architectures for Electric Vehicles
	3.1 Automotive Regulations/Standards Overview
	3.2 Low Voltage Electric Vehicles Architecture
	3.3 High Voltage Electric Vehicles Architecture
	3.4 Hybrid Architecture variants
	3.4.1 Hybrid Electric Vehicle (HEV) Overview
	3.4.2 Plug-In Hybrid Electric Vehicle (PHEV) Overview
	3.4.3 Mild Hybrid Electric Vehicle (MHEV) Overview

	3.5 Example of 48V REESS with Boost Voltage Converters
	3.6 Electric Vehicles Power Converters
	3.6.1 Discrete Power Elements design
	3.6.2 Critical issues on Discrete Power Elements Power PCB
	3.6.3 “Power Module”, Benefits for Electric Vehicle Power Converters
	3.6.4 Wide bandgap (WBC) Semiconductors advantages for Electric Vehicles

	3.7 Battery Technology Overview
	3.7.1 PHEV, HEV and EV Battery Cell Chemistry Overview
	3.7.2 Battery Management System (BMS)
	3.7.3 Application of Fuzzy Logic for BMS

	4 Theoretical Framework
	4.1 Study Case Introduction
	4.2 Controller’s Framework Definition
	4.2.1 Controller’s Inputs Definition
	4.2.2 Controller’s Outputs Definition
	4.2.3 Rule Block and Defuzzification
	4.2.4 VHDL implementation theory
	4.2.5 VHDL Modelling theory

	5 System’s Hardware Design Proposal
	5.1 Core Hardware Definition
	5.1.1 Control Unit, FPGA
	5.1.2 Digital Motion Sensor
	5.1.3 Gyroscope
	5.1.4 Landing Proximity sensor
	5.1.5 Navigation Monitor
	5.1.5.1 GPS Module, Teseo-LIV3F
	5.1.5.2 Redundant Altimeter

	5.1.6 Electronic Compass Unit
	5.1.7 Motor Drive - Powertrain
	5.1.8 Electro-Mechanical Actuators – SERVO
	5.1.9 Data Storage
	5.1.10 Battery management and Low Voltage power supply management

	5.2 Human Remote Control

	6 Study Case, Controller’s Design Proposal
	6.1 Controller’s Inputs
	6.1.1 VHDL Component A3G4250D
	6.1.2 VHDL Component LIS3DSH
	6.1.3 VHDL Component TESEO
	6.1.4 VHDL Component, Safety Sensors
	6.1.4.1 BMS_VHDL Component
	6.1.4.2 Proximity Sensor Components

	6.1.5 VHDL Component, Flight Parameters EEPROM
	6.1.6 Controller’s core inputs, summary

	6.2 Controller’s Outputs
	6.2.1 VHDL Component SERVO
	6.2.2 Powertrain’s VHDL Components
	6.2.3 VHDL Component, Flight Telemetry EEPROM
	6.2.4 Controller’s core outputs, summary

	6.3 Fuzzy Logic Controller Design
	6.3.1 Type “Rudder_SERVO”, Membership Output Function
	6.3.2 Type “Altitude_input”, Membership Input Function
	6.3.3 Type “Compass_input”, Membership Input Function
	6.3.4 Type “Energy_Status”, Membership Input Function
	6.3.5 Type “Speed_Input”, Membership Input Function
	6.3.6 Type “Pitch_angle_Input”, Membership Input Function
	6.3.7 Type “Yaw_angle_Input”, Membership Input Function
	6.3.8 Type “Rolling_angle_Input”, Membership Input Function
	6.3.9 Type “Aileron_SERVOs”, Membership Output Function
	6.3.10 Type “ELEV_SERVO”, Membership Output Function
	6.3.11 Type “M1_THROTTLE”, Membership Output Function
	6.3.12 Type “M2_THROTTLE”, Membership Output Function

	6.4 Controller’s Rulebases
	6.4.1 “ELEV_SERVO”, Rulebase
	6.4.2 “Aileron_SERVO”, Rulebase
	6.4.3 “RUDD_SERVO”, Rulebase
	6.4.4 “M1”, Rulebase
	6.4.5 “M2”, Rulebase

	6.5 Fuzzy Controller System Structure
	6.6 Fuzzy Controller Simulations and preliminary optimisation
	6.6.1 Take-Off simulation
	6.6.1.1 Simulation at t=t0
	6.6.1.2 Simulation at t=t1
	6.6.1.3 Simulation at t=t2
	6.6.1.4 Simulation at t=t3
	6.6.1.5 Simulation at t=t4
	6.6.1.6 Full Climbing manoeuvre at t = t5
	6.6.1.7 Take-off simulation Conclusion

	6.6.2 Route adjustment Simulation
	6.6.2.1 Heavy negative Heading angle error adjustment, at t=t6
	6.6.2.2 Mild Positive Heading angle error adjustment, at t=t7
	6.6.2.3 Moderate Negative Heading angle error adjustment, at t=t8
	6.6.2.4 Conclusion, route adjustment simulation

	6.6.3 Steady-state simulation
	6.6.4 Adjustment due to gusty winds simulation
	6.6.4.1 Case of a gusty wind that impacts on the vehicle from the right to the left
	6.6.4.2 Alternative case, gusty wind from the left to the right that influences the flight
	6.6.4.3 “Controller Behavior” under gusty wind conclusions

	6.6.5 Landing Simulation
	6.6.5.1 Preliminary Landing Approach, simulation at t=t11
	6.6.5.2 Landing Descending Approach, simulation at t=t12
	6.6.5.3 Descending simulation at t=t13
	6.6.5.4 Descending simulation at t=t14
	6.6.5.5 Descending simulation at t=t15
	6.6.5.6 Descending simulation at t=t16
	6.6.5.7 Landing simulation, Conclusions

	6.7 Controller
	6.7.1 Digital_Processing VHDL component
	6.7.1.1 “ANGLE_input”, VHDL component
	6.7.1.2 “SPEED_input”, VDHL component
	6.7.1.3 “ALTITUDE_input”, VHDL component
	6.7.1.4 “ENERGY_input”, VHDL component
	6.7.1.5 ROLLING_input, VHDL component
	6.7.1.6 YAW_input, VHDL component
	6.7.1.7 PITCH_input, VHDL component
	6.7.1.8 COMPASS_input, VHDL component

	6.7.2 “Fuzzy”, VHDL component

	6.8 Data Capture for the learning Process
	6.9 Learning/Training Process Description
	6.9.1 Knowledge acquisition tool (“xfdm” tool)
	6.9.2 The supervised learning
	6.9.2.1 Gradient Descent Algorithms
	6.9.2.2 Conjugate Gradient Algorithms
	6.9.2.3 Second-Order Algorithms
	6.9.2.4 Algorithms Without Derivatives

	6.9.3 Error function
	6.9.4 The Simplification tool - Xfsp
	6.9.4.1 Membership functions simplification
	6.9.4.2 Rulebases simplification

	6.10 Proposed Learning Tool Configuration

	7 Conclusions and Further Researches
	REFERENCES
	APPENDICES
	A. Abbreviations
	B. Non-Linear System Linearization Technique
	C. Lyapunov Theorem
	D. Lyapunov Stability Technique
	E. CPWL Function introduction
	F. Fuzzy logic Introduction
	Fuzzy Logic Membership Input Functions
	Fuzzy Hedges
	Fuzzy Output Defuzzification

	G. Fuzzy Logic applications in smart electrical systems
	H. Neuro-Fuzzy introduction
	Definition of Neuro-Fuzzy modules
	Definition of Genetic Algorithm

	I. TYPES OF NEURO-FUZZY SYSTEMS
	Cooperative Neuro-Fuzzy Systems
	Concurrent Neuro-Fuzzy Systems
	Hybrid Neuro-Fuzzy Systems

	J. ARTIFICIAL NEURAL SYSTEMS
	K. Automotive trend interpretation for EV, PHEV and HEV
	L. ANCILLARY RESULTS FROM THE THESIS WORK
	UAV Motor Drive Doctoral Research
	UAV Motor Drive Doctoral Research Conclusion

