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Introduction 
 

 Fibre reinforced composites have many physical properties that makes them increasingly attractive 

in structural design applications, however manufacturing costs and quality robustness are issues which 

should be further improved. Traditionally, composite manufacturing methods are very labour 

intensive, thus development of automated manufacturing processes can reduce the manufacturing costs 

and increase quantities of finished products. To meet demand for diverge applications cases 

manufactured products should be optimized a priory. Common optimum design practice of stiffened 

structures under any loading combinations should involve extensive finite element analysis with 

complimentary experimental validation. However, such a procedure is only partly efficient as besides 

trade-off design the designer is seeking for alternatives in the overall perspective. Despite the 

advances in rapidly growing computational capacity, as in High Performing Computing or in GRID 

technologies, the enormous computational cost of complex engineering simulations makes it 

impractical to rely exclusively on simulation for the purpose of design optimization [1]. As a good 

practice, one could use mathematical approximations instead of full-scale analyses, thus reducing the 

level of numerical optimization complexity. Metamodels, also called surrogate models, are constructed 

from response approximations extracted from actual simulation models. In particular, for 

determination of the most suitable metamodeling technique fitting to deck under the bending load 

design procedure a different parametric and non-parametric approximations have been compared – 

low order global polynomials, locally weighted polynomials, partial polynomials, and Multivariate 

Adaptive Regression Splines. 

Important research issue associated with metamodeling is how to achieve good accuracy of a 

metamodel with reasonable number of sample points. The sampling techniques, often referred to as 

design of experiments, should be implemented to reduce the number of simulation runs without 

decreasing the accuracy of the metamodel. The differences between sampling strategies for physical 

experiments and for computer experiments should be noted. Whilst physical experiments have 

statistical experimental errors, numerical analyses are deterministic and results are obtained with 
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100% repetition and no statistical variance of model parameters [2,3,4]. Currently, there is a wide 

range of literature concerning different methods for DACE [5], which include many approaches for 

space-filling designs. It should be noted that the first space-filling design criterion [2,3] for numerical 

experiments was proposed at Riga Technical University by Audze and Eglajs. While the accuracy of a 

metamodel is directly related to the approximation technique used and to properties of the problem 

itself, the type of sampling approaches6 have a direct influence on the approximation performance. It 

is generally accepted that space-filling designs, for example the Latin Hypercube design, are 

preferable for building of metamodels. In the current study, to reduce the number of computations, 

experimental design optimized according to Mean Square Error (MSE) criterion [6,7] has been 

selected. 

 

 

1. Pultruded glass fiber reinforced plastic structures 
 

 One of the most efficient glass fibre reinforced plastic (GFRP) manufacturing technique could be 

outlined a pultrusion. The pultrusion is a continuous moulding process utilizing glass or other fibrous 

reinforcement in a polyester or other resin matrix. Pre-selected reinforcement materials like fibreglass 

roving, matt or cloth, are drawn through a resin bath where all the material is thoroughly impregnated 

with a liquid thermosetting resin. The wet fibrous laminate is formed to the desired geometric shape 

and pulled into a heated steel die. Once in the die, setting of the resin is initiated by controlling precise 

elevated temperatures. The laminate solidifies in the exact shape of the cavity of the die as the 

pultrusion machine is continuously pulling it. The haul-off equipment used is either a conventional 

belt puller (as used in extrusion) or a hand-over-hand reciprocating clamp type. The caterpillar type is 

a cheaper solution because no motion sequencing is involved but it can be expensive to produce the 

large number of gripper pads necessary for each profile. The caterpillar type also has the disadvantage 

that the gripping force cannot be isolated from the pulling force and for large profiles this can damage 

the profile. Continuous manufacturing process can produce the product of any span length. However, 

major limitations are associated with quality assurance of the slenderness of produced profiles and 

cross-sectional tolerances. 

One of reason for utilisation of fiberglass products is high chemical corrosion, electrical isolation 

and low thermal resistance properties embedded in lightweight however stiff material. Most frequent 

application of fibeglass panels can be identified as sidewalls, roofs, floors for building structures as 

well as bridge decks, platforms, walkways and in other civil engineering areas. Most of the GFRP 

bridges constructed up to now [9] used multi-cellular pultruded deck systems. In principle, two 

construction forms are used: multi-cellular deck panels from adhesively bonded pultruded shapes and 

sandwich panels with different core structures [10,11]. 

In present work, design of GFRP composite stiffened panel structures has been considered similar 

to ones currently manufactured by Rishon-Inter.Ltd (http://www.rishon-inter.lv). Eleven I-type 

stiffener deck design, as shown in Figure 1, has been elaborated in parallel with experimental tests 

performed at Riga Technical University, Institute of Materials and Structures using dedicated test 

equipment. Three-point bending test case has been considered for numerical analyses and physical 

tests along with uniformly distributed load test case that has been elaborated only numerically. 

 

 
Fig.1. GFRP Deck geometry with parametrical variables 
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The flexural stiffness response of GFRP pultruded deck structure has been evaluated numerically 

by finite element method commercial software ANSYS [12] employing SHELL 181 4-node shell 

element. The mechanical properties for glass fiber composite used for full-scale analysis have been 

extracted by small coupon tests in tension and bending. Numerical values of load-deformation curve, 

stress, and strain distribution over the tested deck structure were extracted and incorporated in design 

of strain gauge locations for experimental validation. The numerical deflection and stress graphs of 

three-point bending test are shown in Figure 2. A comparative study between numerical and 

experimental results will be given in the 3. Chapter. 
 

 

 
Fig.2. Three point bending numerical test – deflection (left) and stress-distribution (right) graphs 

 

The choice of design variables should represent all geometrical parameters in optimum design 

procedure. However, most of those variables are rationally interconnected. Exploration of non-rational 

variable combination mostly leads to relatively high approximation errors. In particular, when non-

proportional ratios of span and height are used for bending problems this usually causes singularity in 

approximations. Therefore, geometrical design variables with corresponding ratio variables have been 

proposed [11] for metamodeling procedure. As geometrical variables the panel length parameter L and 

the panel height parameter h along with two plate thicknesses have been taken: the cover plate 

thickness t1 and the stiffener thickness t2. Moreover, rational design variables as kb (ratio between the 

panel length and width) and kh (stiffener spacing parameter ratio between I-stiffener foot width and 

panel height) have been proposed.  Such a procedure is required to restrain the combination where 

stiffener spacing is narrower than the deck height h. The numerical bounds of design variables are 

given in Table 1. 
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Table 1. Design space for deck structure 

 

Name and notation Lower bound Upper bound Units 

Deck length L 0.6 4 m 

Deck stiffener height h 0.03 0.10 m 

Plate thickness t1 0.003 0.006 m 

Stiffener thickness t2 0.003 0.006 m 

Deck length to width ratio kb 1.5 3  

Stiffener spacing ratio kh 2 3  

 

 In order to achieve the best performance (minimal prediction error of metamodels), a space-filling 

design of five hundred sample points optimized according to the Mean Squared Error [6,7] uniformity 

criterion has been selected. A numerical sampling procedure involves a large amount of analyzed 

numerical data that are unacceptably time demanding. Therefore, all numerical data sets have been 

analyzed in parallel, exploring the LatvianGrid (http://grid.lumii.lv) computing capabilities, thus 

reducing the necessary time and outsourcing the computational capacities. 

 
 

2. Physical experiments at Riga Technical University, Institute of Materials and Structures 
 

Three three-point bending tests until collapse of the structure for real deck panels have been 

performed. Adding the validation test that has been outfitted with strain-gauges and loaded until 60% 

of the total collapse load. The experimental setup of a one-meter span length and corresponding 

deflected collapse mode shape is shown in Figure 3. During the tests, the load-versus-deflection curves 

(outlined in Figure 4) and strains have been recorded by means of load cell and the strain gauge 

readings. Thus the data from physical experiments has been implemented in validation procedure of 

ANSYS [12] finite element model as summarized in Table 2. 

 
 

 
Fig.3. The experimental three-point bending test setup and collapse mode of the stiffened deck structure 

 

 

The test results obtained experimentally for four tested deck structures have been compared with 

values obtained numerically by ANSYS [12]. One could observe from the Figure 4 and the Table 2 
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that all panels have practically the same loading stiffness. However, there is a certain divergence 

between obtained critical load levels. Nevertheless, in validation procedure the numerical deflection 

results have about 10% discrepancy with physical test results what should be considered as a good 

agreement between actual (manufactured) and numerical model. Moreover, numerical stress threshold 

value practically corresponds to the value obtained by small specimen tension tests. Validation 

procedure outlined that the load level corresponding to deflection limit legislated by building codes 

[1/250 to 1/150 of the deck span] are practically one fifth of the ultimate stress value. 
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Fig.4. Load-versus-deflection curves obtained experimentally 

 
 

Table 2. Validation between experimental and numerical results 

 

 

3. Employed metamodeling techniques 
 

This section briefly overviews the employed metamodeling techniques: full global polynomials and 

locally weighted polynomials of 2
nd

, 3
rd

, and 4
th
 order, Multivariate Adaptive Regression Splines 

(MARS), and partial polynomials constructed using Adaptive Basis Function Construction (ABFC) 

approach. 

Load(N) 

1
st
 panel 

test, 

deflection 

(mm) 

2
nd

 panel test, 

deflection 

(mm) 

3
rd

 panel test, 

deflection 

(mm) 

4
th
 panel test, 

deflection 

(mm) 

ANSYS, 

deflection 

(mm) 

ANSYS 

stresses 

(MPa) 

5000 4.1 3.1 4.1 3.4 3.5 23.5 

10000 7.4 6.3 7.1 6.6 7.1 47.1 

15000 10.7 9.4 10.2 9.8 10.6 70.6 

20000 14.0 12.5 13.4 13.0 14.2 94.1 

25000 17.3 15.6 16.5 16.3 17.7 118 

30000 20.6 18.8 19.7 19.6 21.2 141 

35000 24.1 22.1 22.9 N.A. 24.8 165 

40000 27.5 25.3 26.2 N.A. 28.3 188 

43500 30.1 30.4 28.5 N.A. 30.1 205 

48000 33.4 - 32.1 N.A. 34.0 226 

49800 35.1 - - N.A. 35.3 234 
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As described by Simpson et al.[13], it is assumed that the inputs to the actual computer analysis are 

supplied in vector x, and the outputs (or responses) from the analysis – in vector y. Then the true 

computer analysis code evaluates 
 )(xfy =  (1) 

 

where f(x) is a complex engineering analysis function. The computationally efficient metamodel 

approximation is 

 )(ˆ xgy =  (2) 

 

such that 

 ε+= yy ˆ  (3) 

 

where ε  includes both approximation and random errors. 

 

3.1 Full global polynomials 
 

Low-order polynomials are the most widely used metamodels [1,13,14]. For example, second-order 

polynomial can be defined as follows: 
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where d is the number of input variables; β0, βi, βij are coefficients usually determined by the ordinary 

least squares method minimizing 
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where β are the calculated coefficients; n is the number of sample points; 
)(

ˆ
iy  is the value of the 

metamodel’s response for the i-th sample point; 
)(iy  is the actual value of the response of the computer 

analysis code in vector y. A more complete discussion on the polynomial metamodels and least 

squares method can be found in Myers & Montgomery [14]. In the present study full polynomials of 

2
nd

, 3
rd

, and 4
th
 order have been employed. 

 

3.2 Locally weighted polynomials 
 

Locally weighted polynomial approximation was originally proposed by Cleveland [15]. It was 

designed to address situations in which the global polynomials do not perform well or cannot be 

effectively applied without undue effort. The approximation is carried out by pointwise fitting of low-

order polynomials to localized subsets of the data. The advantage of this method is that the analyst is 

not required to specify a global function of the data. However, the method requires considerably 

higher computational resources. 

The assumption of the local polynomial approximation is that near the query point the value of the 

actual response changes smoothly and can be approximated using a low-order polynomial. The 

coefficients of the polynomial are then calculated using the weighted least squares method giving the 

largest weights to the nearest (usually according to the Euclidian distance) sample points and the 

lowest or zero weights to the farthest sample points. 

The coefficients β are calculated by the weighted least squares minimizing 
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where w is a weight function; xquery is the query point nearest neighbors of which will get the highest 

weights; 
)(ix  is the i-th point in vector x. The weight function w depends on the Euclidean distance (in 
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scaled [-1,1]
m
 space) between the point of interest xquery and the points of observations x. One of the 

most widely used weight functions is the Gaussian weight function [11]: 

 ( )2

)( exp),( αµ−=iquery xxw  (7) 

 

where α  is a coefficient and the µ  can be calculated as 

 )()( )( farthestqueryiquery xxxx −−=µ  (8) 

 

where ⋅  is the Euclidian norm; xfarthest is the farthest point in the neighborhood of the point xquery. In 

general, the Gaussian weight function with constant value 21=α  is used in local approximations 

varying only the value of the considered nearest neighbors (unlike in equation (6) where all the sample 

points are used) [11]. However, in the present study all the sample points have been used and the 

locality of the approximation has been controlled by varying the value of the coefficient α . If α  is 

equal to zero then local approximation transforms into global approximation. The best value of α  is 

found using the leave-one-out cross-validation technique [16]. In the present study locally weighted 

polynomials of 2
nd

, 3
rd

, and 4
th
 order have been employed. 

 

3. 3 Multivariate Adaptive Regression Splines 
 

Multivariate Adaptive Regression Splines [17,18] was proposed as a method for flexible regression 

modeling of high dimensional data (i.e., a large number of input variables). The model takes the form 

of an expansion in product spline basis functions, where the number of basis functions as well as the 

parameters associated with each one (product degree and knot locations) are automatically determined 

by the data through a forward/backward iterative approach. Compared to polynomial approximations, 

the use of MARS
 
for engineering design is relatively new. However, its application is drawing an 

increasing attention of the researchers (e.g., Jin et al. [1]). 

MARS model can be defined as a sum of basis functions [17,18]: 
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where fi(x) is a basis function; k is the number of basis functions in the model except for the constant 

basis function 1)(0 =xf  coefficient of which is the β0. The basis functions are of the form 
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where di is the number of variables (interaction order) in the i-th basis function; 1±=jis ; 
),( ijvx  is the 

v-th variable, dijv ≤≤ ),(1 ; tji is knot location on each of the corresponding variables. The subscript 

“+” means that the function is a truncated power function [17,18]. The coefficients β are again 

determined by the ordinary least squares method (equation (5)). In the present study piecewise-cubic 

MARS version 3.6 without a specific restriction of the number of basis functions or interaction orders 

has been employed. 

 

3. 4 Partial polynomials 
 

Low-order global polynomial approximations have been well accepted in engineering practice, as they 

require low number of sample points and are computationally very efficient. On other hand they can 

not approximate highly nonlinear behavior. Instead, higher-order polynomials can be employed. 

However, if no special care is taken they tend to overfit the data and produce high errors in regions 

where the sample points are relatively sparse. One possible remedy for the overfitting problem is 

employment of the subset selection (also called model building) techniques [13,14]. The techniques 

are aimed to identify the best subset of polynomial terms (or basis functions) to include in the model 
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and to remove the unnecessary ones, in this manner creating a partial polynomial model (in lieu of 

“full” model) of increased predictive performance. However, the approach of subset selection assumes 

that the chosen fixed full set of predefined basis functions (usually just by choosing a fixed maximal 

order of the polynomial) contains a subset that is sufficient to describe the target relation sufficiently 

well. Hence, the efficiency of subset selection largely depends on whether or not the predefined set of 

basis functions contains such a subset. 

There exists a different approach for polynomial model building which does not assume a 

predefined set of basis functions – Adaptive Basis Function Construction [19,20]. The approach 

allows generating polynomials of arbitrary complexity and order without the requirement to predefine 

any basis functions or to set the maximal order of the polynomial (or any other hyperparameters) – all 

the required basis functions are constructed adaptively. 

Generally, a polynomial model can be defined by a linear summation of basis functions: 

 ∑
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where the coefficients β are still calculated by the ordinary least squares method (equation (5)); fi(x) is 

a basis function which generally can be defined as a product of the input variables each raised to some 

order: 
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where rij is the order of the j-th variable in the i-th basis function (a non-negative integer). It should be 

noted that when all rj’s of a basis function become equal to 0, the basis function becomes equal to 1, 

ergo it is the intercept term. 

The matrix r completely defines all the basis functions in the model – each row corresponds to one 

basis function with all of its orders. Construction of the model is carried out in an iterative manner 

directly with the matrix r using five simple so-called model refinement operators which allow adding, 

copying, modifying, and deleting the rows of r, i.e., adding, copying, modifying, and deleting the basis 

functions of the model [19,20]. As a search procedure a modification of the Sequential Floating 

Forward Selection [21] algorithm is employed while models are evaluated using the Corrected 

Akaike’s Information Criterion [22]. Additionally, in order to lower the model building issues of 

selection bias and selection instability a technique of model averaging (also called ensembling or 

combining) is carried out
20

. 

 

3. 5. Metamodel evaluation 
 

To evaluate the metamodels, 5-fold cross-validation technique [16] has been used where the full data 

set is divided in five equally-sized subsets. In each of the five cross-validation iterations, four of the 

subsets are used for metamodel building and one subset is used as an independent test set for 

evaluation of the metamodel. As the metamodel accuracy measure the Relative Root Mean Square 

Error has been used: 
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where iy  is the response value of the i-th test point; iŷ  is predicted value of i-th test point; nt is the 

number of test points; STD is the standard deviation in test sample: 
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It should be noted that RRMSE and STD are calculated using strictly only the test sample and 

averaged over all the cross-validation runs. 
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4. Metamodeling results 
 

As structural response parameters the following entities have been taken: global deflection of the deck 

panel u, the relative deflection ratio between the deck length and the plate deflection ∆u, the maximum 

equivalent stress at the upper plate and the stiffeners σtop , σstift and the maximum shear stresses in 

stiffeners τ. A total of 500 sampling points have been generated and a cross-validation procedure 

together with the RRMSE measure has been carried out comparing the different metamodeling 

techniques. Two loading scenarios have been selected for metamodeling: the concentrated three-point 

bending load case and uniformly distributed load case with simple support boundary conditions. The 

obtained results are summarized in Tables 3 and 4. 

 
Table 3 

Cross-validation RRMSE errors of different metamodels in the case of three-point bending load 

Parametric polynomial 

approximations 

Locally weighted 

polynomials Metamodels 

2
nd

 3
rd

 4
th
 ABFC 2

nd
 3

rd
 4

th
 

MARS 

Panel deflection, u 27.89 13.04 6.71 0.81 16.75 9.90 6.12 3.00 

Comparative deflection, ∆u 14.09 3.95 1.57 0.45 7.09 2.74 1.47 2.03 

Max_stresses, σtop 14.36 4.74 2.32 1.33 7.35 3.69 2.29 2.03 

Max_stresses, σstif 12.56 5.45 3.93 3.00 7.28 4.55 4.03 3.92 

Max_shear_stresses, τ 10.32 7.42 7.73 2.18 7.91 7.11 7.71 5.82 

 
 Table 4 

Cross-validation RRMSE errors of different metamodels built in the case of uniformly distributed load 

Parametric polynomial 

approximations 

Locally weighted 

polynomials Metamodels 

2
nd

 3
rd

 4
th
 ABFC 2

nd
 3

rd
 4

th
 

MARS 

Panel deflection, u 34.23 18.04 11.54 1.07 23.15 14.15 10.47 5.26 

Comparative deflection, ∆u 43.93 30.19 27.36 9.33 23.18 31.65 26.15 26.57 

Max_stresses, σtop 16.94 6.36 5.59 3.56 7.88 5.28 5.52 4.94 

Max_stresses, σstif 16.18 7.61 4.59 1.67 10.01 5.97 3.84 3.54 

Max_shear_stresses, τ 10.36 8.09 11.38 7.32 8.30 8.05 11.56 11.28 

 

The conventional 2
nd

 order polynomials, which are mostly associated with engineering problems of 

the response surface methodology, gave the worst approximation results for almost all the response 

values. It has been noted that locally weighted polynomials of the 2
nd

 order considerably increased the 

predictive performance. As overall observation could be stated that, by increasing the order of 

polynomials, the approximation performance rose, however the higher was the order the smaller was 

the improvement of the locally weighted polynomials over the global ones. Additionally, it should be 

expected that decreasing the number of the sampling points would lead the full polynomials of higher 

orders to overfitting the data thus rapidly reducing their predictive performance. The best results were 

obtained using the ABFC approach, leaving the MARS technique as the second best. One can 

conclude that, although using higher order global polynomials or locally weighted polynomials can 

improve the predictive performance, an elaborated adaptive search for partial polynomials or 

regression splines has capabilities to provide an even further performance boost. 

Moreover, three-dimensional graphical validations of the developed metamodels for the deck panel 

deflection u versus the panel length L and the panel height h parameters in the case of concentrated 

three-point bending load with 500 sample points were carried out as presented in Figure 5 and 6. By 

graphical validation of panel deflection and shear stresses one can easily identify that low order global 

polynomial approximations at the maximum height and the minimum length behave differently than 

expected. In particular the second order and to a lesser extent also the forth order polynomial surface 

plots show a decrease of stiffness when increasing the panel height. On the other hand, the third order 
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polynomial function shows non-negative deflection at the boundaries, which would indicate bending 

against gravity. The MARS and partial polynomials reduce this unwanted behaviour. 

 
 

 
 

Fig.5. Graphical validation of surrogate models for panel deflection in the case of concentrated load. 
Full global polynomials of 2nd (a), 3rd (b), and 4th (c) order and MARS (d); ABFC (e) 

 

 

 

 

   

 
 
 
 
 

Fig.6. Graphical validation of surrogate models for panel shear stresses in the case of concentrated load. Full 
global polynomials of 2nd (a), 3rd (b), and 4th (c) order and MARS (d); ABFC (e) 

a) b) c) 

e) d) 

a) b) c) 

e) d) 
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Overall, the low-order locally weighted polynomial approximation, MARS, and the ABFC gave the 

best overall perspective of structural behaviour by creating a plateau-like surface for the height of 

stiffened panel designs. It seems that here for an optimization procedure all the three methods can be 

used with some confidence however for what-if analysis the ABFC would be the most accurate. 

 

 

Conclusion 
 

The comparison study between parametric and non-parametric metamodels has been elaborated for 

design of pultruded GFRP deck structures under the bending load. Two loading scenarios have been 

selected to investigate the metamodeling efficiency and have been validated with physical 

experiments. It has been concluded that the partial polynomials and MARS are capable to improve the 

prediction accuracy compared to conventional 2
nd

 order polynomials, which frequently are associated 

with engineering problems of the response surface methodology. In particular, the bending deflection 

responses could be improved by an order of magnitude compared to the 2
nd

 order polynomials. In 

contrary, the improvement in approximation prediction for equivalent stresses and shear stresses are 

less efficient. Elaborated metamodels have the capability to be used in implementation of optimum 

design methodology for the bended deck structures. 
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KalniĦš K., Jēkabsons G., Beitlers R., OzoliĦš O. Stiklplasta paneĜu optimāla projektēšana ar eksperimentālu 

validāciju. 

Pētījuma mērėis ir izvērtēt dažādu metamodeĜu pielietošanas iespējas stiklplasta paneĜu optimālas projektēšanas 
metodoloăijas izstrādē, veicot eksperimentālu validāciju. Raksts sastāv no ievada, četrām daĜām un 
secinājumiem. Pirmā daĜa ietver pultrūzijas procesa un stiklplasta īpašību un aprēėina īpatnību aprakstu. Otrā 
daĜa sastāv no Rīgas Tehniskās universitātes, Materiālu un konstrukciju institūta laboratorijā veikto 
eksperimentu rezultātu apstrādes un validācijas. Trešā daĜa ietver parametrisko un bez parametrisko 
aproksimācijas metamodeĜu izveides stratēăijas un metamodeĜu precizitātes novērtējuma kritēriju aprakstu. 
Ceturtajā nodaĜā apkopoti aproksimāciju kĜūdu, kā arī grafiskās validācijas rezultāti. Rakstu noslēdz secinājumi 
un ierosinājumi turpmākiem pētījumiem. 

 
KalniĦš K., Jēkabsons G., Beitlers R., OzoliĦš O. Optimal design of fiberglass panels with physical validation. 

The aim of conducted research was to evaluate the efficiency of metamodels for elaboration in the optimum 
design methodology for fiberglass panels with physical validation. The paper consists of introduction, four parts 
devoted for discussion and conclusions has been drawn. The first part describes pultrusion process, fiberglass 
properties and numerical analysis background. Second part consists of processing the laboratory experiments 
performed at Riga Technical University Institute of Materials and Structures and validation with numerical 
results obtained by ANSYS. Third part includes theoretical background of metamodeling. In forth chapter the 
results have been shown and the graphical validation performed. The conclusions and references for the future 
research has been drown at the end of the article. 

 
Калниньш K., Екабсон Г., Беитлерс Р., Oзолиньш O. Оптимальное проектирование стекло-

пластиковой панели c экспериментальным подтверждением. 

Цель данного исследования является оценка эффективности метамодели для разработки методологии 
оптимального проектирования стеклопластиковой панели с экспериментальным 
подтверждением.Статья состоит из введения, четырех глав и заключения. В первой главе 
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рассматривается получение одноосно ориентированного волокнистого пластика, его свойства и 
исходные данные модели для численного расчета. Вторая глава содержит результаты численного 
расчета и результаты эксперимента, который был выполнен в лаборатории Института Материалов и 
Конструкций Рижского Технического университета. Теоретическое описание метамодели находится в 
третьей главе. В четвертой главе показаны численные результаты ошибок аппроксимации и их 
графическое подтверждение. Список литературы и заключение для дальнейшего исследования 
располагается в конце статьи. 


