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INTRODUCTION 

Background and relevance of the research 

Mitigating climate change is professed to be one our generation’s greatest challenges; however, 
similarly to many public goods where benefits are enjoyed by many while the costs are born by 
few, finding a balance between the pace of the change and cost borne by society is not an easy task. 
The Paris Agreement under the United Nations Framework Convention on Climate Change, which 
as of April 2017, has been ratified by 145 countries (including the Baltics) [1] and European 
Commission’s “Clean Energy Package” published on 30 November 2016 [2] have already shown 
that the global policy makers are determined to lead the world towards stronger reliance on 
renewable energy sources and improved energy efficiency. This global trend is cemented even 
more within the newest set of European Commission policy initiatives under the umbrella of The 
European Green Deal which aims to make Europe climate neutral by 2050.  

The objectives of The European Green Deal effectively cover wide range of economic activity 
starting from waste reduction, reforestation, transportation, and sustainable farming. However, 
energy sector is at the center of it. It is estimated by the policy makers that the energy sector is 
responsible for approximately 75 % of greenhouse gas emissions. The new requirements, 
objectives, and investment opportunities have created a space for emergence of new technologies 
and increased availability of previously prohibitively expensive ones.  

 The combination of the aforementioned conditions causes a fundamental paradigm shift in 
global legal framework, the energy sector experiences emergence of new products and services. 
Firstly, the continuous increase of energy system decentralization and higher reliance on 
less-controllable/ predictable intermittent generation requires redefinition of the roles and 
interdependencies of the energy system actors. Secondly, considerable increase in active energy 
users (prosumers) creates the demand for secondary services (technical, operational, financial 
support services). Thirdly, the rapid change in the fabric of the industry creates new challenges to 
system operators regarding technical, operational and pricing (tariff) aspects.  

On top of the sheer pace of new technology uptake and the resulting dynamic changes in the 
industry, the policy makers also have to evaluate the least cost to ensure naturally conflicting 
objectives – technical system reliability, uptake of new, climate-neutral technology, and low energy 
costs.  
 

Technical system reliability  

The reliability of electric power system operation depends on the balance between power 
production and consumption [3]. To achieve this balance, every grid connection point needs to be 
accounted for [4]. Traditionally, this is managed by dividing the system in multiple imbalance areas 
each having a market participant, which is financially responsible for ensuring that all energy 
generated within the area is sold and all energy consumed within the imbalance areas is bought. 
These market participants are called balance responsible parties (BRPs). BRPs ensure the balance 
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by forecasting demand and supply of energy within their imbalance areas and ensuring according 
energy trades via day-ahead and intraday markets.  

When BRPs fail to forecast demand and supply accurately, it can result in excess/deficit energy 
in the power system. Forecasting errors are corrected in real time by transmission system operators 
(TSOs) via balancing market. Ensuring sufficient balancing energy reserves is pivotal to TSOs, as 
without them the power system balance cannot be maintained, which, depending on the 
interconnections to other power systems, can result in costly procurement of balancing energy from 
other control areas or in adverse system frequency fluctuations. 

The costs of power system balancing are covered by the imbalance payments from those BRPs 
whose actual consumption/generation deviate from the forecast. Accordingly, the costlier 
balancing energy is, the more expensive penalty payments for forecasting errors are and 
consequently the costlier energy in retail markets becomes. The main driver for high balancing 
prices is balancing resource scarcity. Currently, in the Baltics, only electricity producers provide 
balancing resources. Furthermore, since the opening of the Common Baltic Balancing market and 
subsequent increased reliance on national balancing resources (instead of balancing energy 
resources from Russian TSO), we can observe preliminary indications of balancing resource 
scarcity [5]. 

 Furthermore, according to the Baltic generation adequacy report, it is expected that during the 
next 10‒15 years the capacity required for balancing reserves will increase due to rising intermittent 
generation and the planned Baltic power system desynchronization from UPS/ISP. At the same 
time, the generation from some of the sources typically used for balancing purposes in the Baltic 
states (thermal power plants in Estonia) will reduce by up to 50 % due to lost competitiveness of 
oil-shale power plants caused by the increasing costs of SO2 and NO2 emissions [5].  

This gives clearly indicates that additional sources for balancing reserves are needed. Demand 
response (DR) is a promising source of balancing energy to consider. DR integration in balancing 
energy markets can provide significant financial savings for grid operators and market participants 
and promote optimal resource allocation [6]. Some large consumers in the Baltic states have 
already expressed preliminary interest in providing services to the TSOs. However, to facilitate DR 
participation in power system balancing, the service must provide economic gains for both the 
existing market participants and DR service providers. From the policy makers’ point of view, the 
reliability of the power system is pivotal for functioning economy and must not be jeopardized or 
experimented with. 

Facilitating uptake of climate neutral solutions 

While availability of technology is a necessary precondition for behavioral changes in society, 
the opportunity itself is not sufficient for overall societal change. Based on the research, most 
rational market actors choose to engage in new initiatives based on three main considerations – the 
weight of financial and social benefits against administrative and organizational burden. A well-
functioning regulatory framework would promote such technologies and consumer and supplier 
behaviors that generates more social wealth than the cost of introduction and maintenance of the 
said policies.  On the contrary, poorly designed regulatory framework can promote inefficient 
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allocation of resources by either over-subsidizing certain activities or promoting private investment 
that depletes the investors’ wealth.  

Low energy costs 

The cost of electricity consists of three main components – cost of resource (in Latvia, electricity price 
constitutes approximately 40 % of the total costs); cost of maintenance and development of the 
infrastructure necessary to transport electricity (in Latvia, grid services constitute approximately 30 % of 
the total energy cost); and taxes and levies (in Latvia value added tax and mandatory procurement 
component together constitute approximately 30 %).  

While the long run marginal cost of producing electricity from renewable sources decreases over time 
due to technological advancements, the increase in intermittent and distributed generation as well as 
continuous increase in demand for electricity not only promotes volatility electricity prices, but also creates 
new challenges for the power system infrastructure. An aspect of this is illustrated by the case of South 
Queensland (Australia), where during the period of 2009‒2014 the total installed capacity of solar panels 
increased from 187 MW to 4092 MW [7] and percentage of residential consumers with rooftop solar panels 
reached 25 %. Such shift reduced electricity volumes consumed through distribution system but did not 
have considerable impact on the costs of the system, the volume-based distribution system tariffs increased 
by 112 % [8]. This illustrates that poorly designed or insufficiently flexible pricing strategy for system 
services can result in undesired consequences. With the emerging preference for electric transportation as 
well as electricity-based heating, ventilation and cooling systems, the demand for electricity has increased 
the tendency to cluster in high and low demand periods, which typically results in peak load demand 
outpacing overall increase in annual consumption.  These trends continue to add further price pressures to 
the electricity and power system alike.  

The potential of demand response 

When considering alternative instruments for increasing system flexibility via climate and cost 
friendly solutions, one of the instruments is a product/service category broadly referred to as 
‘demand response’. According to the Federal Energy Regulatory Commission, demand response 
(DR) is defined as: “Changes in electricity usage by end-use customers from their normal 
consumption patterns in response to changes in the price of electricity over time, or to incentive 
payments designed to induce lower electricity use at times of high wholesale market prices or when 
system reliability is jeopardized”. DR can be broadly divided into two groups: implicit DR and 
explicit DR. Implicit DR (‘price based’ DR) refers to consumers choosing to be exposed to time-
varying electricity prices and/or time-varying network tariffs that reflect the real cost of electricity 
at the time of use and allows the consumers to react to that price depending on their own 
preferences. Explicit DR refers to a program where demand competes directly with supply in the 
wholesale, balancing and ancillary services’ markets directly or through the services of 
aggregators.   

 As discussed in [9]‒[11], demand response is able to increase the system’s adequacy and to 
substantially reduce the need for investment in grid development and peaking generation by 
shifting consumption away from times of high demand, as well as act as a cost-effective balancing 
resource for variable renewable generation. Adding stability to the system, it lowers the need for 
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traditional and often ineffective sources of energy. It furthermore decreases the need for local 
network investments, as it shifts consumption away from peak hours in regions with tight network 
capacity [11]. DR delivers these benefits by providing consumers – residential, commercial, or 
industrial – with control signals and/or financial incentives to adjust their consumption at strategic 
times and by doing so promotes consumer engagement. 

While there seems to be a consensus on the need for the energy sector to introduce and integrate 
DR in energy markets, the preferred choice of the market framework enjoys far less unambiguity 
both from policy makers’ and industry representatives’ point of view [12]‒[19]. For example, in 
Austria the DR provider (incl. aggregator) has to agree bilaterally on data exchange and transfer 
pricing with the BRP before flexibly providing service to its customer; while in Switzerland the 
DR provider does not need such an agreement with the BRP, it has to compensate the BRP at 
transfer price determined by TSOs.  Furthermore, in Ireland neither BRP nor aggregator is charged 
for the imbalance created [12], [13], [15].  Due to the increased role of DR and independent 
aggregator proposed in the European Commission “Clean Energy Package”, the Member States 
have restarted discussion on the integration of DR in their respective energy markets with increased 
urgency. However, as mentioned above, when introducing new regulatory framework, 
considerable analysis is necessary to avoid loss of social wealth. 

Hypothesis, objective and tasks of the Thesis 

Hypothesis 

By developing appropriate regulatory framework, the demand response services can provide a 
cost and energy efficient tool for improving system flexibility and mitigate resource price and 
system price volatility driven by increase in intermittent generation in the Baltic region.  

 
Objective 

To develop and assess an appropriate proposal for the main components of regulatory 
framework to facilitate the demand response service development and promote non-disruptive end-
user engagement in energy transition. 

Tasks 

1. To develop compensation framework and determine roles and responsibilities between the 
demand response service provider and other market participants. 

2. To develop methodology for estimating the volume of energy transferred in the event of 
demand response. 

3. To evaluate and test the impact the demand response could have on electricity markets in 
the Baltics. 

4. To evaluate and test potential financial benefits for the demand response asset holders’ from 
engaging in explicit or implicit demand response. 



10 
 

Research methods and tools 

Research studies presented in the Doctoral Thesis were performed employing various bespoke 
modelling tools and algorithms developed in-house at the RTU Institute of Power.  

When modelling the different future scenarios (Chapters 2 and 3), MATLAB was employed to 
prepare the input data by scaling and adjusting the data according to the scenario assumptions. 
Furthermore, validation and analysis of the results obtained was performed in Excel. For solving 
optimization problem of the AOF parameter search tool presented in Chapter 3, MATLAB 
scripting environment and Global Optimization Toolbox was used to take advantage of its data 
processing abilities and solver patternsearch.  

Monte Carlo simulation-based tool DR Assess tool employed in the case study presented in 
Chapter 4 was developed using the MATLAB scripting environment. To make it usable for any 
interested person, a stand-alone application was compiled, which can be deployed on a standard 
computer with the royalty-free MATLAB Runtime environment. 

For testing and comparative analysis, data sets from NordPool, Elering AS, JSC 
“Augstsprieguma tīkls”, SKM Market Predictor, and Latvian Environment, Geology and 
Meteorology Centre and specially obtained case study data were used. 

Scientific novelty 

To facilitate the demand response participation in any of the electricity markets, an algorithm 
for assessing the volume of electricity transferred is necessary. Considering the metering and 
market particularities in the Baltic region, alternative algorithms were tested on real metering data 
on randomly selected energy consumers based on three criteria – simplicity, accuracy, and 
robustness. From the four potential consumption baseline models analyzed the best performing 
model was identified. Furthermore, to tackle the issue of expected changes in imbalance settlement 
period (switching from hourly to 15-min periods), alternative interpolation methods on wind 
forecasting data were compared and the most precise one was identified. The results of the research 
assessing the volume of electricity transferred provide concrete assessment of the best performing 
algorithms in the context of Baltic energy markets. 

Regarding compensation methodology a comprehensive overview of models employed in the 
European Union was reviewed and analyzed for their suitability for Latvian legal and market 
environment. The combination of integrated and centralized model was deemed to be the most 
appropriate. The proposal has been now partly introduced in national legislation. 

To research how demand response would impact energy prices, two main markets were 
examined – the Baltic balancing market and the Baltic day-ahead market. For the needs of 
balancing market examination, the following assessments were made. Firstly, to facilitate optimal 
activation of balancing resources by the transmission system operator, a bespoke tool, AOF 
parameter search, has been developed. It includes a complex algorithm mimicking the activities of 
a TSO dispatch operator in ordering mFRR products to sustain the power system balance. For 
further assessment several mathematical models were used in order to assess the cost-benefit 
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analysis. On the other hand, to assess the impact on the day-ahead market, multi-factor analysis of 
the day-ahead price determination was performed.  

To evaluate the costs and benefits from demand side services for the asset owners, firstly, a 
demand response assessment tool has been developed. It is based on Monte-Carlo simulations to 
properly consider the uncertainties characteristic to electricity markets and provide probabilistic 
results on benefits the end-user can gain through provision of explicit DR to the market or via 
implementing implicit DR. While the tool has been tailored for the Latvian case, considering the 
existing common Baltic balancing market and Nord Pool day-ahead market frameworks, it could 
be easily applied also to other case studies with similar market setup. Furthermore, in 2020 the 
financial benefits from participation were tested in real-life environment based on heat-pump 
system. The alternative assessments provide a more transparent evaluation. 

 
Practical significance of the research 

Practical significance of the research studies carried out by the author during development of 
the Doctoral Thesis have contributed to several research and innovation projects. Listed below, 
they include not only national and international scientific projects but also contract work for a 
major industry stakeholder.  

1. Research contract “Development of mathematical models for an economic assessment of 
demand-side flexibility resources and activation optimization of balancing reserves” (2017–2018), 
commissioned by “Augstsprieguma tīkls” JSC (the Latvian TSO).  

2. Project “Management and Operation of an Intelligent Power System (I-POWER)” (2018–
2021), funded by the Latvian Council of Science.  

3. Project “Future-proof development of the Latvian power system in an integrated Europe 
(FutureProof)” (2018–2021), funded by the Ministry of Economics of the Republic of Latvia within 
the National Research Programme “Energy”.  

 

Author’s personal contribution 

During development of the Doctoral Thesis, the author participated in several collaborative 
projects implying tight cooperation with other staff members of the RTU Institute of Power 
Engineering. Namely, the AOF parameter search tool and DR Assess tool were developed by the 
author together with Researcher K. Baltputnis and Z. Broka under the supervision of Professor A. 
Sauhats. The author contributed to all stages of work and specifically in conceptualization and 
definition of the mathematical model, and performed the case studies and analysis of their results.  
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Approbation of the results 

The research results included in the Doctoral Thesis have been discussed at six international 
scientific conferences. 

 
Scientific paper related to Chapter 1 “Compensation methodology” 

1. Sadovica, L., Marcina, K., Lavrinovics, V., Junghans, G. "Facilitating energy system 
flexibility by Demand Response in the Baltics – choice of the market model". 58th International 
Scientific Conference on Power and Electrical Engineering of Riga Technical University, 
2017, ISBN: 978-1-5386-3846-0, DOI 10.1109/RTUCON.2017.8124834. 

Scientific papers related to Chapter 2 “Consumption baseline methodology” 

2. Sadovica, L., Lavrinovics, V., Sauhats, A., Junghans, G.; Lehtmets, K. “Estimating the energy 
transferred in the event of demand response activation: baseline model comparison for the 
Baltic States”, 15th International European Energy Market Conference, 2018, ISBN: 978-1-
5386-1488-4, DOI: 10.1109/EEM.2018.8469796. 

3. Kurevska, L., Sile, T., Sauhats, A. “Developing an economically advantageous wind 
forecasting method for electricity market design with a 15-minute imbalance settlement 
period”; 16th International European Energy Market Conference, 2019, E-ISBN: 978-1-
7281-3942-5 DOI, 10.1109/EEM.2019.8916574. 

4. Kurevska, L., Lavrinovics, V., Junghans, G. “Harmonization of Imbalance Settlement Period 
Across Europe: the Curious Case of Baltic Energy Markets”, 60th International Scientific 
Conference on Power and Electrical Engineering of Riga Technical University, 2019, e-ISBN: 
978-1-7281-3942-5; DOI: 10.1109/EEM.2019.8916254.  

Scientific papers related to Chapter 3 “Impact assessment on market prices” 

5. Kurevska, L., Lavrinovics, V., Junghans, G., Sauhats, A. “Measuring the impact of demand 
response services on electricity prices in Latvian electricity market”. 61st International 
Scientific Conference on Power and Electrical Engineering of Riga Technical University, 
2020, e-ISBN: 978-1-7281-9510-0, DOI: 10.1109/RTUCON51174.2020.9316485. 

6. Broka, Z., Baltputnis, K., Sauhats, A., Junghans, G., Sadovica, L., Lavrinovics V. “Towards 
optimal activation of balancing energy to minimize regulation from neighboring control 
areas”, 15th International European Energy Market Conference, 2018, e-ISBN: 978-1-5386-
1488-4, DOI: 10.1109/EEM.2018.8469935. 

7. Silis, A., Ertmanis, K., Kurevska (Sadovica), L., Junghans, G., Sauhats, A. “Benefits of 
regional balancing areas”. 16th International European Energy Market 2019 Conference e-
ISBN: 978-1-7281-1257-2, DOI: 10.1109/EEM.2019.8916254.  

 
 



13 
 

Scientific papers related to Chapter 4 “Cost-benefit assessment for demand response asset 
holder”. 

8. Sadovica, L., Lavrinovics, V., Sauhats, A., Junghans, G., Baltputnis, K., Broka, Z. “Case 
study – assessing economic potential for demand response in Baltic balancing market”; 59th 
International Scientific Conference on Power and Electrical Engineering of Riga Technical 
University, 2018, ISBN: 978-1-5386-6903-7, DOI: 10.1109/RTUCON.2018.8659901. 

9. Kurevska, L., “Heat Pump Optimization Strategies for Participation in Price-Controlled 
Demand Response in the Latvian Electricity Market”. Latvian Journal of Physics and 
Technical Sciences, vol. 58, no. 3, 2021, pp. 98‒107. https://doi.org/10.2478/lpts-2021-0019. 

10. Broka, Z., Baltputnis, K., Sauhats, A., Sadovica, L., Junghāns, G. “Stochastic Model for 
Profitability Evaluation of Demand Response by Electric Thermal Storage”. 2018 IEEE 59th 
International Scientific Conference on Power and Electrical Engineering of Riga Technical 
University (RTUCON 2018), Latvia, Riga, 12–14 November 2018. Piscataway, NJ: IEEE, 
2018, pp. 449–454. ISBN 978-1-5386-6904-4. e-ISBN 978-1-5386-6903-7. 
doi:10.1109/RTUCON.2018.8659837. 

 

Structure of the Thesis 

This Thesis is written in English. It consists of an introduction, four main chapters, conclusions, 
and bibliography. It contains 28 figures and 19 tables.  

Chapter 1 provides an introduction on how far the demand response services and flexibility 
services in general have advanced in the European Union. Furthermore, the chapter proposes a 
taxonomy and decision-making algorithm based on which a policy maker can evaluate the best 
approach for market roles and responsibilities given the market conditions. The chapter concludes 
with the evaluation of alternative compensation model comparison and a proposal of combination 
of central settlement model and integrated model as the most appropriate for the current market 
conditions in the Baltics. 

Chapter 2 provides an overview of the alternative methodologies to determine the energy 
consumption level that would have occurred in case the demand response activation would not 
have taken place. This calculated consumption is pivotal for explicit demand response service 
integration in any of the wholesale markets or allowing the demand response to provide ancillary 
services to system operators. The chapter includes a comparison of four consumption baseline 
calculation models (two are proposed by the author). The comparative analysis is based on 
robustness (using netted mean forecast errors) and accuracy (using absolute mean forecast error). 
For comparison, real metering data from 40 randomly selected medium to large Baltic consumers. 
As a result, consumption baseline model UK CBM was identified as the best performing both in 
terms of accuracy and robustness. Acknowledging that smart meters in Baltics are currently using 
hourly time resolution, while starting from 2025 (the latest), imbalance should be calculated based 
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on 15-minute resolution, alternative interpolation algorithms are compared based on the case study 
for wind generation forecasts. The best performing interpolation algorithm based on the study is 
Spline (Order 5). 

Chapter 3 deals with estimating and examining the role of demand response in the Baltic 
electricity markets. To understand the potential impact the demand response participation might 
have, the factors influencing the electricity day-ahead price are evaluated and quantified. The 
chapter looks at the following variables: gas price, wind production, emission costs and 
consumption changes. Based on the day-ahead market data of 2019, it is estimated that the 
reduction of consumption by 1 MWh/h results in a daily average price decrease of 0.025 
EUR/MWh (and decreases total expenditure for electricity procurement by 500–700 EUR or 20–
30 EUR/MWh for each ‘unconsumed’ MWh). This estimation is a valuable input when considering 
regulatory tools for introduction of demand response. Furthermore, the chapter includes an 
overview of two additional fields of study related to the demand response participation in electricity 
markets. One is the potential benefits for regional coordination in balancing market, the other is 
the examination of the system balancing procedures (activation optimization function). Findings 
from both indicate an increased potential for demand response regarding the provision of ancillary 
services as well as clear benefits for common regulatory framework. 

Chapter 4 provides an overview of findings of two case studies related to the financial benefits 
the demand response asset holder might enjoy from participation in demand response. One case is 
related to implicit demand response where the benefits are tested in real-life environment using 
heat-pumps during Q1 2021. The other is related to explicit demand response and participation in 
balancing market. In case of the explicit demand response, an assessment using Monte Carlo 
simulation based on load profiles of multiple fridges is used. The results suggest that, while the 
benefits for implicit demand are quite modest, the potential benefits for participation in balancing 
market can provide motivation to consumers to participate and invest in the tools and processes 
necessary.  

Conclusions of the Thesis provide a summary of main findings.  
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1. COMPENSATION METHODOLOGY  

1.1. Motivation and background 

The Paris Agreement under the United Nations Framework Convention on Climate Change, 
which as of April 2017, has been ratified by 145 countries (including the Baltics) [1] and the 
European Commission’s “Clean Energy Package” published on 30 November 2016 [2] have once 
again shown that the global policy makers are determined to lead the world towards stronger 
reliance on renewable energy sources and improved energy efficiency. As a result of this 
fundamental paradigm shift in global legal framework, the energy sector has seen emergence of 
new products and services. One especially prominent category of such products has been broadly 
referred to as ‘demand response’. According to the Federal Energy Regulatory Commission, 
demand response (DR) is defined as: “Changes in electric usage by end-use customers from their 
normal consumption patterns in response to changes in the price of electricity over time, or to 
incentive payments designed to induce lower electricity use at times of high wholesale market 
prices or when system reliability is jeopardized”. 

 
As discussed in [9]–[11], demand response is able to increase the system’s adequacy and to 

substantially reduce the need for investment in grid development and peaking generation by 
shifting consumption away from times of high demand as well as act as a cost-effective balancing 
resource for variable renewable generation. Adding stability to the system, it lowers the need for 
traditional and often ineffective sources of energy. It furthermore decreases the need for local 
network investments, as it shifts consumption away from peak hours in regions with tight network 
capacity [11]. DR delivers these benefits by providing consumers – residential, commercial, or 
industrial – with control signals and/or financial incentives to adjust their consumption at strategic 
times and by doing so promotes consumer engagement. 

While there seem to be a consensus on the need for the energy sector to introduce and integrate 
demand response in energy markets, the preferred choice of the market framework enjoys far less 
unambiguity both from policy makers’ and industry representatives’ point of view [12]–[19]. For 
example, in Austria the DR provider (incl. aggregator) has to agree bilaterally on data exchange 
and transfer pricing with balance responsible party (BRP) before flexibly providing the service to 
its customer; while in Switzerland the DR provider does not need such an agreement with BRP, it 
has to compensate the BRP at transfer price determined by the transmission system operator (TSO).  
Furthermore, in Ireland neither BRP nor aggregator is charged for the imbalance created [12], [13], 
[15].  Due to the increased role of DR and independent aggregator proposed in the European 
Commission “Clean Energy Package”, the Member States have restarted discussion on the 
integration of DR in their respective energy markets with increased urgency. The objective of this 
section is to present an overview of market models to be considered by the Baltic policy makers. 
The main contribution of this section is to review and categorize the market models currently 
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employed in the EU and determination of the preliminary qualitative assessment criteria for model 
evaluation in the context of balancing market in the Baltic region. 

  
Despite the fact that the Energy Efficiency Directive (2012/27/EU) has urged the Member states 

of EU to introduce the DR in all the energy markets, the majority of Member States still need to 
fully adopt the directive in practice. According to the latest survey on the DR, as of 2017, only in 
six countries (Switzerland, France, Belgium, Finland, Great Britain, and Ireland) the DR products 
are actively participating in wide range of energy markets (Fig. 1.1) [12], [13], [15]. However, even 
in these countries there are still some market design and/or regulatory challenges.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.1. Level of DR introduction in EU as of 2017 [13], [15] 

 
When reviewing the countries with less substantial progress, three broad groups emerge. 

Countries where DR has been partly integrated; countries where the market models have been 
developed, but no noticeable commercial activity in the sector of DR has been observed, and lastly, 
countries where no regulatory framework has been introduced or very strong market barriers still 
persist. 

The policy makers of Austria, Denmark, Germany, the Netherlands, Norway, Sweden, Czech 
Republic, and Slovakia have started working towards introduction, however, strong market barriers 
remain and the market growth is fairly limited. For example, Germany and the Nordic countries 
have started working towards introduction of independent aggregator, while Austria has been 
working to incrementally improve the bilateral agreement model currently employed. The policy 
makers of Slovenia, Italy, and Poland have been working towards initial introduction of DR in the 
energy markets and market activity is expected, while Romania, Hungry, and Luxemburg have 
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developed regulatory framework but due to market barriers or energy system characteristics, have 
rendered those markets inactive. The policy makers of Spain, Portugal, Baltics, Greece, Croatia, 
and Bulgaria have yet to develop basic regulatory framework for DR or have to remove significant 
synthetic market barriers [12]–[14]. Overall, the situation in EU can be characterized as fairly 
heterogeneous.  

1.1.1. The drivers for the DR in the Baltics 
Increase in unpredictable generation  

Similarly, to the trends in the Central and Southern Europe, the energy system in the Baltics 
becomes more reliant on the unpredictable distributed generation. Since 2010, the wind energy 
generation has increased more than three times, and currently the total wind capacity in the Baltics 
has reached almost 796 MW while solar capacity is 70 MW (Fig. 1.2). As of 2016, the installed 
capacity of unpredictable (distributed) generation (wind & solar) is more than 10 % of total 
generation capacity in the Baltics (Fig. 1.2). Furthermore, the trend is upwards sloping – the wind 
has already been one with the highest installed capacity increase rate, and it is expected to be further 
amplified by the upcoming oil shale production reduction in Estonia after 2020 due to facilitated 
lower CO2 emissions. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.2. Installed generation capacity in Baltics in 2016; data source: ENTSO-E 

Higher balancing market liquidity  

Currently in Latvia there is only one business entity participating in balancing market. While 
there has not yet been a situation where all submitted balancing bids are activated, having a single 
market participant is traditionally seen as suboptimal. Allowing new type of product (DR) would 
diversify the balancing market bid offer. Furthermore, the lack of demand side flexibility results in 
low energy price elasticity [20]. Increased demand side flexibility would have positive effect on 
market prices in all energy markets (including balancing market).  
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The legislative framework requirements 

Both existing and upcoming requirements of the legislative framework designed by the 
European Commission have already emphasised that the Member States are to develop a market 
model where the demand response resource owners (both resident and non-resident) can freely 
participate in the respective energy markets. According to [12], [13], and [15], while none of the 
countries have special obstacles disallowing the demand response, the lack of appropriate 
framework for DR inclusion in different energy markets has made the DR inclusion virtually 
impossible. Furthermore, the “Clean Energy Package” originally published on 30 November 2016 
continues to stipulate the requirements of the market model in a greater detail than before [2]. The 
precise requirements are reviewed in the following sections. 
 
The desynchronization from the Integrated Unified Power System  

The desynchronization from the Integrated Unified Power System (IPS/ UPS) is one of the 
priorities outlined in the EU Energy Strategy. While the exact date of the desynchronization has 
not yet been set, it is the common understanding of the Baltic TSOs that preparations for this task 
should be started already now. The following three scenarios have been suggested as the most 
feasible options for the desynchronization plan:  
• Baltic States’ synchronous operation with continental Europe (HVAC Lithuania-Poland 

interconnector), including soft coupling supported by existing HVDC links; 
• Baltic States’ synchronous operation with the Nordic countries (HVAC Estonia-Finland), 

including soft coupling supported by existing HVDC links;  
• Baltic States’ isolated island operation, including soft coupling supported by existing HVDC 

links.  
While these approaches differ vastly in technical specification and costs, they all share the 

essential precondition for the Baltic States’ energy system having higher flexibility [21].  
When comparing the Baltics with other EU countries in regards to the main drivers behind the 

development of DR, it is clear that many aspects overlap. The increase in unpredictable generation 
to at least some extent is present in all EU countries.  Similarly, the need for higher liquidity in 
balancing market is almost universal across the EU. Given that the Baltic region is in IPS/UPS and 
that the wind & solar energy penetration for the Baltics is still below Western Europe, it follows 
that the pressure to integrate DR in the energy markets is comparatively lower in the Baltics than 
in, for example, Ireland or Denmark. Furthermore, the EU policy/ regulatory requirements are the 
same for all EU countries, and this aspect, though important, also does not distinguish the Baltics 
among the other EU countries either. The most unique driver for DR in the Baltic region is the 
upcoming desynchronization from IPS/UPS. It is already known that when the Baltics do 
desynchronize, the market of DR must be already in place, especially for balancing and reserve 
markets. Based on experience in the EU, the length of time required for the DR market to become 
commercially active is five or even more years [13]. Accordingly, market regulations should be 
developed and implemented already now. 
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1.1.2. Review of legal requirements for the Baltics 
Before the European Commission (EC) published the project for “Clean Energy Package” on 

30 November 2016, the key EC regulation in regard to demand response and aggregation had been 
the Energy Efficiency Directive (2012/27/EU) [22]. The main requirements towards demand 
response under the Energy Efficiency Directive can be divided into four sections [15]:  

• Demand response should be encouraged to participate alongside supply within the 
wholesale, balancing and ancillary services markets;  

• TSOs and DSOs must treat the demand response providers, including aggregators, in a 
non-discriminatory manner and on the basis of their technical capabilities;  

• national regulatory authorities should define technical modalities for the participation in 
these markets on the basis of participants’ capabilities; 

• these specifications should include enabling aggregators. 

The “Clean Energy Package” further includes more detailed and more concrete requirements 
for the Member States. The two regulations most discussed regarding DR are: Proposal for the 
Directive on the internal market for electricity and Proposal for the Directive on the internal market 
for electricity. 

The draft proposal for the Directive on the internal market for electricity develops on the initial 
stance and provides Member States with further details (particularly Articles 13 and 15). The 
directive stipulates the importance of [2]:  

• granting the demand side resources (private and professional) access to all markets 
(wholesale, balancing, ancillary services) at all timeframes and introducing a new 
obligation to remunerate customers for the flexibility;  

• empowering the consumer to participate in DR (directly or through aggregation) without 
the consent of the supplier and to switch aggregation service provider without penalty;  

• empowering independent aggregators by ensuring that they can enter the market without 
the consent from the supplier and can participate in the energy markets without 
compensating the supplier and/or generator. 

The Directive on the internal market for electricity should have been fully transposed by the 
Member States by January 2021. All three Baltic countries are currently in process of including 
appropriate provisions in their national legislation. 

1.2. Overview of alternative compensation models 

The models presented in EU [11]–[19] can be broadly categorized into six main types. Within 
each of the architype, different variations of the model are possible. There are two main groups of 
the model architypes: models where the aggregator directly or indirectly compensates the supplier 
for the energy transferred (Supplier Settlement Model, Consumer Settlement Model, Central 
Settlement Model) and models where aggregators do not compensate either directly or indirectly 
the supplier for the energy transfer (Socialized Settlement Model, No Settlement model). The 
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Integrated model does not have any energy transfer (and no compensation mechanism is 
necessary). Each of the groups has a subdivision. For the ‘compensation group’ the subdivision is 
determined by the party through which the compensation is granted to the supplier. For the ‘no 
compensation group’ the subdivision is determined by the group of customers who ultimately 
compensate the supplier (Fig. 1.3). The relationships between different market parties in each of 
the models are presented in Fig. 1.4.  
 

  
Fig. 1.4. Proposed market model taxonomy 

Fig. 1.3. Roles and responsibilities in different market models [11], [14], [16]–[19] 
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1.3. Qualitative analysis 

The overview presented in the previous sections sets up the basis for the evaluation of the models 
in the context of the Baltic region. The best practices along with the drivers for the DR integration 
in the Baltic energy market and the upcoming changes in the legislative framework suggest that a 
model should not only be in line with the current legislation but should also have the following 
characteristics:  
• inclusive – meaning that the market model ensures there are no barriers of entry for the 

independent aggregator;  
• fair – meaning that the market model treats the aggregators as energy transfer facilitators 

between market participants;  
• simple – the market model is compatible with the existing data exchange processes and does 

not require significant investments in IT infrastructure/administrative processes for other 
market participants. 

In Fig. 1.5 the summary of model comparison is presented. 
 

Market model Inclusive Fair Simple  
Integrated    
Supplier settlement model    
Consumer settlement model    
Central settlement model    
Socialized settlement    
No settlement    

Fig. 1.5. Comparison of the market models 

 
The preliminary qualitative comparison of the models suggests that the best approach for the 

integration of DR in the Baltic Balancing market is to combine two models:  
• the integrated model is the most appropriate for suppliers who are interested in 

developing new products for their customer portfolio; 
• the centralized settlement model is the most appropriate for independent business 

interested in providing aggregation service. 

Such combination of models will provide the best opportunity for the existing and the potential 
market participants and ultimately will ensure that each and every customer has an option to 
participate in the balancing market. Further research should focus on the analysis of how the market 
model impacts the prices within energy wholesale and retail markets, as well as assessment of the 
most suitable market model or combination of market models for energy wholesale markets.  
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2. CONSUMPTION BASELINE METHODOLOGY  

2.1. Motivation and background 

Demand response service (DR) is a temporal change in consumer’s energy consumption due to 
a reaction to price signals or by other measures [23]. DR is associated with multiple benefits such 
as increased system flexibility, improved network congestion, cost-effective alternative to grid 
investments, and improved energy efficiency [24], [25]. 

 DR can be broadly divided into two groups: implicit DR and explicit DR. Implicit DR (‘price 
based’ DR) refers to consumers choosing to be exposed to time-varying electricity prices and/or 
time-varying network tariffs that reflect the real cost of electricity at the time of use and allows the 
consumers to react to that price depending on their own preferences. Explicit DR refers to a program 
where demand competes directly with supply in the wholesale, balancing and ancillary services’ 
markets directly or through the services of aggregators. This is achieved through the controlled 
changes in the load that are traded in the electricity markets, providing a comparable resource to 
generation, and receiving comparable prices [26], [27]. Currently, implicit DR in Latvia and Estonia 
is available to consumers via electricity supply contracts where retail price is linked to the spot price. 
Starting from late 2017, there is an ongoing DR aggregation pilot study in Estonia; however, the 
explicit DR is not commercially active there or anywhere else in the Baltics [28]. 

For explicit DR to become commercially active, a market framework describing the financial 
settlement among the market parties (such as consumers, aggregators, system operators and balance 
responsible parties) needs to be developed. Estimate of DR delivered also known as the electricity 
reduction amount (ERA) is a pivotal part of such a framework. ERA is the difference between the 
actual consumption that occurred and the forecasted consumption that would have occurred in the 
absence of DR activation event. This forecast is called a baseline, and a method for baseline 
estimation is called consumption baseline model (CBM) (Fig. 2.1) [29]. 

 

 

 

 

 

 

Fig. 2.1. Consumption baseline explained 

As of now there is no universal consensus on the best performing CBM, and even in countries 
where the DR commercial activity is relatively high (e.g., UK, France, Belgium, USA) the choice 
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of the model tends to be rather fluid and CBMs are regularly updated to reflect the reduced costs of 
data collection and processing as well as improved understanding of the underlying processes [24], 
[26], [27], [29]–[34]. Regional CBM compatibility studies have been performed in USA [29], [30], 
UK [35], Australia [36] and EU in general [26], [27] among others. When considering a CBM 
proposal for the Baltic region, we need to take into account the additional challenges regarding the 
data resolution. Traditionally, DR events for a single metering point can be shorter than 15 minutes. 
Currently the imbalance settlement period in the Baltics is 1 hour and the metering data that can be 
used for the financial settlement are collected at the same time resolution [28]. The mismatch 
between the length of a DR event and the time resolution of available metering data further 
complicates the development of acceptable CBM [33]. The main contribution of this section is 
testing of CBMs' accuracy and skewness on a lower resolution metering data (using the hourly data 
that are typically used in the Baltics instead of more popular 5-minute or 15-minute resolution 
usually used in the previous research). Such tests are important because the change in data resolution 
can have an impact on the relative performance of CBMs.  

2.2. Overview of alternative consumption baseline models 

A CBM is used to forecast the consumption in the absence of DR activation event. A well-
designed CBM enables grid operators and utilities to measure the performance of DR resources and 
correctly attribute the imbalance caused. Such a CBM benefits all stakeholders by aligning the 
incentives, actions and interests of consumers, aggregators, utilities, and grid operators; however, 
not all CBMs can be considered well-designed [33]. A CBM that systematically over-estimates the 
forecasted consumption will over-value the contribution of the participating DR resource and result 
in overestimation of positive imbalance for the balance responsible party of the said resource. 
Conversely, a CBM that systematically underestimates the forecasted load will under-value the 
contribution of the participating DR resource and result in overestimation of negative imbalance for 
the balance responsible party [33]. 

Based on the literature review, CBMs are characterized by the following parameters: accuracy 
(low average expected error); robustness (absence of systematic error in either direction and lack of 
obvious data manipulation exploitation possibilities for opportunistic market participants); and 
transparency (market parties can apply the CBM and get the same results as the grid operator) [29], 
[36]. It is important to note that at times these characteristics are at odds with each other –very 
accurate models based on advanced data processing methodologies tend to be fairly complex and 
non-transparent, while very simplistic models tend to be fairly vulnerable to data manipulation [24], 
[33]. Accordingly, the choice of the CBM is ultimately dependent on the relative importance 
attributed to accuracy, robustness, and simplicity. This implies the necessity for tradeoffs when 
designing a CBM for a particular market and at least partly explains the exotic variety of CBMs 
already in place.  

All CBMs can be broadly divided into two categories – a day-matching forecast and a regression 
forecast [34]. In the Baltics the concept of explicit DR is still fairly novel and the new market 
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participants (such as independent aggregators) still face limited enthusiasm from the incumbent 
market participants. Based on the market maturity and the Baltics market participants' views 
presented in public consultation summary, it is obvious that a CBM relying on advanced statistic 
and data processing tools would currently not be feasible [24], [29], [36], [37]. Similar approach 
can be observed in the EU, where, as of now, only in France the balancing market has employed 
long-term statistics-based model, while all other EU states, where CBM is present, have opted for 
day-matching CBMs [26], [27], [33]. Furthermore, our position on regression-based models was 
further cemented by EnerNOC (2009) that stated that regression models have been rejected in the 
USA due to the lack of support from the market participants. Accordingly, the regression-based 
models are not reviewed in this section on the basis of not fulfilling the minimum requirements of 
simplicity parameter [33]. 

The day-matching CBMs can be further divided into two sub-categories – models using only the 
data from before the DR activation event and models using data from both before and after the DR 
activation event. In the EU, the CBMs using only ex-ante metering data seem to enjoy higher 
popularity [26], [27], which might be linked to the ex-ante/ex-post CBMs being more vulnerable to 
data manipulation exploits. 

Baseline consumption methodology forecast models 

We tested four day-matching CBMs – three of those only use metering data from before DR 
activation event and one uses the data from both before and after activation. Description of the 
CBMs tested is presented in Table 1. 

1. EnerNOC CBM has been used and tested in North America (USA) and is one of the earlier 
baseline models tested in markets. EnerNOC original variation operates with a time 
resolution of 1 hour [33]. 

2. The UK model is adopted from the paper by Imperial College London (2014) and for some 
time had been used in the UK. The model originally operates with higher time resolution and 
has been adjusted to the use of hourly metering data [35]. 

3. Average CBM is the only model in our test that uses both before and after DR activation 
event data. The model broadly follows the concepts present in the CBM employed in Ireland 
[26], [27]. 

4. The daily profile CBM is loosely based on the methodology present in Belgium [26], [27]. 
Similar to the Daily profile, the Belgium model does not fully use day-matching approach, 
since only the data from the same day is employed in the CBM. Furthermore, Belgium uses 
15 min time resolution. 

Based on the paper presented by DNV KEMA (2013) on the basic CBM calculation type, a 
separate calculation can be applied to align the baseline with the observed conditions of the event 
day – baseline adjustment method. The CBM adjustment method can improve the performance of 
the model significantly. The factors used for adjustment rules may be based on, but are not limited 
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to: temperature, humidity, calendar data, sunrise/sunset time, and/or event day operating conditions 
(the most widely used factor). There are two main types of baseline adjustment methods: 

1. Additive, which adds a fixed amount to the provisional baseline load in each hour, such that 
the adjusted baseline will equal the observed load at a time shortly before the start of the 
event period. 

2. Scalar, which multiplies the provisional baseline load at each hour by a fixed amount or 
scalar, such that the adjusted baseline will equal the observed load on average during a 
window of time shortly before the start of the event period [34]. 

In our analysis, additive adjustment is used in EnerNOC CBM, UK CBM and Average CBM, 
while scalar is used in Daily profile CBM (Table 2.1).   

Table 2.1 

Summary of Alternative Consumption Baseline Models 

CBM Short description 

EnerNOC 

Baseline is equal to the average consumption of 5 corresponding hours with the highest 
consumption within 10 last non-event days. Baseline is adjusted upwards by the average 
difference between the last two hours’ actual consumption and their baseline. 

Formula 1 2 3 4 5 1 1 2 2max ;0
5 2

t t t t
t

c c c c c c b c bb − − − −+ + + + − + − = +   
  (2.1) 

    

UK 

Baseline is equal to the average consumption of 5 corresponding hours within 5 days 
with the highest daily consumption (out of 10 last non-event days). Baseline is adjusted 
upwards and downwards by the difference between the last two hours’ actual 
consumption and their baseline. 

Formula 1 2 3 4 5 1 1 2

5 2
t t t

t
c c c c c c b bb − − −+ + + + − −

= +     (2.2) 

Average 

Baseline is equal to the average of consumption one hour before and one hour after the 
DR event. 

Formula 1 1

2
t t

t
c cb − ++

=       (2.3) 

         

Daily 
profile 

Baseline is equal to the consumption within preceding hour multiplied by the fraction of 
increase/decrease of consumption in the corresponding hours a day before the event. 

Formula , 1 1,

1, 1

d t d t
t

d t

c c
b

c
− −

− −

×
=    (2.4)      

   
bt ‒   baseline at hour t; 
c1 ‒ highest corresponding hourly consumption within 10 last non-event days; 
C1  – highest corresponding hourly consumption in a day with highest daily consumption within 10 
last non-event days. 
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2.3.  Quantitative analysis 

2.3.1. Methodology 

We used hourly metering data that represents annual consumption of 40 randomly selected 
medium to large electricity end-users from the Baltic region. The set of consumers included 
different consumption patterns with the hourly average consumption varying from 50 kWh to 3 
MWh. In our analysis, we mainly focus on the medium and large consumers due to two reasons: 
such consumers usually are characterized by higher consumption pattern volatility, such 
consumers have higher DR potential. 

To ensure that the sample is heterogeneous and represents different consumption patterns, 
correlation analysis was performed for all pattern pairs. The results of the correlation analysis 
indicated a well diverse sample and indicated that no pattern type is over-represented. 

The total number of hours used in the analysis is 8760. Since each model requires different 
number of days or hours before the event, the number of hours with forecasted baseline differs 
among the models tested. 

Analysis 

Based on the literature review, all the analysed CBMs fulfil the simplicity parameter. 
Accordingly, the objective of the analysis was to quantify each model's accuracy and robustness.  

For robustness comparison, we calculated netted mean forecast errors (NMFE), and for the 
accuracy measurement, we used absolute mean forecast error (AMFE).  If NMFE is equal (close) 
to zero, it is expected that in the long term, inaccuracy will not have impact on total amounts of 
energy transferred – in other words, NMFE measure the extent to which the model is 
systematically skewed in either direction. AMFE measures the expected deviation in a single 
instance. As a benchmark for the AMFE we use the results from the study covering different 
CBMs in USA, where the model accuracy for models with adjustments ranged from 10–14 % 
[34].  

The baseline error was calculated as follows:  

 𝐸𝐸𝐸𝐸𝐵𝐵𝐵𝐵 = 𝐸𝐸𝐹𝐹 − 𝐸𝐸𝐴𝐴, where  (2.5) 

𝐸𝐸𝐸𝐸𝐵𝐵𝐵𝐵– baseline error, kWh;  
𝐸𝐸𝐹𝐹 – baseline or forecasted energy consumption, kWh; 
𝐸𝐸𝐴𝐴 – actual consumption, kWh. 
 

Sample error at a trading interval (t) is calculated as follows: 

 𝐸𝐸𝐸𝐸%𝑡𝑡 =  
∑

𝐸𝐸𝐸𝐸𝐵𝐵𝐵𝐵𝑖𝑖,𝑡𝑡
𝐸𝐸𝐸𝐸𝐴𝐴𝑖𝑖,𝑡𝑡

𝐼𝐼
𝑖𝑖=1  

𝐼𝐼
 , (2.6) 

where 
𝐸𝐸𝐸𝐸%𝑡𝑡 – baseline error at a trading interval t; 
I – number of consumption patterns in the testing sample; 
i – consumption pattern. 
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Accordingly, if the baseline error is above 0, the baseline is overestimated, while if the 
baseline error is below 0, the baseline is underestimated. 

NMFE is calculated as follows: 

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =  
∑ 𝐸𝐸𝐸𝐸%𝑡𝑡
𝑇𝑇
𝑡𝑡=1

𝑇𝑇
, (2.7) 

where 
NMFE – netted mean forecast error for all trading periods within the sample; 
t  – trading interval; 
T  – all trading intervals in the sample. 
 
AMFE is calculated as follows: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =  
∑ �𝐸𝐸𝐸𝐸%𝑡𝑡�
𝑇𝑇
𝑡𝑡=1

𝑇𝑇
, (2.8) 

where AMFE is absolute mean forecast error for all trading periods within the sample. 
 
To estimate the statistical significance of the average accuracy differences observed for both 

MNFE and AMFE, we ran F test for the difference in two variances for all CBM pairs at a 
significance level of 99 %. The results indicated that all CBMs' variances are significantly 
different from each other. We continued with t-test for differences in error means of CBMs. The 
results are presented in the next section. 

2.3.2. Results and discussion 
 
The descriptive statistics of NMFE and AMFE is presented in Tables 2.2 and 2.3. 

 

Table 2.2  

NMFE Descriptive Statistics 

 EnerNOC CBM UK CBM Average CBM Daily prof. CBM 
SD 33.21 % 7.54 % 3.52 % 6.64 % 
Variance 1103 %2 57 %2 12 %2 44 %2 
Max 727 % 66 % 182 % 389 % 
Mean 36.6 % 0.7 % 1.1 % 1.1 % 
Min 1 % –43 % –23 % –100 % 
Sample 8312 5797 8759 8686 

 
Table 2.3 

AMFE Descriptive Statistics 

 EnerNOC CBM UK CBM Average CBM Daily prof. CBM 
SD 33.15 % 6.24 % 3.27 % 6.49 % 
Variance 1099 %2 39 %2 11 %2 42 %2 
Mean 37.8 % 9.5 % 4.8 % 7.1 % 
Sample 8312 5797 8759 8686 
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The density distribution for the forecast errors of the CBMs tested is presented in Fig 2.2.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2.2. Density distribution for the forecast errors of the CBMs tested 
The results of the t-test for the mean difference for the model pairs for NMFE and AMFE values 
are presented in Tables 2.4. and 2.5, accordingly. 

Table 2.4 

NMFE t-test Results 

t-value for differences of error means 
 UK CBM Average CBM Daily prof. CBM 

EnerNOC CBM 95.280*** 97.068*** 95.691*** 

UK CBM  3.969*** 3.677*** 

Average CBM   0.366 
Significance: ***1 % level; ** 5 % level; *10 % level. 
 
The results of the t-test for NMFE indicate that there is no significant difference between the 

NMFE of Average CBM and Daily profile CBM. All other differences are statistically 
significant at a significance level 1 %. 
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Table 2.5 

AMFE t-test Results 

t-value for differences of error means 
 UK CBM Average CBM Daily prof. CBM 

EnerNOC CBM 72.895*** 90.306*** 83.059*** 

UK CBM  – 52.781*** –22.906*** 

Average CBM   –28.738*** 
Significance: ***1 % level; ** 5 % level; *10 % level. 

 
The results of the t-test for AMFE indicate that the CBMs present significantly different 

AMFE at the 1 % significance level. 
The UK CBM shows the lowest NMFE (0.7 %). The results indicate that if this model were 

applied, there would be no substantial long-term inaccuracy of ERA in either direction. The 
EnerNOC CBM shows the poorest results, which is associated with overestimation of ERA for 
more than one third of the total energy volume. 

The analysis of AMFE indicates that all models, except for EnerNOC CBM, perform better 
than the benchmark value of 10–14 % and as such is considered to fulfill the minimum accuracy 
condition.  
 

2.4. Comparison of alternative time resolution increase algorithms 

2.4.1. Background and motivation 
According to Article 53 of the European Union Electricity Balancing Guidelines, the 

transmission system operators (TSOs) should implement the 15-minute imbalance settlement 
period (ISP-15min) until 18 December 2020, with Article 62 indicating that the introduction 
can be postponed until up to 1 January 2025. Most smart-metering devices in the Baltics are 
capable only to support hourly time resolution for metering data. Similar issue can be observed 
in wind generation forecasting. To test alternatives transposing algorithms, a study based on the 
needs of wind forecasting in the context of 15-minute ISP, was performed.  

 
Imbalance calculation and ISP 

It is generally agreed that finer time resolution for imbalance settlement improves system 
forecast accuracy (Fig. 2.3) [38]–[40]. The longer the ISP, the more the deviations from the 
forecasted schedule are netted within the ISP and the lower imbalance amount is recorded. The 
netting effect is beneficial to market participants with volatile loads, but it hurts the other market 
participants. Regardless of netting, the system must be balanced at every moment, so the costs 
of balancing are still incurred and are translated into higher imbalance costs per MWh.  
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Furthermore, the highest imbalance in the Baltic system is typically recorded at the 
beginning of the hour when the generation units change regimes. This is caused by the slow 
ramping rates of the conventional generation plants; by introducing shorter ISPs the ramping 
rates can be better acknowledged and more accurate system balance forecast could be created 
(Fig. 2.3). 

Overall, it is expected that the cost allocation among market participants will better reflect 
cost creation. However, real benefits for system stability and balancing cost reduction can only 
be achieved if market participants adjust and improve their forecasting methodologies.  

2.4.2. Methodology 
Objective and scope 

The typical time resolution of a mesoscale model output is 60 minutes. In order to get a 
qualitative improvement in load forecasting and consequently reduce imbalance costs, the 60-
minute data must be translated into higher time resolution.  The aim of the analysis is to explore 
the benefits of facilitation of this translation via interpolation and to test and compare the 
performance of the approaches. To exclude particularities outside of the scope of current 
research step, the author opted to interpolate data from a single model. To test the quality of the 
interpolation, the available wind observation data from 2018 with 10-minute time resolution 
was used. Accordingly, also the interpolation methods’ performance is determined for 10-
minute intervals. For the purpose of this study it is acceptable to assume that the method’s 
performance at 10-minute resolution is a proxy for the method’s performance at 15-minute 
resolution.  

To provide a rough comparison of economic performance the authors also accounted for 
the differences between the imbalance cost of overestimation of wind speed and 
underestimation of wind speed and the used absolute (as opposed to netted) forecasting error.  
Methodology 

The Weather Research and Forecast model has been used to create a mesoscale model dataset. 
Although a 30-min model data are available, the data were down-sampled to the time resolution 

Fig. 2.3. Imbalance misattribution due to netting effect and regime change effect 
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of one hour. In total the author tested 9 different interpolation methods. These approaches can 
be divided into three groups: ‘the nearest neighbor’, ‘polynomial interpolation’, and ‘spline 
interpolation’.  

• The nearest neighbor interpolation is the simplest method, as it substitutes the unknown 
value with the closest available value, namely, for all ISPs between 14:00 and 15:00 the 
available modeled value for 14:00 is used. ‘The nearest neighbor’ approach serves as a 
baseline approach to which the other eight methods are compared. 

• Polynomial interpolations use a polynomial function to obtain the values between known 
points. Polynomial interpolation can have different orders, depending on the order of the 
function used. The author tested three polynomial interpolation approaches – a linear 
function, where a straight line is drawn between known points (first order), a quadratic 
function (second order), and a cubic function (third order).  

• Spline interpolation is an approach where the interpolating function is required to have 
smoothness properties, by ensuring the continuity of derivatives. The author tested five 
approaches based on spline interpolation (order 1 to 5). 

After obtaining the interpolated model data, the author converted both real observation and 
interpolated model data in energy generated by using a power curve of a small wind power 
station. The difference between energy calculations based on the forecasted and observed data 
is considered imbalance. Furthermore, the annual expected cost of imbalance was calculated 
based on a difference between average imbalance prices (both directions) and corresponding 
spot prices for 2018. Lastly, the relative performance of each interpolation approach was 
calculated assuming the ‘nearest neighbor’ method’s performance as a reference. 

Inputs 

The author used the following data for the analysis:  
• Model data was extracted from the mesoscale NEWA [41] dataset [42] for the nearest 

gridpoint and vertically logarithmically interpolated in each timestep to the observational 
height. 

• For observational data, the available high mast measurements carried out using cellular 
communication masts for the station near Ventspils, Staldzene were used. Observational 
data are available for 10-minute intervals for one full year (2018) for the measurement 
height of 80 m [42]. 

• As a sample power curve for converting wind power in capacity, a power curve from 
Vestas V100/2000 (2MW) was used. 

• For day-ahead price calculations the author used NordPool spot prices for 2018 
(Baltic/Latvian bidding zone).  

• For imbalance price calculations the author used the imbalance price data for 2018 of the 
Baltic TSOs (Baltic/ Latvian bidding zone). 
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2.4.3. Results and discussion 
Overall deviations between observations and forecast are quite high (netted error is ~20 %). 

The calculations also show that the error rates from the mesoscale model data are skewed in the 
direction of overestimation. 60 % of modeled values suggested the wind speed higher than the 
observed, while 40 % suggested the wind speed lower than the observed. In other words, the 
modeled data, when used for electricity generation scheduling, would result in 60 % of ISPs with 
negative imbalance (imbalance energy bought by the power station operator) and 40 % of ISPs 
with positive imbalance (imbalance energy sold by the power station operator) (Table 2.7). The 
author did not detect statistically significant difference regarding systematic bias in one or the 
other direction among the interpolation methods tested.  

 
While overall deviations between the observed and modeled (forecasted) value are quite high, 

the overall costs of imbalance remain adequate (7 % of electricity sales). That is related to 
favorable market conditions that rendered small price differences between the imbalance price 
and spot price (8.22 EUR/MWh for deficit and 5.97 EUR/MWh for overproduction) [43]. 

While comparing interpolation approaches, the best performing model is Spline (Order 5). 
Compared to the simplistic approach (assuming modeled hourly value is unchanged for all ISPs 
within an hour), Spline (Order 5) provides a 5.1 % reduction of imbalance costs against the 
‘nearest neighbor’.  Similar level of reduced annual imbalance costs is associated with Spline 
(Order 3) (Table 2.6). 

Table 2.6 

Model Performance Comparison 

Method name 
Expected annual 

imbalance costs 
Performance against  

‘the nearest neighbor’ 

Nearest neighbor      23 766.22 €  n/a 

Linear      23 645.44 €  –0.51 % 

Quadratic      23 782.04 €  0.07 % 

Cubic      23 788.40 €  0.09 % 

Slinear      23 645.44 €  –0.51 % 

Spline (Order 2)      22 732.82 €  –4.37 % 

Spline (Order 3)      22 620.24 €  –5.04 % 

Spline (Order 4)      22 691.34 €  –4.75 % 

Spline (Order 5)      22 609.88 €  –5.10 % 
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Table 2.7 
Model Comparison – Imbalance Costs (Both Directions) 
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3. IMPACT ASSESSMENT OF MARKET PRICES 

3.1. Motivation and background 

In the context of Baltic synchronization with the Continental Europe synchronous area, the 
discussion on alternative sources for fast acting reserves (FCR and aFRR balancing products) 
has gained prominence. The demand response services has been considered as one of the less 
expensive technological options compared to storage facilities and conventional gas turbines 
[44], [45]. To facilitate faster adoption of the demand response role in Latvian electricity market, 
a new Cabinet of Ministers regulation has been developed for aggregators (in force from 24 
March 2020). This regulation allows the demand response services to participate not only in 
providing ancillary services for system operators, but also to participate in wholesale electricity 
markets [46].  

According to the report published by the Latvian transmission system operator, electricity 
consumption is expected to grow by less than 1 % per annum (base scenario) [47]. The growth 
of consumption in a conservative scenario (with average winter temperatures above  
–3.5 ℃) is forecasted at ~0.5 %. Similarly, the model developed by Skribans, V. & Balodis, M. 
(2017) the forecasts of electrical consumption in Latvia only slightly increase (i.e., 10 % within 
10 years) [48]. From the supply-demand perspective this means that lower prices for electricity 
can be achieved only by shifting the demand from peak periods to, for instance, night hours, 
when electricity consumption in Latvia and the region is lowest [49]. 

 
Day-ahead price characterization 

Latvian electricity market operates under the Nord Pool electricity exchange, which provides 
services for the Nordic and Baltic regions and Northern Europe (Germany, France, the United 
Kingdom, etc.). Nord Pool is the largest electricity exchange in Europe – in 2019 the total of 494 
TWh was traded on the exchange [50]. For comparison, Latvian total consumption of electricity 
in 2019 was 7.3 TWh, or 1.4 % of traded on Nord Pool. Such traded amounts and large number 
of market participants (more than 400 entities) guarantee high competition and liquidity both for 
producers and consumers. 

In 2019, average day-ahead price in Latvia was by 16 % higher than in Sweden (Zone 4), and 
by 5 % higher than in Finland. While prices in Latvia, Lithuania, and Estonia are quite close to 
each other, they are significantly higher than the prices in the Nordics (especially in Sweden and 
Norway). This difference becomes even more pronounced when accounting for electricity 
consumption profile. Consumption is considerably higher during the business hours, so the 
demand in Nord Pool cannot be covered by the relatively cheap renewable and nuclear energy. 
In these hours cheap energy is mainly consumed in the bidding zone where it is produced. In 
other bidding zones, the day-ahead closing prices are determined by more expensive producers.  

Day-ahead prices in Latvia are not only the highest but also the most volatile when compared 
to other bidding zones. Figure 3.1 shows that Latvian prices vary from 12 €/MWh to 
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114.6€/MWh. In contrast, daily average prices in neighboring bidding zones never crossed 100 
€/MWh level during the last 4 years from 2016 to 2019. 

 
 
 
 
 
 
 
 
 
 

Fig. 3.1. Box plot of daily average day-ahead prices, 2016–2019; source: Nord Pool (author’s 
calculations) 

 
In Latvia, where only a couple of electricity retailers have their own production facilities, 

which can be used as a natural hedge against electricity price fluctuations, most traders are very 
sensitive to volatility of day-ahead prices. Introducing the demand response services could 
provide additional hedging options for these traders. 

3.2. Methodology 

Framework 

To determine the impact of demand response services on the prices of the day-ahead market, 
the day-ahead price factor analysis is performed. To do this, the author uses the time series 
methodology, which is the most widely used technique in studies focused on price 
determination [51]–[53]. The multiple linear regression model is employed to evaluate if the 
chosen set of k variables has a statistically significant impact on electricity prices (Y). The 
general form of multiple regression model is as follows: 

Yt = β0 + β1xt,1 + β2xt,2 +…+ βixt,1k + εt .            (3.1) 

The use of multiple regressions is associated with multicollinearity issues – the situation 
when two or more independent variables have high correlation, which may result in unstable 
solutions of regression models. According to [54], multicollinearity makes the regression 
coefficients unidentifiable. To minimize multicollinearity, the correlation matrix analysis is 
performed and regressions variables that have high mutual correlation are removed. 
Furthermore, for the regression model with the highest explanatory power (measured as 
adjusted R-squared) standard model diagnostic tests are performed. 

 
Factors analyzed 

To estimate the impact of consumption changes on the day-ahead electricity price, the author 
analyzes the relationships between fundamental factors and electricity prices in Latvia, such as 
oil, coal, natural gas. The CO2 emission allowances have a statistically significant influence on 
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day-ahead prices in Latvia, as the price of the fuels and CO2 emission allowances constitute the 
biggest part of short-term marginal costs for generators [45]. Furthermore, the availability of 
renewable resources such as hydro and wind have a statistically significant influence on the 
day-ahead prices in Latvia because the short-term marginal costs of hydro and wind stations 
are negligible [55]. 

Factors considered in the analysis: 
• Electricity spot price (€/MWh) – the Nord Pool traded day-ahead electricity price for a 

specific bidding zone (Nord Pool). 
• Electricity consumption/production prognosis (MWh) – expected 

consumption/production volume according to the day-ahead Merit Order Curve result 
in a specific bidding zone (Nord Pool). 

• Wind production prognosis (MWh) – expected wind production volume according to 
the day-ahead Merit Order Curve results in a specific bidding zone (Nord Pool). 

• CO2 emission allowance price (€/ 1000t) – CO2 daily closing price of continuously 
traded EUA future contract on ICE (SKM). 

• Natural gas (TTF) price (€/MWh) – daily closing price of continuously traded future 
contracts on ICE (SKM). 

The results of multicollinearity correlation matrix analysis are presented in Table 3.1.  
 

Table 3.1 

Correlation Matrix Based on Daily Data from 2016 to 2019 (inclusive) 

Variable [1] [2] [3] [4] [5] 
Price LV [1] 100 %     

Consumpt. prog. LV [2] 24 % 100 %    
TTF price [3] 36 % 15 % 100 %   
CO2 price [4] 51 % 1 % 5 % 100 %  

Wind prod. NordPool [5] –10 % 26 % 14 % 27 % 100 % 

3.3. Results and discussion 

Analysis 

The results of the regression with four independent variables (prognosis of electricity 
consumption in Latvia, forecasted electricity amount from wind stations at Nord Pool territory, 
CO2 emission allowances and natural gas (TTF) future contract prices) indicate that all of them 
are statistically significant predictors of the day-ahead price in Latvia. The equation of the 
model is as follows: 

 
Priced = β0 + β1Consumption progd + β2CO2pricem‒1 + β3TTFpricem‒1 + β4 + εd     (3.2) 

 
All variables are significant at 1 % level. The results suggest that higher forecasted 

consumption, CO2 emission allowances, and natural gas prices result in higher day-ahead 
prices. In contrast, higher wind production is associated with lower day-ahead prices. The 
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regression’s adjusted R-squared is 61.35 % – more than half of the variance of the day-ahead 
prices is explained by the variance of these four independent variables. The variance inflator 
factor indicates no multicollinearity in the equation. 

 
Table 3.2 

Regression Analysis using the Consumption Prognosis, CO2 Price, TTF Price, and Wind 
Production Prognosis in Nord Pool as Independent Variables 

 Estimate St. Err. t-value 
Intercept 1.601 1.590 1.007 

Consumpt. progn. LV 0.025*** 0.002 13.767 
CO2 price 0.805*** 0.021 39.041 
TTF price 0.960*** 0.042 22.757 

Wind prod. Nord Pool –0.081*** 0.004 –21.401 
# of observations 1387   

Adj. R-squared 0.6135   
F-statistics 551   

p-value 2.2e–16   
Significance: *** 1 % level; ** 5 % level; * 10 % level  

  

Furthermore, the author uses Multivariate Adaptive Regression Splines (MARS) to model 
independent variable relationship with the day-ahead prices in Latvia. This allows to evaluate 
non-constant linear relationship between the predictor and response variable. The results of 
MARS are presented in Fig. 3.2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3.2. Output of regression analysis using consumption prognosis, CO2 price, TTF price, 
and wind production prognosis in Nord Pool as independent variables. 

 



38 
 

Estimated impact – changes in consumption 

The results suggest that an additional 1 MWh/h of electricity consumed results on average 
in increase of 0.025 EUR/MWh in the day-ahead electricity price. Furthermore, the MARS 
analysis identifies that on days with average hourly consumption below 780 MWh or above 
930 MWh, additional consumed electricity results in higher price response than on days with 
average hourly consumption between 780–930 MWh. This can be explained by nature of 
generating resources in the region. The costs of production remain quite flat when, with certain 
level of generation, producers are ready to sell electricity without major increase in prices in 
order not to stop the production by conventional stations. In contrast, when the consumption is 
growing and tends towards its peak levels, the producers face start-up costs of less efficient 
plants. This leads to a more pronounced electricity price response to increasing demands. 

 
Estimated impact – other factors 

CO2 prices have significant impact on the electricity price in day-ahead market.  CO2 price 
increase by 1 € results in 0.81 €/MWh increase of day-ahead electricity prices in Latvia. Similar 
conclusion is reported by Bariss et al. (2016) who demonstrate that 1€ increase of CO2 
emissions would increase electricity prices in the Baltics by 0.67 €/MWh [53].  This finding 
identifies a clear need to hedge risks associated with volatility of CO2 emission allowance 
prices. For example, the retailers can enter yearly or monthly forwards under the EUA scheme, 
thus, fixing the CO2 price level. This effectively would result in lower financial risks from 
electricity price changes on the day-ahead market. 

Natural gas prices significantly affect the day-ahead electricity prices in Latvia. Regression 
estimates suggest that, ceteris paribus, a 1€ increase of TTF forward prices translates in 0.96 
€/MWh growth of the day-ahead electricity prices in Latvia. So, hedging via gas derivatives 
removes substantial price risks for traders. 

Increased wind generation availability has negative impact on day-ahead prices. The 
estimates of all regressions show robust results – additional 1 MWh/h of electricity produced 
during the day from wind reduces Latvian day-ahead prices, on average, by 0.081 €/MWh. 
These findings are in line with the conclusions presented by Jonsson et al. (2012), who studied 
the relationship between electricity volumes generated by wind stations and Elspot prices in 
Western Danish price area [56]. Similarly, Fabra N. & Reguant M. (2014) report positive 
correlation between the wind speed and electricity prices in Spain [57]. 

3.4. Optimization of imbalance price  

3.4.1. Motivation and background 

While most commercial activity takes place in the day-ahead timeframe, a part of the 
electricity price in retail is related to imbalance costs. Accordingly, as additional field of study 
the potential opportunities for improving balancing costs were examined. Firstly, it was the 
regional coordination among the Baltic states based on the preliminary results of coordinated 
balancing area (CoBA). Secondly, the author participated in the development of improved 



39 
 

balancing energy optimization with the goal to minimize the total cost of balancing (and 
therefore imbalance price).  

Baltic coordinated balancing area  
The Baltic area balancing mechanism was developed to establish a common balancing area 

starting from 2018. To achieve this, the TSOs established procedures for coordinated balance 
control, exchange of the balancing energy, imbalance netting, and balance settlement. The 
objective of harmonized Baltic balancing market was to increase the safe operation of the power 
system by promoting the availability of balancing resources and reducing the power system 
balancing costs. Establishing the Baltic balancing market involved harmonization of the 
balancing market framework and introduction of a common balancing IT platform. 

 
One of the building blocks of the common balancing system is the Activation Optimization 

Function (AOF). As stipulated in guidelines [58] developed by ENTSO-E, the AOF determines 
the most efficient activation of the incoming balancing request while respecting some capacity 
and operational restrictions. The Baltic TSOs intend to implement the AOF as an automatic 
algorithm the main inputs to which are the available bids from the CMOL (considering 
transmission constraints) and activation volume proposal [59], the latter being the focus of this 
section. Specifically, it implies an algorithm for the suggestion of activation volume of 
balancing reserves along with a time schedule based on the historic ACE data with minute 
resolution and the current ACE forecast. It is meant to support the decision making by the 
human operator of the transmission system, and thus constitutes the first steps towards building 
a fully automatic system for the activation of balancing reserves. As of now, the decision to 
order the balancing energy is left solely to the human operator with a very short timeframe for 
decision-making. However, since the power system is a very complex structure with a large 
number of variable and uncertain parameters, an automated tool should provide a more optimal 
solution. Nevertheless, human operators usually have significant hands-on experience which is 
challenging and sometimes outright impossible to represent mathematically within an 
automated algorithm. Thus, one of the tasks of this study has been to investigate the pros and 
cons of automated vs manual regulation activation. 

 

3.4.2. Results and discussion – regional coordination 

To estimate the impact of coordinated procedures and harmonized regulation data sets from 
2017 (year before CoBA operations) and 2018 (first year of CoBA operations) were compared 
regarding the following aspects: area control error (precision of regulation); balancing market 
liquidity (price efficiency of the market); and imbalance price. The results indicate that the 
common Baltic market performs better in all of the aspects. 

 
Area control error 

The analysis of the of historical data of the Baltic CoBA performance revealed that 
centralized balancing market approach led to significant decrease of the Baltic ACE. Average 
ACE decreased by 43 % from 42 MWh to 24 MWh per imbalance settlement period in 2018 
compared to year 2017. Similarly, improved results on maintaining ACE close to 0 MWh were 
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observed. In 2018, ACE was within 50 MWh range in 89 % of operational hours compared to 
65 % in 2017 (Fig. 3.3). 

 
 
 
 
 
 
 
 
 

 

Fig. 3.3. Frequency and monthly trend in changes in area control error 

 
Market liquidity 

The reduced ACE was mostly achieved by improved and coordinated balancing. In 2018, the 
Baltic TSOs ordered mFRR products in 79 % of hours, which is twice as much as in 2017 (36 % 
of hours). This higher demand for balancing resources increased the balancing market liquidity 
and made it more attractive to local generation. Therefore, the amount of used balancing energy 
in 2018 tripled compared to 2017, while at the same time the share of local balancing resources 
stayed at the level of 66 % (Fig. 3.4). 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3.4. Increase in balancing energy used after operation of CoBA 

Imbalance costs 
Changes in imbalance pricing system created more level playing field for pan-Baltic BRPs 

and BSPs. Total Baltic BRP balancing costs decreased from 19.9 M.EUR in 2017 to 15.1 
M.EUR in 2018. To evaluate the impact of changes in imbalance pricing model on pan-Baltic 
BRP's imbalance costs, we simulated the BRP's portfolio.  
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Pan-Baltic BRP was created with average hourly planned consumption of 100 MWh in each 
country. Hourly consumption was profiled according to the Baltic weekly average consumption 
profile, and different imbalance scenarios (300) were simulated. As a result, the simulated BRP 
cost reduced significantly comparing 2017 to 2018 and the BRP can benefit from netting its 
imbalances between the Baltic countries, therefore reducing the cost of balancing (Fig. 3.5). 

 

 
 

 
 
 
 
 

Fig. 3.5. Comparison of imbalance costs for simulated BRP 

Overall, the introduction of Baltic CoBA created considerable benefits by reducing the 
reliance on open balance provider (reduced ACE), improving local generation asset 
participation in balancing market and reducing the imbalance costs for balance responsible 
parties. The increased demand for balancing resources provides more opportunities also for the 
demand response assets. 

3.4.3. Results and discussion – improved activation optimization function 

The objective of optimization is to minimize expected activation costs by considering both 
ACE and cost of bid activation. The author participated in the development of a software tool 
with an algorithm for deriving optimal activation parameters of mFRR for balancing of the 
Baltic power system. The algorithm operates under the assumption that the mFRR should be 
activated one or a few times within the given imbalance settlement period (in this case study, 
no more than five activations within an imbalance settlement period were considered). The 
algorithm itself is based on three main parameters: the time of activation (minutes from the 
beginning of each ISP), the percentage of the ACE forecast to be regulated against, and the 
ignorance level (the minimum value of the ACE forecast for regulation to be activated). 
Consequently, the time series of ACE forecast with minute resolution is provided as input data. 
Real-life historic data from 2016 provided by the TSO was used for numerical simulations. 

After testing of the developed software, the following results were obtained when comparing 
the alternative frequency of regulation (Fig. 3.6). 

 

 

 

 

 
Fig. 3.6. Comparison of alternative activation frequencies. 
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Furthermore, the alternative scenarios were compared assuming the set balancing and ACE 
costs (Table 3.3). 

Table 3.3 

Comparison of Costs of Alternative Activation Frequencies 

Max. number of activations 1 2 3 4 5 

  Cost of ACE with local regulation (€) 

Energy bought @ 100 €/MWh 205 643.77  137 685.42  133 461.79  126 568.68  133 142.01  
Surplus sold @ 5  €/MWh –21 540.16  –16 118.70  –12 948.91  –13 285.65  –13 148.32  

Cost of ACE 184 103.60  121 566.72  120 512.88  113 283.03  119 993.69  

  Cost of supplied local regulation energy (€) 

Energy bought @ 50 €/MWh             188 740.31  246 043.25              238 190.36              194 939.63      194 561.59  
Surplus sold @ 10  €/MWh –126 444.67  –141 952.35  –146 298.99  –136 286.05  –137 142.43  

Cost of supplied local energy              62 295.64  104 090.90               91 891.37               58 653.58    57 419.15  

Total cost with local regulation             246 399.25    225 657.63   212 404.26   171 936.61     177 412.84  

 Cost of ACE without local regulation (€) 

Energy bought @ 100 €/MWh 409 669.61 
Surplus sold @ 5 €/MWh –76 089.76 
Total cost without local regulation 333 579.85 

 

Overall results suggest that the more precise and more frequent activation of balancing energy 
produces better results for the market. As demand response typically provides lower volume 
balancing bids, the shift towards more frequent balancing would provide potential future 
opportunities.   
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4. COST-BENEFIT ASSESSMENT FOR DEMAND RESPONSE 
ASSET HOLDER 

4.1. Case study: Implicit demand response 

4.1.1. Motivation and background 
Traditionally the balance between demand and supply in a power system is maintained by 

adjusting centrally controlled supply to the largely inelastic demand. The increase in 
intermittent and distributed generation [60] as well as continuous increase in demand for 
electricity not only promotes volatility of electricity prices, but also creates new challenges for 
the power system infrastructure. An aspect of this is illustrated by the case of South Queensland 
(Australia), where during the period of 2009–2014 the total installed capacity of solar panels 
increased from 187 MW to 4092 MW [7] and the percentage of residential consumers with 
rooftop solar panels reached 25 %. Such shift reduced electricity volumes consumed through 
distribution system but did not have considerable impact on the costs of the system, the volume-
based distribution system tariffs increased by 112 % [8].  

With the emerging preference for electric transportation and heating the demand for 
electricity has even a greater tendency to cluster in high and low demand periods, which may 
result in peak load demands increasing faster than the total annual consumption, adding 
additional price pressures to the electricity as resource and power system alike. On the other 
hand, the technologies enabling demand response offer an opportunity to mitigate the volatility 
of energy consumption patterns, which could help the power system to adjust to the emerging 
and in some cases already established market requirements. The consideration that improving 
of system flexibility is a key factor in reducing the costs of integrating intermittent generation, 
has also been reinforced by recent studies [61]–[63]. For this reason, encouraging consumer 
engagement in demand response activities has become an increasingly important energy policy 
topic [61], [64]–[66]. While there might be consensus on whether facilitation of consumer 
engagement in electricity market is necessary, how to achieve it is a challenge with a less clear 
solution. The objective of this case study is to compare in alternative and easy to apply cost 
optimization scenarios for air-to-air heat-pump based heating system.  

The EU energy policy foresees increased importance and integration of demand response, 
facilitated by smart meter rollouts, supportive legal framework and active consumer education. 
The Council Directive 2019/944/EU (2019) foresees that “[..]Consumers should have the 
possibility of participating in all forms of demand response. They should therefore have the 
possibility of benefiting from the full deployment of smart metering systems and, where such 
deployment has been negatively assessed, of choosing to have a smart metering system and a 
dynamic electricity price contract. This should allow them to adjust their consumption 
according to real-time price signals that reflect the value and cost of electricity or transportation 
in different time periods, while Member States should ensure the reasonable exposure of 
consumers to wholesale price risk. Consumers should be informed about benefits and potential 
price risks of dynamic electricity price contracts. [..]” while Article 11 stipulates that “Member 
States shall ensure that the national regulatory framework enables suppliers to offer dynamic 
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electricity price contracts. Member States shall ensure that final customers who have a smart 
meter installed can request to conclude a dynamic electricity price contract with at least one 
supplier and with every supplier that has more than 200 000 final customers” [67]. According 
to CEER in 2018, 21 out of 27 Member States offered some type of variable price contracts, 
and only in 15 out of 27 Member States spot-price tied contracts are available to residential 
users [68].  

Electricity market liberalization in Latvia started in 2007 when the option to freely choose 
electricity supplier was offered to business consumers with high consumption. Furthermore, 
they were joined by business consumers with medium consumption on April 1, 2012 and all 
other business consumers on November 1, 2012. The market was opened to residential 
consumers on January 1, 2015. While the electricity suppliers in Latvia are required to offer 
‘universal product’ to residential consumers, the Latvian legal framework does not require 
electricity suppliers to offer dynamic electricity price contracts. According to the data published 
by the Public Utilities Commission of Latvia, 12.5 % (three-fold increase from the end of 2017) 
of residential consumers and 42.8 % of business consumers (~30 % increase from the end of 
2017) had chosen the dynamic pricing type of contract [69]. Currently, most of electricity 
suppliers provide some type of dynamic price contracts (either time-of-use [70] or spot-price 
tied [71]) to both business and residential consumers.  

 
To look at overall consumption pattern trends in Latvia, year 2020 is excluded due to 

considerable but not easily measurable impact of the pandemic. By comparing the day-ahead 
market volumes for 2017 and 2019, it can be observed that while the overall volumes increased, 
the volatility of the volumes bought decreased (Table 4.1) [72]. While a positive trend and more 
research should be done to explore the drivers behind it, the data also shows high variations 
between the peak and off-peak demand and the potential for implicit demand response to 
facilitate it.  

 
Table 4.1 

Comparative Descriptive Statistics for Energy Volumes Sold on Nord Pool Day-ahead Market 
in 2017 and 2019 [71] 

Parameter 2017 2019 Deviation 
Sum 7.2 TWh 7.3 TWh +0.7 % 
Mean 828 MWh 834 MWh +0.7 % 
Standard deviation 177 MWh 167 MWh –5.9 % 
Range 828 MWh 742 MWh –10.4 % 
Minimum volume 444 MWh 479 MWh +7.9 % 
Maximum volume 1 272 MWh 1 222 MWh –4.0 % 

 
 

Barriers for consumer engagement in demand response 

Residential consumer’s engagement (or lack of it) can be divided into stages, each 
characterized by different preconditions. EPRI (2012), proposes the following three step 
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structure: participation (being enrolled in demand response), performance (responding in the 
desired way), and persistence of effects over time (Fig. 4.1) [61], [73].  

 
 
 
 
 

 
 

Fig. 4.1. Three stages of consumer engagement in demand response. Adapted from [8] 

Understanding the barriers and enablers of long-term active participation in demand 
response can allow policy makers and market actors to identify and foster consumer 
engagement in a more cost-effective approach and assess the potential for demand side response 
participation in more precise manner.  

In literature the following types of motivators were identified: financial, environmental, 
and social. Based on multiple studies, the financial incentives are the most important [61], [74]–
[80]. Financial incentives include a reduced monthly bill, rewards for specific consumption 
patterns, and free or reduced cost technology [61]. Environmental motivators are less studied 
and seem to play less important role, as participation in demand response does not necessarily 
decrease the overall consumption [61], [81]. Social motivators include increased perceived 
control over energy consumption [74], [81], finding the experience novel and entertaining [74], 
or taking pride in being socially responsible or supportive to energy system [61], [82], [83]. 

These benefits or motivators are usually weighed against effort, time, convenience, and 
comfort [61], [84]–[86]. Based on the systemic review by [61], real financial benefits are a 
necessary precondition for meaningful participation in implicit demand response activities.  

4.1.2. Case study design 
Heating, ventilation, and air conditioning systems (HVAC) have tendency in developed 

countries to become more prevalent over time [87]. The latest data for Latvia is from 2015, 
when 6 % of residential buildings in Latvia had electricity-based heating and ~2 % of 
residential buildings in Latvia had air conditioning [88]. Furthermore, HVAC tends to be one 
of the most energy intensive type of residential type of electric appliances. The exact estimation 
for the proportion of electricity consumption for which HVAC is responsible is hard to come 
by, as these estimates differ depending on climate, building, and other appliances. On average 
it is considered that heating is responsible for up to 50 % of the monthly electricity consumption 
during the peak demand period [89].  

By reviewing the existing literature on HVAC control system testing and designing, it can 
be observed that while there are different energy efficiency objectives or particular challenges 
of multi-building or multi-zonal systems, the general approach for introducing deterministically 
controlled HVAC system is fairly simple and requires data collection, algorithm, and the load 
controller device [90]–[92]. The objective of this study is to evaluate in real data setting the 
most appropriate algorithm for implementing automatic and cost-efficient HVAC system 
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management that relies on publicly available data. To achieve that for a set period of time (in 
December 2020 and January 2021), four HVAC systems were monitored. Afterwards, 
alternative optimization approaches were tested. The best performing algorithm is further 
intended to be used for HVAC management. Tables 4.2 and 4.3 present the environment and 
data description.  

Table 4.2 

Description of the Case Study Environment 

HVAC 
systems used 

One Toshiba Premium air-air type of heat pumps (RAS-25PAVPG-ND), 
with heating capacity 0.7–6.70 kW and three Toshiba Optimum (RAS-
25PKVSG-ND) 1.00–6.50 kW were chosen 

Area 

Two isolated rooms: 26 m2 (set indoor temperature 17 °C) and 23 m2 (set 
indoor temperature 17 °C) and a large hall: 70 m2 (set indoor temperature 
19 °C with some HVAC unrelated temperature fluctuations due to ventilation 
or use of other devices)  

Period 24 days, December 2020 – January 2021 
 

 
 

Table 4.3 

Description of the Data Used in the Case Study 

Outside 
temperature 

Factual hourly data from meteorological data from the Latvian Environment, 
Geology and Meteorological Centre (°C) [93] 

Day-ahead 
prices 

Factual hourly data from Nord Pool exchange (EUR/MWh) [72] 

Heat pump 
load 

Measured every minute (MW) 

 

In the context of this study the following assumptions (simplifications) were made – firstly, 
the load is only shifted and there is no reduction of total consumption (rebound effect expected 
to be 100 %). The consumption from the hour where the system is turned off is shifted to the 
next two hours. The determination of the exact nature of the rebound effects in different 
conditions is outside the scope of this study and is left for further research. This assumption 
prescribes that switching off may not occur more often than once every two hours (the condition 
is observed also during the date change). The following optimization scenarios were devised 
(Table 4.4). 
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Table 4.4 
Optimization Scenarios Used in the Case Study 

Scenario Conditions Objective 

Selecting two hours in every given day when the HVAC is switched off based on the 
following criteria: 

2–1 The lowest temperature 
Representation of the highest expected 

consumption [94] 

2–2 The highest day-ahead price 
Representation of the highest cost per 

MWh 
2–3 The highest forecasted cost 

savings from load shifting 
Representation of the highest total gains 

from shifted consumption 
Selecting three hours in every given day when the HVAC is switched off based on the 

following criteria: 

3–1 The lowest temperature 
Representation of the highest expected 

consumption 

3–2 The highest day-ahead price 
Representation of the highest cost per 

MWh 
3–3 The highest forecasted cost 

savings from load shifting 
Representation of the highest total gains 

from shifted consumption 
 

The highest forecasted cost savings (CH0) from load shifting were calculated as follows: 

𝐶𝐶𝐻𝐻0 = 𝐸𝐸𝐻𝐻0 × 𝑃𝑃𝐻𝐻0 − 𝐸𝐸𝐻𝐻0  ×  𝑃𝑃𝐻𝐻1+𝑃𝑃𝐻𝐻2
2

,  (4.1) 

where  

CH0 – expected cost savings from load shifting (EUR); 

EH0 – energy volume shifted from hour H0 to hour H1 and H2 (MWh); 

PH0, PH1, PH2 – day-ahead price for hour H0, hour H1, hour H2 (EUR/MWh). 

The expected volume EH0 shifted is calculated based on empirically obtained relationship 
for the particular HVAC system. 

𝐸𝐸𝐻𝐻0 = 0.001288 − 0,00015 𝑇𝑇𝐻𝐻0,  (4.2) 

where TH0 is the expected temperature at hour H0 (°C). 

The empirical equation (Fig. 4.2) was obtained by applying linear regression on the 
empirical consumption and factual temperature data from the case study.  
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Fig. 4.2. Hourly HVAC consumption and temperature data during the study. Temperature 
data source [91] 

The optimization algorithm selects the best fit based on the conditions described above. 
In case the best fit violates the condition that HVAC may only be switched off no more often 
than once every three hours, the next best fit is selected.  

4.1.3. Results and discussion 
During the observation period the following data was collected in regard to outdoor 

temperature, day-ahead price, and actual HAVC consumption (Table 4.5). 
 

Table 4.5 

Descriptive Statistics of Temperature, Electricity Price, and HVAC Consumption During the 
case Study. Data sources: temperature [91], electricity prices [71] 

Parameter 
Temperature 

(°C) 

Day-ahead 
price 

(EUR/MWh) 

HVAC actual 
consumption 

(kWh) 
Mean 0.1 43.89 1.26 
Range 9.9 197.21 1.77 

Minimum 
– 

4.6 
2.75 0.58 

Maximum 5.3 199.96 2.36 
 
The previously described scenarios provide the outcomes shown in Table 4.6. 
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Table 4.6 
Comparison of Optimization Scenario Outputs  

Scenario 

# of 
hours 

selected 
per day 

Total 
consumption 

(kWh) 

Total 
cons. 

shifted 
(kWh) 

Percentage 
of cons. 
shifted 

Total cost 
of 

electricity 
(EUR) 

Cost 
difference 
from base 
scenario 

Base 0 h 748.42 ‒ ‒ 33.58 ‒ 
2–1 2 h 748.42 70.94 9.5 % 33.58 0.01 % 
2–2 2 h 748.42 65.37 8.7 % 32.94 –1.90 % 
2–3 2 h 748.42 67.42 9.0 % 32.18 –4.18 % 
3–1 3 h 748.42 104.64 14.0 % 33.54 –0.13 % 
3–2 3 h 748.42 97.36 13.0 % 32.68 –2.69 % 
3–3 3 h 748.42 99.43 13.3 % 31.97 –4.81 % 

 
The relative performance of the scenarios was similar in both two-hour and three-hour 

scenario group. The highest load shift is observed in the scenario where the load is shifted away 
from the coldest hours (in two-hour scenario – 9.5 % of total load was selected, while in three-
hour scenario 14.0 % of load was shifted). However, neither scenario 2–1 nor 3–1 resulted in 
noticeably different total costs regarding the base case scenario. This might be related to the 
following: the coldest hours are typically during night, when the electricity price dynamic is 
less pronounced. Scenarios 2–2 and 3–2 in both two-hour and three-hour group demonstrate 
the best performing similar relative performance in their respective scenario group, however, 
the best performing scenarios were 2–3 and 3–3 that considered both the expected difference 
in price as well as the expected loads. The improved economic performance in scenarios 2–2 
and 2–3 is considerably higher than the increased load shift. This indicates that considering 
only the day-ahead prices and not considering the expected consumption level is the sub-
optimal choice. 

Overall, the results of the case study suggest that the immediate benefits from load-shifting 
are modest. Taking this into account, if the energy policy maker considers and identifies that 
active engagement from residential consumers in implicit demand response activities is pivotal 
for better integration of intermittent and distributed generation as well as power system 
optimization, additional incentives reflecting overall system benefits from more moderate peak 
and off-peak loads might be considered.  

4.2. Case study: Explicit demand response 

4.2.1. Motivation and background 
 

Large industrial plants in Europe (e.g., in the Nordics, Poland, Croatia, the Netherlands, 
Germany) have been involved in DR provision for ancillary services for considerable time [95], 
[96]. These large consumers can participate in the market individually. In the Baltics, the energy 
intensive industry is not highly developed, accordingly, the DR potential is locked in smaller 
consumers (i.e., SMB, residential). A rough estimate suggests that both for residential and 
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commercial buildings (such as schools, hotels, retailers) approximately 50 % of energy 
consumption stems from heating, cooling, ventilation, and lighting [97]. This a indicates 
substantial flexibility potential; however, given that the minimum bid size for mFRR product is 
1 MW, these consumers can only participate in the balancing market if their loads are aggregated 
and coordinated. Advancements in information technology render such aggregation and resource 
coordination feasible.  

While it is an energy related product, DR aggregation requires different business processes 
in place compared to a typical energy supplier. To ensure that all consumers willing to participate 
in DR are allowed to without switching their supplier, a new market participant – an independent 
aggregator – emerged. In essence, an independent aggregator is a DR aggregation service 
provider that delivers balancing energy sourced from end-users that are included in imbalance 
areas different to the aggregator [98]. There is no consensus on the best market framework for 
the integration of independent DR aggregators, since optimal choice of model differs by 
countries and types of electricity markets [95], [96]. The settlement model currently favored by 
the Baltic TSOs is a centralized model  [98]. Detailed explanation of this model is provided in 
Chapter 1 of the Thesis Summary.  

4.2.2. Case study design 
Assumptions for energy transfer 

When DR activation takes place, it has the following impact on the consumption curve 
(Fig. 4.3). When DR activation for upward regulation (i.e., reduced consumption) takes place, 
the consumption is curtailed.  

 

 

 

 

 

 

Fig. 4.3. DR activation explained 

Depending on the resource type, the energy unconsumed during the activation will be 
consumed to some extent during one or the few following hours. Based on the results of the pilot 
with fridges [3], the assumed recovery effect in our simulations is 100 % and it takes place during 
the next hour. Within our simulation framework, it is assumed that the volumes of energy 
transferred can be determined without an error. 

Assumptions for the settlement model (cash-flows) 

Within the simulation, it is assumed that the following prices are equal: 

• retail price is equal to the day-ahead price; 
• balancing price is equal to the imbalance price.  



51 
 

In line with the centralized settlement model, the following trades for the energy delivered 
during activation take place: 

1. Before an operational hour, the supplier/BRP buys energy in the day-ahead market at a 
day-ahead price (PDA). 

2. During the operational hour, the TSO orders balancing energy from aggregator at a 
balancing price (Pbal). 

3. During the operational hour, the consumer does not consume the energy it would 
consume in the absence of the TSO's activation order. 

4. During the settlement phase, the TSO makes an imbalance adjustment for the declared 
position of the impacted BRP. 

5. During the settlement phase, the TSO pays to the BRP a compensation for the energy 
taken from its portfolio at a reference price (Pref). 

6. During the settlement phase, the TSO pays to the aggregator the difference between 
Pbal and Pref. 

7. During the settlement phase, the consumer does not pay for the energy unconsumed 
and may receive part of the profit generated by the difference between Pbal and Pref. 

The following trades for the consumption pattern deviation caused by the recovery effect take 
place: 

1. During the settlement phase, the consumer pays to the BRP/Supplier a retail price (Pret) 
of the recovery hour for the energy consumed due to the recovery effect. 

2. During the settlement phase, the BRP pays the imbalance price (Pbal) of the recovery 
hour to the TSO for the energy consumed due to the recovery effect. 

The simulation tool 

The modelling for the case study was carried out using a Monte-Carlo simulations-based tool 
introduced and elaborated in [99]. The stochastic nature of the model requires the output to be 
probabilistic instead of deterministic. Consequently, most of the input settings concern the 
expected mean of a particular parameter across scenarios and the output is provided in the form 
of probability distributions.  

The main modules of the tool are day-ahead price scenario generation, balancing liquidity 
and price scenario generation, balancing activation simulation, and short-term and long-term 
economic assessment. 

Input assumptions and DR resource characterization 

The assumptions for day-ahead market were made based on the historical values from the 
Nord Pool day-ahead market data for the Baltics in 2017. The assumptions are presented in 
Table 4.7. 
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Table 4.7 

Day-ahead Market Data Simulation Parameters 

Price simulation parameters Value (st. dev.) 
Mean price for 99.5 % of hours 34.02 €/MWh (10 %) 
Mean value for weekdays divided by mean value for weekends 1.23 (10 %) 

Mean value for a day (06:00–22:00) divided by mean value of 
the night (22:00–06:00) 

1.38 (10 %) 

Minimum price 2.99 €/MWh (10 %) 
Maximum price for 99.5 % of hours 75.34 €/MWh (10 %) 
Maximum price for 100 % of hours 130.05 €/ MWh (10 %) 
Number of scenarios 300 

The assumptions for the balancing market were made based on the historical values for the 
Baltic balancing market data for the first quarter of 2018. These reference values were chosen 
due to the significant market changes implemented on January 1, 2018. The assumptions are 
presented in Table 4.8. 

Table 4.8. 

Balancing Market Data Simulation Parameters 

Price simulation parameters Value  
% of hours when the regulation takes place 70 % 
% of regulation hours, where upward regulation is required (load reduction) 45 %  

Balancing price for upward regulation (expectation) 1.6 PDA 
Balancing price for downward  regulation (expectation) 0.6 PDA 
Number of scenarios 300 
 

We based technical assumptions about the DR resource on the data presented in a pilot study 
by Lakshmanan et Al. (2016) [3]. We set the total load capacity at 2.5 MW (25 fridges). The 
load profile for a typical day is depicted in Fig. 4.4. 

 

 

 

 

 

 

 

Fig. 4.4. Load profile of the DR resource simulated 

The DR activation parameters are presented in Table 4.9. Minimum DR bid price is set at 
45 €/MWh to limit events where the DR activation causes losses due to the price difference 
between the day-ahead price and balancing price. Based on the historical data of 2017, the day-
ahead price in the Baltic region was below 45 €/MWh 85 % of times.  
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Table 4.9 

DR Resource Simulation Parameters 

DR resource simulation parameter Value 
Maximum number of events during 24 hours 6 
Minimum time between the events 2 h 
Maximum period before rebound  2 h 
Rebound effect/DR energy delivery 100 % 
Minimum DR bid price 45 €/MWh 
Discount rate used for NPV calculations 3 % 

 

We assume that the resource participates only in upward regulation. Furthermore, it is 
assumed that participation in DR does not damage the resource and consequently does not add 
other additional costs. 

4.3. Results and discussion 

The portfolio's expected average annual income from participation in balancing market is 
8 622.89 €. 85 % of that is the revenue from the balancing market payments and 15 % stem from 
day-ahead price difference between the activation hour and recovery hour (Fig. 4.5).  There is 
no benefit from energy savings in this case study, since we assumed that all the curtailed 
consumption would be recovered later. 

 

 

 

 

 

 

 

 

 

Fig. 4.5. Average annual revenue distribution 

 

Assuming a 10-year asset service life and 3 % discount rate, the expected net present value 
(NPV) of the simulation described in the previous section is 73 555.01 €. In other words, the 
project would be profitable if the initial investment was below 73 555.01 € or below 2 942.20 € 
per fridge (Fig. 4.6). 
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Fig. 4.6. Cumulative cash-flow for 15 years (all scenarios) 

 

It is expected that on average the portfolio will annually deliver 326.24 MWh of balancing 
energy by participating in 32 % of all hours (1257 hours annually) when downward regulation 
is used. Accordingly, on average, the portfolio earns 26.43 € per each MWh delivered to the 
balancing market (Fig. 4.7). 

 

 

 

 

 

 

Fig. 4.7. Overview of simulated DR events and balancing market prices 

The expected average annual cash inflow for the portfolio is equal to 19 661.18 €, while the 
expected average cash outflow for the portfolio is 11 038.29 € (Fig. 4.8). 

 

 

 

  

 

 

Figure 1. 

 

Fig. 4.8. Breakdown of the DR asset owner’s estimated annual profit.  



55 
 

CONCLUSIONS 
1. The performed cost-benefit assessment tests performed confirm the hypothesis that by 

developing an appropriate regulatory framework the demand response services can 
provide a cost and energy efficient tool for improving the system flexibility and mitigate 
the resource price increase and regional price volatility driven by the increase in 
intermittent generation in the Baltic region. 

2. The market framework proposed in this research (centralized settlement model) for 
allowing the demand response services to participate in the Baltic region ancillary 
services market avoids abnormal returns to any of the market participants and provides, 
inclusive, fair, and simple allocation of roles and responsibilities. 

3. The algorithm proposed in this research (UK CBM) for estimating the volume of the 
demand response services (energy) delivered provides an easy-to-introduce method that 
offers reasonably robust and accurate results. 

4. The interpolation algorithm proposed in this research (Spline (Order 5)) offers better 
results than the alternative eight models when considering transposing hourly metering 
data to 15-minute time resolution. 

5. There are identifiable financial benefits from the demand response participation in 
providing ancillary services to both service providers and other market participants.  

6. The algorithm proposed in this research for optimizing the heat-pump system for 
implicit demand response provides an affordable method that relies on publicly 
available data and can be used by any owner of the HVAC type of demand response 
asset. The proposed algorithm offers up to 5 cost reduction. 

7. Based on historical data (2016–2019) on the Baltic electricity market and day-ahead 
price drivers, the financial benefits from introducing demand response services in the 
day-ahead market or from customers engaging in implicit demand response are quite 
modest. The existing market conditions do not suggest that additional regulatory stimuli 
for faster demand response uptake are currently necessary. The situation might change 
after synchronization with the Continental Europe Synchronous Area. 
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