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The aim of our paper is to evaluate the maximum Shannon (syntactic) information carried 
through a video lecture. To achieve the aim, we have considered a natural lecture delivered 
by a lecturer as a signal transmitted over the physical communication channel consisting of 
a sound sub-channel and light sub-channel. Receivers are eyes and ears of listeners whose 
physical characteristics are taken into account. The physiological, neurological and cognitive 
aspects of the problem are neglected in calculations. The method has been developed to calcu-
late the absolute maximum values of Shannon information characteristics of a natural lecture 
basing on the capacity formula of continuous communication channel and physical consider-
ations taken into account for the first time, to our knowledge. Maximum Shannon information 
characteristics (entropies of sound and light frames, amounts of total acoustical and optical 
information, capacities of sound and light sub-channels, total amount of information and total 
capacity) of a natural lecture perceived by the audience have been calculated. These values are 
the upper bounds of a video lecture. The obtained results are discussed in the paper. After some 
modification, the proposed method can be practically applied for the optimization of both 
natural and video lectures because there is some correlation between syntactic and semantic 
information characteristics.

Keywords:  Channel capacity, communication channel, entropy, lecture, semantic infor-
mation, syntactic information, video lecture. 
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1. INTRODUCTION

Conceptually, information can be 
thought of as being stored in or transmit-
ted as variables that can take on different 
values. Informally, we obtain information 
from a variable by looking at its value, just 
as we receive information from an email by 
reading its contents. In the case of the vari-
able, the information is about the process 
behind the variable [1]. Generally, there are 
two kinds of information, which are impor-
tant with respect to a lecture.  Shannon 
information provides the so-called syntac-
tic information, which reflects the amount 
of statistical correlation between systems. 
By contrast, semantic information refers to 

information, which is in some sense mean-
ingful for a system, rather than merely 
statistical [2]. The aim of the paper is to 
calculate the maximum syntactic Shannon 
information delivered in a video lecture. To 
achieve the aim, the delivery process of a 
natural lecture is considered from the physi-
cal point of view. Further in the paper, we 
always mean the Shannon information and 
the quantities related to it, if not mentioned 
otherwise.

 Shannon entropy of the message 
ensemble X consisting of messages xi is the 
average amount of information I(xi) con-
tained in a message: 

  (1)

It depends only on the statistic nature of 
the message source expressed by message 
probabilities p(xi). Here b=2 corresponds to 
the binary logarithm, and n is the number of 
messages [3]. 

Different applications of Shannon 
entropy are used to evaluate the information 
content of videos. As a rule, this entropy (or 
quantities related to it,  such as mutual infor-
mation, joint entropy, conditional entropy) 
is calculated by computer programs (e.g., 
[4]) within each  2D video frame based 
on intensity and colour of frame elements. 
However, entropy there is in relative units 
and serves to evaluate the changes. Analo-
gously, the speech entropy is calculated and 
used [5]. 

Based on the differences between 
video frames, the entropy is able to serve 
as a measure of the complexity of changes. 
Due to content dependency, however, the 
relative entropy changes in the sequence of 

video frames, being a better indicator for 
detection [6].

Experimental video results of Xuguang 
Zhang [7] have shown that the panic crowd 
motion state has higher entropy, and the nor-
mal crowd state has lower entropy. When 
a panic behaviour of a crowd occurs, the 
pedestrians often move hurry-scurry. As the 
pedestrians are moving, the attributes (such 
as gender and age) of pedestrians are differ-
ent. The speeds of the movements of indi-
viduals are also different. The motion infor-
mation of the body parts (arms, torso and 
legs) of an individual is also different. The 
motion flow of the crowd video represents 
a state of disorder. In 2016, Luo also pro-
posed a detection algorithm based on skel-
eton entropy by using the information from 
RGBD videos [8]. The entropy is analysed 
in terms of the angles of the body skeleton 
to find whether the values of the information 
entropy are significantly higher in abnormal 
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videos than in normal videos in order to 
detect the most abnormal behaviours, such 
as fight, robbery and chaos. The principle of 
the highest frame entropy changes is used 
in video advertising [9]. The joint entropy 
changes and conditional entropy changes of 
x and y coordinates are used for the clas-
sification of landscapes [10]. Černekova et 
al. have demonstrated that mutual entropy 
and joint entropy between the frames can be 
used to detect cuts and extract key frames 
[11].

There are also other applications of 
Shannon entropy, for example, in video 
compression [12] and security [13]. An 
important achievement is Memorability-
Entropy-based video summarization. 
Authors predict the memorability score 
by using the fine-tuned deep network and 
calculate the entropy value of the images. 
The frame with the maximum memorabil-
ity score and entropy value in each shot is 
selected to constitute the video summary. 
Memorability is the quality of being worth 
remembering [14].

However, the authors are mostly inter-
ested in entropy and related information 
characteristics to improve the efficiency of 
video lectures. Thus, entropy can be cal-
culated for random time slot of a random 
video lecture captured in classroom and for 
the same length of video lecture followed 
by a set of rules on how to produce a good 
video lecture [15]. These rules have already 
given some results while transmitting infor-
mation to people. Prior studies have inves-
tigated the effect of instructional video on 
learning outcomes [16]. Thus, it is empiri-
cally shown that there is some correlation 
between Shannon entropy of videos and the 
efficiency of video lecture, i.e., the semantic 
information content.

For further development, it would be 
important to have not only relative infor-
mation characteristics of videos, but also 

absolute ones. As far as we know, there are 
no papers dealing with the absolute Shan-
non information carried by lectures or by 
natural scenes. Therefore, the method of 
expert evaluations of the quality of lectures 
is used [17]. Basing on Shannon’s commu-
nication theory (see Section 2), we propose 
a method  how to calculate Shannon infor-
mation delivered in a natural lecture using 
only physical properties of human sensors 
(eyes and ears) and neglecting any physio-
logical processes in the brain, which are too 
complicated to be taken into account in this 
first calculation attempt. We quantitatively 
evaluate the maximum Shannon (syntac-
tic) information, which can be physically 
delivered in a lecture of a certain length and 
perceived by the audience. As mentioned 
above, syntactic information refers only to 
the quantity of unexpected data not to their 
meaning. We suppose that a lecturer speaks 
and shows slides and demonstrations for a 
certain period of time. Thus, the audience 
receives a certain amount of optical and 
acoustical information by means of eyes 
and ears. This is the maximum possible 
information. If the lecture is captured by the 
video with sound and later reproduced, the 
information delivered in this video lecture 
will be reduced because of technical limita-
tions of video recorder (limited optical and 
acoustical bandwidths, etc.).

In this article, natural lecture delivered 
by a lecturer is treated as a noiseless com-
munication channel consisting of a sound 
sub-channel and light sub-channel. Maxi-
mum transmitted total amount of informa-
tion in both sub-channels and in the whole 
channel is calculated as well as the corre-
sponding channel capacities. Further math-
ematical and experimental development of 
the presented approach can be applied for 
the optimization of both natural and video 
lectures.
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2. METHOD

The idea to calculate the Shannon infor-
mation of a lecture is based on the capac-
ity formula of continuous communication 
channel: 

Csample= max I(X,Y)  bits/sample,  (2)

where I(X,Y) is an averaged mutual infor-
mation of ensemble of received signals  Y 
with respect to ensemble of transmitted sig-
nals X per sample[3, p.586]. If the channel 
has a fixed bandwidth B, then the maximum 
signalling rate is Nyquist rate 2B accord-
ing to the sampling theorem, and channel 
capacity is as follows:

C=2Bmax I(X,Y), bits/s.  (3)

Transmission of a lecture to the audi-
ence can be regarded as a communication 
channel consisting of a sound sub-channel 
and a light sub-channel. They have differ-
ent known frequency bandwidths deter-
mining the maximum signalling rates. The 
main problem is to determine the mutual 
information of sound sub-channel and light 
sub-channel. However, we can avoid this 
problem neglecting the noise. In this case, 
mutual information in each sub-channel 

can be replaced by its Shannon entropy 
H(X) [3]. However, for continuous signals 
the probabilities of their values x p(x)=w(x)
dx in Eq. (1) become infinitesimally small 
(here w(x) is the differential probability dis-
tribution function). To overcome this prob-
lem we assume that we can approximately 
replace infinitesimally small probabilities 
p(x)=w(x)dx by small but finite probabili-
ties p(x)=w(x)Δx,  which can be numerated. 
Shannon entropies can be calculated by 
appropriate quantization of different param-
eters x coding the transmitted information 
(e.g., sound and light intensity or frequency) 
in intervals Δx. In this article, we are inter-
ested in the maximum Shannon informa-
tion; therefore, quantization intervals are 
determined based on the human resolving 
power of coding parameters. Thus, based 
on this hypothesis, we can calculate not 
only the maximum Shannon entropies of 
sound and light channels but also maximum 
capacities of these channels and transmitted 
information during the lecture.

Further we shall explain our method in 
more detail using as an example the woman 
lecturer who delivers a lecture, the duration 
of which is ten minutes (t = 10 min). 

3. DETAILED EXPLANATION OF THE METHOD RESULTS

At first, we consider sound and light 
sub-channels separately.

3.1. Entropy of the Sound Channel

    We assume that the lecturer is a 
woman whose voice is soprano. Her speech 
is characterised by sound intensity, Is, sound 
intensity modulation frequency bandwidth, 
Fs mod, and by sound frequency, fs. Funda-

mental frequencies of soprano belong to 
the spectral interval fs = 260–1050 Hz [18]. 
They bring the main  sound energy of the 
speaker. In the case of soprano singer har-
monics up to the fourth can also play a sig-
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nificant role [19]; however, our woman is 
a lecturer, not a singer. Thus, we assume 
that her sound frequency bandwidth is Fs = 
790 Hz. Humans can perceive sound inten-
sity changes with the modulation band-
width of about Fs mod = 500 Hz [20]. This 
means that we can hear faster than we see 
because the corresponding light intensity 
modulation bandwidth for humans is only 
about 10 Hz  (see Section 3.3). It should be 
stressed that both intensity bandwidths refer 
to the envelope function of intensity time 
dependence.

Due to the limited sound intensity mod-
ulation bandwidth, the sound signal can 
be sampled with the sampling time inter-
val [3]:  

,

and we can consider only sampled 
moments instead of the continous time. 
At each sampled time moment, the listen-
ers perceive the sound frame – the sound 
spectrum  Is (fs), which carries the spectral 
sound information at the given moment 
(this is necessary because only the envelope 
of sound intensity time dependence is taken 
into account for sampling). In principle, 
there is an infinite number of possible sound 
frames at the certain sampled moment of 
time because sound intensity and frequency 
vary continously. As mentioned above in 
Section 2,   we have to make these variables 
discrete. On the other hand, this quantiza-
tion occurs naturally because the human ear 
has limited intensity and frequency resolu-
tion power. Thus, a sound frame is a 2D 
message from the point of view of commu-
nication theory. The lecturer is a source of 
these messages, which follow at frequency 
2Fs mod . The average information per such a 
message by definition equals the Shannon 
entropy of the ensemble of all  such mes-
sages according to Eq. (1).                       

Thus, the calculation of the Shannon 
entropy is based on the making discrete 
the sound frame variables, Is  and fs , taking 
into account the resolution power of human 
ear. We divide the sound frequency in inter-
vals Δfs =1 Hz [the minimum frequency 
difference which can be resolved by ear 
[21]]  and sound intensity  intervals   ΔIs =

61.2 10−×  W/m2  corresponding to the mini-
mum noticable sound pressure changes of 
0.5 dB [22]. Thus, there are

discrete sound frequency intervals. If we 
assume that the highest sound intensity of 
the speaker corresponds to fortissimo (100 
dB or 10-2 W/m2),  then (keeping only inte-
gers because fractional sound intensity 
interval cannot be resolved by a human ear) 
we have

2
max

6
10 8333

1.2 10
s

s

I
I

−

−= ≈
∆ ×

sound intensity intervals which can be 
resolved by the ear. In this way, we can divide 
the sound frame into Ns= 790 8333× = 
6583070  2D ( s sI f∆ ×∆ )  cells.

Depending on the sound signal, each 
cell can be either filled or empty. For sim-
plicity we assume that the  fulfilment proba-
bilities are equal for all cells. Sound frames 
differ by the number and distribution of 
filled and empty cells. As mentioned above, 
each frame can be regarded as a message. 
To get the maximum frame entropy the 
probabilities of these messages should be 
equal [3]. This can be readily seen from the 
Shannon entropy expression (1) letting all 
the  probabilities  of n messages to be equal:  

p(xi) =1/n ,  (4)

H(X) =log2 n.  (5)
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How many messages are there? For the 
fixed number of filled cells, k, there are CN s  

k 

messages, where CN s 
k  is the number of com-

binations for fixed k of a set of  Ns elements. 
Number k can vary from 0 to Ns . Therefore, 
we have to sum all CN s 

k  for k = 0, 1,2,..... Ns   
and to obtain   the number of combinations 
for all k . The result is [23]:

.  (6)

Thus, the number of messages is n = 2Ns 

and the maximum entropy of the sound 
frame is [3]: 

Hs max = log2 2
Ns = Ns.  (7)

Previously, we have found that Ns  = 
6583070; therefore, Hs max =  6583070 bits.

3.2. Total Maximum Information in the Sound Sub-channel  
and its Capacity

Let us find  the total maximum informa-
tion  transmitted  over the sound sub-chan-
nel. During the lecture of duration t = 600s,  
the number of transmitted sound frames is: 

3
600 600000

1 10s

t
t −= =

∆ × .

Each sound frame carries the maximum 
average information Hs max = 6583070 bits 
as shown in the previous section. Assuming 
that all messages (sound frames) are statis-
tically independent, we find that the total 
maximum transmitted information over the 
sound sub-channel is [3]:

.  (8)              

Putting all the known quantities t=600s, 
Δts =

31.0 10−× s and Hs max = 6583070 bits 
in Eq.(8) yields  Info s max = 123.95 10× bits. 
Here and further we keep the number of dig-
its to have accuracy not worse than 0.3 %.

The communication channel capacity is 
defined as the maximum amount of infor-
mation transferred per second [3]. Thus, the 
maximum capacity of our noiseless sound 
sub-channel  is: 

. (9)

Putting the above-mentioned values of 
Infos max and t, or of Hs max  and Its  in Eq. (9), 
we get Cs max = 96.58 10× bits/s. 

3.3. Entropy of the Light Frame

We consider the optical information 
transmission in light sub-channel analo-
gously to that of sound sub-channel. Light 
sub-channel is characterized by the light 
intensity Il,, light intensity modulation fre-
quency bandwidth Fl mod describing the speed 
of the light intensity temporal changes, light 
frequency fl determining the image colours 
(we neglect the eye sensitivity spectral 
dependence), field of view angles along the 

transversal coordinates of the scene x and y, 
θx and θy , and the transmission time t, which 
is the same as for the sound sub-channel.

The maximum light frame (image) rate 
is determined by the light intensity modula-
tion bandwidth of eye, Fl mod, which is equal 
to 10 Hz at the eye contrast sensitivity func-
tion level of 200. This level corresponds to 
the light intensity resolution of 0.5 % by the 
human eye. Smaller intensity differences 
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cannot be resolved [24]. This means that 
there are

max 1 200
0.005

l

l

I
I

= =
∆

discrete detectable light intensity intervals. 
On the other hand, according to the sam-
pling theorem, light intensity envelope time 
dependence can be sampled with the sam-
pling time interval

2

max

1 1 5 10
2 2 10i

l

t s
F Hz

−∆ = = = ×
× ×

.

For fixed sampling time, the audience 
perceives optical image, the light frame, 
determined by the light intensity Il depen-
dence on fl, θx and θy . This image is a 4D 
message from the point of view of Shan-
non’s information theory. Again, the aver-
age information per such a message by defi-
nition equals to the Shannon entropy of the 
ensemble of all  such messages, as shown 
in Eq. (1).

Further, light frame entropy calculation 
is analogous to the sound frame entropy 
calculation described in Section 3.1. We 
divide the light frequency into intervals Δfl = 

123.0 10× Hz. This is  the minimum fre-
quency difference which can be resolved by 
eye [25]. The visible spectral range in video 
lecture we assume to be from 400 to 750 
nm  [26] which corresponds to the light fre-
quency range Fl = 143.5 10× Hz. Thus, there 
are (keeping  again only integers)

14

12
3.5 10 116
3.0 10

l

l

F
f

×
= =

∆ ×

resolvable light frequency intervals. 
[Here we would like to stress that the 
number of colours perceived by a human 
is much larger. Human brain constructs 
colours from the perceived frequencies of 
different intensities within these intervals. 
We are restricting ourselves only to physi-
cal rather than physiological processes 
involved in the delivery of lecture.]

The minimum intervals of viewing 
angles, θx and θy , are determined by the 
accepted minimum detectable light intensity 
changes of 0.5% and are equal to Δθ=15 arc 
minutes= 34.36 10−× rad [24]. The maxi-
mum horizontal eye field of view along the 
horizontal x-axes is θx max = 1600 = 2.79 rad 
and along the vertical one θymax = 1300 =2.27 
rad [18], [27]. Therefore, there are

max
3

2.79 640
4.36 10

xθ
θ −= =

∆ ×  

and

ymax
3

2.27 520
4.36 10

θ
θ −= =

∆ ×  

intervals along the θx and θy  axes, respec-
tively (analogously as in the sound chan-
nel, fractional angular intervals cannot be 
resolved by a human eye).

There are Nl 4D cells in one light frame, 
where

max 9max max 7720960000 7.72 10yl l x
i

l i

I FN
I f

θθ
θ θ

= × × × = ≈ ×
∆ ∆ ∆ ∆

.

We can directly apply Eqs. (6) and (7) 
to the light sub-channel replacing the num-
ber of  2D cells Ns  by the number of  4D 
cells Nl , because the result depends only on 
the number of cells but not on their dimen-

sionality. Thus,

Hl max = log2 2
Nl = Nl  (10)

and Hl max = 97.72 10×  bits.
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3.4. Total Maximum Information in the Light  
Sub-channel and its Capacity

Total maximum information in the light 
sub-channel and its corresponding capacity 
are calculated in the same way as in the case 
of sound sub-channel (Section 3.2).  There-
fore, 

 (11)

and
9 13

max 2
600 7.72 10 9.26 10

5 10lInfo bits−= × × ≈ ×
×

.

Instead of (8)  in the light sub-channel 
we have 

 (12)

and, consequently, putting the values Infol max 
and t, or Hl max and Δtl in Eq.(10) we get  
Cl max ≈ 1.54´1011 bit/s.

3.5. Total Maximum Information of the Lecture and the  
Capacity of the lLcture as a Communication Channel

The obtained information characteris-
tics of sound and light sub-channels enable 
one to find the maximum information and  
maximum capacity of the whole  lecture by 
simply summing the corresponding  quan-
tities because we can assume them to be 
independent. In this way, the maximum 
information delivered by the considered 
lecture is as follows:

Infomax = Infos max + Infol max ,  (13)

and the maximum capacity of the whole 

lecture channel is as follows:  

Cmax = Cs max +
 Cl max  ,  (14)

because amounts of information can be  
always summed, and the information trans-
mittance time is the same for both sub-
channels. Putting the corresponding quan-
tities in Eqs.(13) and (14) we get Infomax = 
(3.95´1012 + 9.26´1013) bits ≈ 9.65´1013  

bits, and Cmax = (6.58´109 + 1.54´1011) 
bits/s ≈ 1.61´1011 bits/s.

4. DISCUSSION

It is clearly seen from results of the pre-
vious section that Shannon (syntactic) infor-
mation characteristics of the whole lecture 
channel are almost completely determined 
by the light sub-channel because informa-
tion carried by the sound sub-channel is 
lower by more than one order of magnitude. 
The ratio of entropies of light and sound 
frames is even higher:

9
max

max

7.72 10 1173
6583070

l

s

H
H

×
= ≈  .

Thus, the contribution of the lecturer’s 
voice to the syntactic information is almost 
negligible.  At the first glance, this result 
seems to be expected because vision ranks 
highest in the hierarchy of human senses. 
In the lecture, it seems that only the dem-
onstration of slides is necessary. On the 
other hand, this is a paradoxical result 
because practically we know that the role 
of the lecturer is of primary importance. 
This paradoxical result is the consequence 
of neglecting the meaning of the lecture 
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when calculating the syntactic Shannon 
information. Not only the voice but also the 
intonation and gestures of the lecturer play 
an important role expressing the attitude of 
the lecturer to the content. It should be also 
noted that if the lecturer used additional 
sound accompaniment, e.g., music, with 
larger sound frequency bandwidth up to 20 
kHz (the maximum bandwidth of a human 
ear [18]), then Hs max , Infos max  and  Cs max    
would increase by more than one order of 
magnitude achieving their maximum possi-
ble values comparable to the corresponding 
light sub-channel parameters. This situation 
takes place in concerts.

We can compare the above calculated 
capacities of sound and light sub-channels 
with the known information capacities of 
the human hearing and human sight. We 
have found that Cs max = 6.58x109 bits/s and 
Cl max = 1.54x1011 bits/s whereas the capac-
ity of human hearing channel is about 104 
bits/s and human sight channel is about 107 

bit/s, respectively, as evaluated by Tem-
nikov et al. [28]. More recent results for 
these human sensor channels are similar – 
about 105 bit/s and about 107 bits/s [29]. Our 
calculated capacity values are larger by 4–5 
orders of magnitude.

How such a large difference can be 
explained? First of all, we have calculated 
the maximum capacity values of a natu-
ral lecture, which serve as upper bounds 
of sound and light sub-channels. This 
implied that all cells and all frames were 
equally probable. Practically this is not 
the case because the sensitivity of ears and 
eyes are spectrally selective. For example, 
the human ear is the most sensitive to the 
sounds in the frequency range from 1500 
to 4000 Hz, but the human eye is the most 
sensitive at the green–yellow light wave-
length of 555 nm (5.4x1014 Hz) [18]. Also, 
the content of a lecture can influence the 
frame probabilities. In our calculations, we 
have also neglected the presence of noise in 

both sound and light sub-channels. Finally, 
the perceived light and sound informa-
tion transmission in a nervous system and 
its processing in the brain are neglected. 
It is known that a huge information com-
pression takes place there [29]. Evidently, 
optical and acoustical perception systems 
of humans are not able to perceive all the 
physically available information.

Thus, the obtained results for a natu-
ral lecture are overestimated. Yet, they can 
be used as upper limits for corresponding 
quantities of a video lecture because the 
information characteristics will be much 
lower due to the technical limitations of the 
video camera.

The proposed calculation method of 
Shannon information characteristics can be 
used not only to find their maximum val-
ues but also, in more general case, to intro-
duce the probability distributions of cells 
in all frames and also to vary the cell size. 
The appropriate variations of probability 
distributions and cell sizes would enable 
one to meet the empirical conditions [15] 
of an optimal lecture. Thus, information 
characteristics of an optimal lecture could 
be calculated. It should be noted that the 
mathematical modification of the presented 
approach is needed in this case.

The method based on the capacity for-
mula (3) of continuous communication chan-
nel we have proposed in Section 2 and used 
to calculate the maximum Shannon informa-
tion characteristics of a natural lecture is not 
precise. However, we believe that the method 
is logical and the made approximations do 
not dramatically change the results. To prove 
its practical applicability, further theoretical 
and experimental studies are necessary.

In principle, the proposed method is 
quite general. It can be also applied for the 
calculation of syntactic optical and acousti-
cal information characteristics of any object 
in the world, e.g., landscapes and streets 
with people, cosmic objects, etc.
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5. CONCLUSIONS

1. The method has been developed to cal-
culate the absolute maximum values of 
Shannon information characteristics of 
a natural lecture based on the capacity 
formula of continuous communication 
channel and physical considerations 
taken into account for the first time, to 
our knowledge. After some modifica-
tion, it can be practically applied for the 
optimization of both natural and video 
lectures because there is some correla-
tion between syntactic and semantic 
information characteristics.

2. Maximum Shannon information char-
acteristics (entropies of sound and light 
frames, amounts of total acoustical and 
optical information, capacities of sound 
and light sub-channels, total amount of 
information and total capacity) of a nat-
ural lecture perceived by the audience 
have been calculated. These values are 
the upper bounds of a video lecture.

3. It has been found that physically the 
maximum capacity of sound sub-chan-
nel Cs max = 6.58´109 bits/s is almost 
negligible compared to the maximum 
capacity of light sub-channel Cl max = 
1.54´1011 bits/s. It is the consequence 
of neglecting meaning in the syntactic 
information.

4. Capacities of sound and light sub-
channels are by 4–5 orders of magni-
tude larger than the previously esti-
mated capacities of human hearing and 
vision information channels because 
of the used approximations and due to 
neglecting the physiological processes 
of the information transmission in ner-
vous system and its processing in the 
brain.

5. Further theoretical and experimental 
work is needed  to develop and  prove 
the proposed method.
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