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Introduction

Fibre reinforced composites have many physical properties that makes them increasingly attractive
in structural design applications, however manufacturing costs and quality robustness are issues which
should be further improved. Traditionally, composite manufacturing methods are very labour
intensive, thus development of automated manufacturing processes can reduce the manufacturing costs
and increase quantities of finished products. To meet demand for diverge applications cases
manufactured products should be optimized a priory. Common optimum design practice of stiffened
structures under any loading combinations should involve extensive finite element analysis with
complimentary experimental validation. However, such a procedure is only partly efficient as besides
trade-off design the designer is seeking for alternatives in the overall perspective. Despite the
advances in rapidly growing computational capacity, as in High Performing Computing or in GRID
technologies, the enormous computational cost of complex engineering simulations makes it
impractical to rely exclusively on simulation for the purpose of design optimization [1]. As a good
practice, one could use mathematical approximations instead of full-scale analyses, thus reducing the
level of numerical optimization complexity. Metamodels, also called surrogate models, are constructed
from response approximations extracted from actual simulation models. In particular, for
determination of the most suitable metamodeling technique fitting to deck under the bending load
design procedure a different parametric and non-parametric approximations have been compared —
low order global polynomials, locally weighted polynomials, partial polynomials, and Multivariate
Adaptive Regression Splines.

Important research issue associated with metamodeling is how to achieve good accuracy of a
metamodel with reasonable number of sample points. The sampling techniques, often referred to as
design of experiments, should be implemented to reduce the number of simulation runs without
decreasing the accuracy of the metamodel. The differences between sampling strategies for physical
experiments and for computer experiments should be noted. Whilst physical experiments have
statistical experimental errors, numerical analyses are deterministic and results are obtained with

51



100% repetition and no statistical variance of model parameters [2,3,4]. Currently, there is a wide
range of literature concerning different methods for DACE [5], which include many approaches for
space-filling designs. It should be noted that the first space-filling design criterion [2,3] for numerical
experiments was proposed at Riga Technical University by Audze and Eglajs. While the accuracy of a
metamodel is directly related to the approximation technique used and to properties of the problem
itself, the type of sampling approaches6 have a direct influence on the approximation performance. It
is generally accepted that space-filling designs, for example the Latin Hypercube design, are
preferable for building of metamodels. In the current study, to reduce the number of computations,
experimental design optimized according to Mean Square Error (MSE) criterion [6,7] has been
selected.

1. Pultruded glass fiber reinforced plastic structures

One of the most efficient glass fibre reinforced plastic (GFRP) manufacturing technique could be
outlined a pultrusion. The pultrusion is a continuous moulding process utilizing glass or other fibrous
reinforcement in a polyester or other resin matrix. Pre-selected reinforcement materials like fibreglass
roving, matt or cloth, are drawn through a resin bath where all the material is thoroughly impregnated
with a liquid thermosetting resin. The wet fibrous laminate is formed to the desired geometric shape
and pulled into a heated steel die. Once in the die, setting of the resin is initiated by controlling precise
elevated temperatures. The laminate solidifies in the exact shape of the cavity of the die as the
pultrusion machine is continuously pulling it. The haul-off equipment used is either a conventional
belt puller (as used in extrusion) or a hand-over-hand reciprocating clamp type. The caterpillar type is
a cheaper solution because no motion sequencing is involved but it can be expensive to produce the
large number of gripper pads necessary for each profile. The caterpillar type also has the disadvantage
that the gripping force cannot be isolated from the pulling force and for large profiles this can damage
the profile. Continuous manufacturing process can produce the product of any span length. However,
major limitations are associated with quality assurance of the slenderness of produced profiles and
cross-sectional tolerances.

One of reason for utilisation of fiberglass products is high chemical corrosion, electrical isolation
and low thermal resistance properties embedded in lightweight however stiff material. Most frequent
application of fibeglass panels can be identified as sidewalls, roofs, floors for building structures as
well as bridge decks, platforms, walkways and in other civil engineering areas. Most of the GFRP
bridges constructed up to now [9] used multi-cellular pultruded deck systems. In principle, two
construction forms are used: multi-cellular deck panels from adhesively bonded pultruded shapes and
sandwich panels with different core structures [10,11].

In present work, design of GFRP composite stiffened panel structures has been considered similar
to ones currently manufactured by Rishon-Inter.Ltd (http://www.rishon-inter.lv). Eleven I-type
stiffener deck design, as shown in Figure 1, has been elaborated in parallel with experimental tests
performed at Riga Technical University, Institute of Materials and Structures using dedicated test
equipment. Three-point bending test case has been considered for numerical analyses and physical
tests along with uniformly distributed load test case that has been elaborated only numerically.
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Fig. 1. GFRP Deck geometry with parametrical variables
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The flexural stiffness response of GFRP pultruded deck structure has been evaluated numerically
by finite element method commercial software ANSYS [12] employing SHELL 181 4-node shell
element. The mechanical properties for glass fiber composite used for full-scale analysis have been
extracted by small coupon tests in tension and bending. Numerical values of load-deformation curve,
stress, and strain distribution over the tested deck structure were extracted and incorporated in design
of strain gauge locations for experimental validation. The numerical deflection and stress graphs of
three-point bending test are shown in Figure 2. A comparative study between numerical and
experimental results will be given in the 3. Chapter.
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Fig.2. Three point bending numerical test — deflection (left) and stress-distribution (vight) graphs

The choice of design variables should represent all geometrical parameters in optimum design
procedure. However, most of those variables are rationally interconnected. Exploration of non-rational
variable combination mostly leads to relatively high approximation errors. In particular, when non-
proportional ratios of span and height are used for bending problems this usually causes singularity in
approximations. Therefore, geometrical design variables with corresponding ratio variables have been
proposed [11] for metamodeling procedure. As geometrical variables the panel length parameter L and
the panel height parameter /4 along with two plate thicknesses have been taken: the cover plate
thickness #; and the stiffener thickness z,. Moreover, rational design variables as kb (ratio between the
panel length and width) and &k (stiffener spacing parameter ratio between I-stiffener foot width and
panel height) have been proposed. Such a procedure is required to restrain the combination where
stiffener spacing is narrower than the deck height 4. The numerical bounds of design variables are
given in Table 1.
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Table 1. Design space for deck structure

Name and notation Lower bound | Upper bound Units
Deck length L 0.6 4 m
Deck stiffener height h 0.03 0.10 m
Plate thickness t 0.003 0.006 m
Stiffener thickness 1, 0.003 0.006 m
Deck length to width ratio kb 1.5 3
Stiffener spacing ratio kh 2 3

In order to achieve the best performance (minimal prediction error of metamodels), a space-filling
design of five hundred sample points optimized according to the Mean Squared Error [6,7] uniformity
criterion has been selected. A numerical sampling procedure involves a large amount of analyzed
numerical data that are unacceptably time demanding. Therefore, all numerical data sets have been
analyzed in parallel, exploring the LatvianGrid (http://grid.lumii.lv) computing capabilities, thus
reducing the necessary time and outsourcing the computational capacities.

2. Physical experiments at Riga Technical University, Institute of Materials and Structures

Three three-point bending tests until collapse of the structure for real deck panels have been
performed. Adding the validation test that has been outfitted with strain-gauges and loaded until 60%
of the total collapse load. The experimental setup of a one-meter span length and corresponding
deflected collapse mode shape is shown in Figure 3. During the tests, the load-versus-deflection curves
(outlined in Figure 4) and strains have been recorded by means of load cell and the strain gauge
readings. Thus the data from physical experiments has been implemented in validation procedure of
ANSYS [12] finite element model as summarized in Table 2.

Fig.3. The experimental three-point bending test setup and collapse mode of the stiffened deck structure

The test results obtained experimentally for four tested deck structures have been compared with
values obtained numerically by ANSYS [12]. One could observe from the Figure 4 and the Table 2
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that all panels have practically the same loading stiffness. However, there is a certain divergence
between obtained critical load levels. Nevertheless, in validation procedure the numerical deflection
results have about 10% discrepancy with physical test results what should be considered as a good
agreement between actual (manufactured) and numerical model. Moreover, numerical stress threshold
value practically corresponds to the value obtained by small specimen tension tests. Validation
procedure outlined that the load level corresponding to deflection limit legislated by building codes
[1/250 to 1/150 of the deck span] are practically one fifth of the ultimate stress value.
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Fig. 4. Load-versus-deflection curves obtained experimentally
Table 2. Validation between experimental and numerical results
st
1 tp atnel 2" panel test, | 3" panel test, | 4" panel test, | ANSYS, | ANSYS
Load(N) est, deflection deflection deflection deflection | stresses
deflection (mm) (mm) (mm) (mm) (MPa)
(mm)
5000 4.1 3.1 4.1 34 3.5 23.5
10000 7.4 6.3 7.1 6.6 7.1 47.1
15000 10.7 9.4 10.2 9.8 10.6 70.6
20000 14.0 12.5 13.4 13.0 14.2 94.1
25000 17.3 15.6 16.5 16.3 17.7 118
30000 20.6 18.8 19.7 19.6 21.2 141
35000 241 22.1 229 N.A. 24.8 165
40000 27.5 253 26.2 N.A. 28.3 188
43500 30.1 304 28.5 N.A. 30.1 205
48000 334 - 32.1 N.A. 34.0 226
49800 35.1 - - N.A. 353 234

3. Employed metamodeling techniques

This section briefly overviews the employed metamodeling techniques: full global polynomials and
locally weighted polynomials of 2™, 3", and 4™ order, Multivariate Adaptive Regression Splines
(MARS), and partial polynomials constructed using Adaptive Basis Function Construction (ABFC)
approach.
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As described by Simpson et al.[13], it is assumed that the inputs to the actual computer analysis are
supplied in vector x, and the outputs (or responses) from the analysis — in vector y. Then the true
computer analysis code evaluates

y=r(x) M

where f{x) is a complex engineering analysis function. The computationally efficient metamodel
approximation is

y=2g(x) 2

such that
y=J+¢ 3)

where & includes both approximation and random errors.

3.1 Full global polynomials

Low-order polynomials are the most widely used metamodels [1,13,14]. For example, second-order
polynomial can be defined as follows:

d d d
=B+ Y Bx DY Bixx, )
i=1 i=l j=i

where d is the number of input variables; S, £, f; are coefficients usually determined by the ordinary
least squares method minimizing

p=arg mﬁin > (JA’o) Y )2 ®
i=1

where f are the calculated coefficients; 7 is the number of sample points; p is the value of the
metamodel’s response for the i-th sample point; Y, 1s the actual value of the response of the computer

analysis code in vector y. A more complete discussion on the polynomial metamodels and least
squares method can be found in Myers & Montgomery [14]. In the present study full polynomials of
2" 3" and 4™ order have been employed.

3.2 Locally weighted polynomials

Locally weighted polynomial approximation was originally proposed by Cleveland [15]. It was
designed to address situations in which the global polynomials do not perform well or cannot be
effectively applied without undue effort. The approximation is carried out by pointwise fitting of low-
order polynomials to localized subsets of the data. The advantage of this method is that the analyst is
not required to specify a global function of the data. However, the method requires considerably
higher computational resources.

The assumption of the local polynomial approximation is that near the query point the value of the
actual response changes smoothly and can be approximated using a low-order polynomial. The
coefficients of the polynomial are then calculated using the weighted least squares method giving the
largest weights to the nearest (usually according to the Euclidian distance) sample points and the
lowest or zero weights to the farthest sample points.

The coefficients S are calculated by the weighted least squares minimizing

B =arg m}n Z}: WX gy X i) )(j’(i) Yo )2 (©)

where w is a weight function; x,,., is the query point nearest neighbors of which will get the highest
weights; x, is the i-th point in vector x. The weight function w depends on the Euclidean distance (in
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scaled [-1,1]™ space) between the point of interest x,,.,, and the points of observations x. One of the
most widely used weight functions is the Gaussian weight function [11]:

W(xquery H ‘x(i) ) = exp(_ aﬂz ) (7)

where ¢ is a coefficient and the x can be calculated as

/|G s = ¥ ) ®)

/u = H(‘xquery - x(i))

where HH is the Euclidian norm; X, is the farthest point in the neighborhood of the point xe,,. In

general, the Gaussian weight function with constant value « =1/2 is used in local approximations

varying only the value of the considered nearest neighbors (unlike in equation (6) where all the sample
points are used) [11]. However, in the present study all the sample points have been used and the
locality of the approximation has been controlled by varying the value of the coefficient « . If o« is
equal to zero then local approximation transforms into global approximation. The best value of « is
found using the leave-one-out cross-validation technique [16]. In the present study locally weighted
polynomials of 2", 3, and 4™ order have been employed.

3. 3 Multivariate Adaptive Regression Splines

Multivariate Adaptive Regression Splines [17,18] was proposed as a method for flexible regression
modeling of high dimensional data (i.e., a large number of input variables). The model takes the form
of an expansion in product spline basis functions, where the number of basis functions as well as the
parameters associated with each one (product degree and knot locations) are automatically determined
by the data through a forward/backward iterative approach. Compared to polynomial approximations,
the use of MARS for engineering design is relatively new. However, its application is drawing an
increasing attention of the researchers (e.g., Jin et al. [1]).
MARS model can be defined as a sum of basis functions [17,18]:

ﬁ=&+2ﬂﬁu) ©9)

where fi(x) is a basis function; & is the number of basis functions in the model except for the constant
basis function f;(x) =1 coefficient of which is the ). The basis functions are of the form

d;
fi(x)= H [Sji (‘xv(j,i) - tji)]+ (10)

where d; is the number of variables (interaction order) in the i-th basis function; s, = +1; x,;, is the

v-th variable, 1 <v(j,i) <d; t; is knot location on each of the corresponding variables. The subscript

“+” means that the function is a truncated power function [17,18]. The coefficients f are again
determined by the ordinary least squares method (equation (5)). In the present study piecewise-cubic
MARS version 3.6 without a specific restriction of the number of basis functions or interaction orders
has been employed.

3. 4 Partial polynomials

Low-order global polynomial approximations have been well accepted in engineering practice, as they
require low number of sample points and are computationally very efficient. On other hand they can
not approximate highly nonlinear behavior. Instead, higher-order polynomials can be employed.
However, if no special care is taken they tend to overfit the data and produce high errors in regions
where the sample points are relatively sparse. One possible remedy for the overfitting problem is
employment of the subset selection (also called model building) techniques [13,14]. The techniques
are aimed to identify the best subset of polynomial terms (or basis functions) to include in the model
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and to remove the unnecessary ones, in this manner creating a partial polynomial model (in lieu of
“full” model) of increased predictive performance. However, the approach of subset selection assumes
that the chosen fixed full set of predefined basis functions (usually just by choosing a fixed maximal
order of the polynomial) contains a subset that is sufficient to describe the target relation sufficiently
well. Hence, the efficiency of subset selection largely depends on whether or not the predefined set of
basis functions contains such a subset.

There exists a different approach for polynomial model building which does not assume a
predefined set of basis functions — Adaptive Basis Function Construction [19,20]. The approach
allows generating polynomials of arbitrary complexity and order without the requirement to predefine
any basis functions or to set the maximal order of the polynomial (or any other hyperparameters) — all
the required basis functions are constructed adaptively.

Generally, a polynomial model can be defined by a linear summation of basis functions:

=Y B (an

where the coefficients £ are still calculated by the ordinary least squares method (equation (5)); fi(x) is
a basis function which generally can be defined as a product of the input variables each raised to some
order:

=TT (12

where 7;; is the order of the j-th variable in the i-th basis function (a non-negative integer). It should be
noted that when all 7;’s of a basis function become equal to 0, the basis function becomes equal to 1,
ergo it is the intercept term.

The matrix 7 completely defines all the basis functions in the model — each row corresponds to one
basis function with all of its orders. Construction of the model is carried out in an iterative manner
directly with the matrix r using five simple so-called model refinement operators which allow adding,
copying, modifying, and deleting the rows of 7, i.e., adding, copying, modifying, and deleting the basis
functions of the model [19,20]. As a search procedure a modification of the Sequential Floating
Forward Selection [21] algorithm is employed while models are evaluated using the Corrected
Akaike’s Information Criterion [22]. Additionally, in order to lower the model building issues of
selection bias and selection instability a technique of model averaging (also called ensembling or
combining) is carried out™.

3. 5. Metamodel evaluation

To evaluate the metamodels, 5-fold cross-validation technique [16] has been used where the full data
set is divided in five equally-sized subsets. In each of the five cross-validation iterations, four of the
subsets are used for metamodel building and one subset is used as an independent test set for
evaluation of the metamodel. As the metamodel accuracy measure the Relative Root Mean Square
Error has been used:

1 & N
;Z (yi — Vi )2
RRMSE =100%~+—"———— (13)
STD
where y, is the response value of the i-th test point; P, is predicted value of i-th test point; 7, is the

number of test points; STD is the standard deviation in test sample:

STD = L3 (7, =)' (14)

It should be noted that RRMSE and STD are calculated using strictly only the test sample and
averaged over all the cross-validation runs.
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4. Metamodeling results

As structural response parameters the following entities have been taken: global deflection of the deck
panel u, the relative deflection ratio between the deck length and the plate deflection Au, the maximum
equivalent stress at the upper plate and the stiffeners oy, , 05,z and the maximum shear stresses in
stiffeners 7. A total of 500 sampling points have been generated and a cross-validation procedure
together with the RRMSE measure has been carried out comparing the different metamodeling
techniques. Two loading scenarios have been selected for metamodeling: the concentrated three-point
bending load case and uniformly distributed load case with simple support boundary conditions. The
obtained results are summarized in Tables 3 and 4.

Table 3
Cross-validation RRMSE errors of different metamodels in the case of three-point bending load
Parametric polynomial Locally weighted
Metamodels approximations polynomials MARS
2nd 3rd 4th ABFC an 3rd 4th
Panel deflection, u 27.89 | 13.04 6.71 0.81 16.75 9.90 6.12 3.00
Comparative deflection, Au | 14.09 3.95 1.57 0.45 7.09 2.74 1.47 2.03
Max_stresses, 0y, 14.36 4.74 2.32 1.33 7.35 3.69 2.29 2.03
Max_stresses, oy 12.56 5.45 3.93 3.00 7.28 4.55 4.03 3.92
Max_shear stresses, t 10.32 7.42 7.73 2.18 7.91 7.11 7.71 5.82
Table 4
Cross-validation RRMSE errors of different metamodels built in the case of uniformly distributed load
Parametric polynomial Locally weighted
Metamodels approximations polynomials MARS
2nd 3rd 4th ABFC an 3rd 4th
Panel deflection, u 3423 | 18.04 | 11.54 1.07 23.15 | 14.15 | 10.47 5.26
Comparative deflection, Au | 43.93 | 30.19 | 27.36 9.33 23.18 | 31.65 | 26.15 | 26.57
Max_stresses, oy, 16.94 6.36 5.59 3.56 7.88 5.28 5.52 4.94
Max_stresses, oy 16.18 7.61 4.59 1.67 10.01 5.97 3.84 3.54
Max_shear stresses, 7 10.36 8.09 11.38 7.32 8.30 8.05 11.56 | 11.28

The conventional 2™ order polynomials, which are mostly associated with engineering problems of
the response surface methodology, gave the worst approximation results for almost all the response
values. It has been noted that locally weighted polynomials of the 2™ order considerably increased the
predictive performance. As overall observation could be stated that, by increasing the order of
polynomials, the approximation performance rose, however the higher was the order the smaller was
the improvement of the locally weighted polynomials over the global ones. Additionally, it should be
expected that decreasing the number of the sampling points would lead the full polynomials of higher
orders to overfitting the data thus rapidly reducing their predictive performance. The best results were
obtained using the ABFC approach, leaving the MARS technique as the second best. One can
conclude that, although using higher order global polynomials or locally weighted polynomials can
improve the predictive performance, an elaborated adaptive search for partial polynomials or
regression splines has capabilities to provide an even further performance boost.

Moreover, three-dimensional graphical validations of the developed metamodels for the deck panel
deflection u versus the panel length L and the panel height 4 parameters in the case of concentrated
three-point bending load with 500 sample points were carried out as presented in Figure 5 and 6. By
graphical validation of panel deflection and shear stresses one can easily identify that low order global
polynomial approximations at the maximum height and the minimum length behave differently than
expected. In particular the second order and to a lesser extent also the forth order polynomial surface
plots show a decrease of stiffness when increasing the panel height. On the other hand, the third order
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polynomial function shows non-negative deflection at the boundaries, which would indicate bending
against gravity. The MARS and partial polynomials reduce this unwanted behaviour.
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Fig.5. Graphical validation of surrogate models for panel deflection in the case of concentrated load.
Full global polynomials of 2" (a), 3" (b), and 4™ (c) order and MARS (d); ABFC (e)
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Overall, the low-order locally weighted polynomial approximation, MARS, and the ABFC gave the
best overall perspective of structural behaviour by creating a plateau-like surface for the height of
stiffened panel designs. It seems that here for an optimization procedure all the three methods can be
used with some confidence however for what-if analysis the ABFC would be the most accurate.

Conclusion

The comparison study between parametric and non-parametric metamodels has been elaborated for
design of pultruded GFRP deck structures under the bending load. Two loading scenarios have been
selected to investigate the metamodeling efficiency and have been validated with physical
experiments. It has been concluded that the partial polynomials and MARS are capable to improve the
prediction accuracy compared to conventional 2™ order polynomials, which frequently are associated
with engineering problems of the response surface methodology. In particular, the bending deflection
responses could be improved by an order of magnitude compared to the 2™ order polynomials. In
contrary, the improvement in approximation prediction for equivalent stresses and shear stresses are
less efficient. Elaborated metamodels have the capability to be used in implementation of optimum
design methodology for the bended deck structures.
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Kalnins K., Jekabsons G., Beitlers R., Ozolin$ O. Stikilplasta panelu optimala projektéSana ar eksperimentalu
validaciju.

Peétijuma meérkis ir izvértet dazadu metamodelu pielietoSanas iespéjas stiklplasta panelu optimalas projektésanas
metodologijas izstrade, veicot eksperimentalu validaciju. Raksts sastav no ievada, cetram dalam un
secinajumiem. Pirmd dala ietver pultriizijas procesa un stikiplasta ipastbu un aprékina ipatnibu aprakstu. Otrda
dala sastav no Rigas Tehniskdas universitates, Materialu un konstrukciju instituta laboratorija veikto
eksperimentu rezultatu apstrades un validacijas. Tresa dala ietver parametrisko un bez parametrisko
aproksimacijas metamodelu izveides strategijas un metamodelu precizitates novértéjuma kritériju aprakstu.
Ceturtaja nodala apkopoti aproksimaciju klidu, ka art grafiskas validacijas rezultati. Rakstu noslédz secinajumi
un ierosind@jumi turpmakiem pétijumiem.

Kalnins K., Jekabsons G., Beitlers R., Ozolin§ O. Optimal design of fiberglass panels with physical validation.
The aim of conducted research was to evaluate the efficiency of metamodels for elaboration in the optimum
design methodology for fiberglass panels with physical validation. The paper consists of introduction, four parts
devoted for discussion and conclusions has been drawn. The first part describes pultrusion process, fiberglass
properties and numerical analysis background. Second part consists of processing the laboratory experiments
performed at Riga Technical University Institute of Materials and Structures and validation with numerical
results obtained by ANSYS. Third part includes theoretical background of metamodeling. In forth chapter the
results have been shown and the graphical validation performed. The conclusions and references for the future
research has been drown at the end of the article.

Kannunow K., Exaocon I., Beumnepc P., O3onunswm O. OnmumaivHoe HPOeKMUpPOGAHUE CHEKI0-
RAACMUKOB0U RAHENU ¢ IKCREPUMEHMATIbHBIM ROOMEEPHCOEHUEM.

Lenv 0annozo ucciedosanus A6AAemMcsa OYyeHKa IppexmusHocmu Mmemamooenu 0 paspabomru Memoooi0cuu
ONMUMATLHO2O NpOeKmupo8aHsl CMEKI0NIACIMUKOBOU nawnenu c IKCHePUMEHMATbHbIM
noomeepoicoenuem.Cmamos,  cocmoum u3 68edeHus, uemvlpex 21ae U 3akniouenus. B nepeou eonase
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paccmampueaemcs noaydeHue O0OHOOCHO OPUCHMUPOBAHHO20 BOJIOKHUCIMO20 NIACMUKA, €20 CBOUCMEd U
UCXOO0Hble OaHHble MOOenu Oisl YUCIEeHHO20 pacdemad. Bmopas enasa codepoicum pe3ynvmamei YUCIEHHO2O
pacyuema u pe3yibmamyl IKCHePUMEHmMd, KOMopblil ObLI GblnoHeH 8 1abopamopuu Uncmumyma Mamepuanos u
Konempyryuii Pusicckozo Texnuueckozo ynugepcumema. Teopemuueckoe onucamue memamooeiu HaxoOumcs 6
mpemveti enase. B uemeepmoil 2nase NOKA3aHbI YUCTIEHHbIE PE3YTbMAMbl OWUOOK ANNPOKCUMAYUU U UX
epaguueckoe noomeepacoenue. Cnucok aumepamypvl U 3aKuoyeHue O0as OalbHeuue20 UCCIe008aHUs
pacnonazaemcsi 8 KOHye Cmambi.
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