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Abstract: Due to the availability of low-cost electronic devices and advanced image editing tools, changing the 

semantic meaning of a particular image has become straightforward by employing various image manipulation 

techniques like image copy-move, image splicing and removal operations. The tampered images with this sophisticated 

software are rich in visualization, making the modifications invisible to the naked eye. Detecting these image alterations 

is laborious, time-consuming, and often yields inappropriate results. The current techniques use conventional square, 

slide regular, and artifacts procedures to identify image deviations to combat image forgery practices. Still, these 

techniques exhibit problems related to generalization, training and testing, and model complexity. So, in this paper, a 

novel image forgery detection and localization framework is implemented using stationary wavelet transform (SWT), 

and a Hybrid Dilated Adaptive VGG16 model with optimization is introduced to classify forgery images and localize 

the forgery regions present in an image. Initially, the proposed framework processes the input image with SWT to 

decompose an image into different subband and further divide it into patches. After that, the hybrid dilated adaptive 

VGG16 Network (HDA-VGG16Net) is built to extract the deep image features from the patches. Later, the Hybridized 

Tuna Swarm with Bald Eagle Search Optimization (HTS-BESO) technique is applied to optimize the VGG16 

parameters. Finally, feature matching is formed using multi-similarity searching to recognize whether the input image is 

forged or original by locating forgery regions. The evaluation results are compared with existing forgery detection 

approaches to ensure the efficiency of the developed model by considering multiple performance measures. 

 

Index Terms: Copy-move forgery; Stationary wavelet transform; Dilated CNN; Tuna swarm optimization; Bald eagle 

search optimization 

 

Abbreviations 

DWT Discrete Wavelet Transform 

DCT Discrete Cosine Transform 

SWT Stationary Wavelet Transform

mailto:prakashhunki@gmail.com


Copy-Move Forgery Detection and Localization Framework for Images Using Stationary Wavelet Transform and Hybrid Dilated 

Adaptive VGG16 with Optimization Strategy 

Volume 16 (2024), Issue 1                                                                                                                                                                       39 

SVD  Singular Value Decomposition 

FMT  Fourier-Mellin Transform 

BRISK Binary Robust Invariant Scalable Keypoints 

SURF  Speeded-Up Robust Feature 

SIFT Scale Invariant Features Transform 

CNN Convolution Neural Network 

LIPO Local Intensity Order Pattern 

GAN Generative Adversarial Network 

LSTM Long-Short Term Memory 

PRNU Photo-Response Non-Uniformity 

BDP Boundary to Pixel Direction 

A-EHO Autoregressive Elephant Herding Optimization based Generative Adversarial Network 

 

1. Introduction 

Introducing the latest image technologies in digital processing and hardware capabilities caused many individuals 

to apply the changes in the original images and tamper without leaving visual clues[1]. When produced as authentic 

documents or evidence, the tampered images may cause various problems in the medical domain and courtrooms 

believing that the photos tampered with using low-cost, sophisticated image editing tools will leave some visual clues 

surrounding the tampered regions, several authentication techniques are employed to determine the authenticity of the 

images. These authentication techniques are divided into two categories: active and passive[2]. In the former method, 

the signature code is provided in picture capturing and used to test modified images. In this case, the multimedia 

information has a digital mark on it[3]. As a result, modifications to multimedia content are easily detected. However, 

only some image-capturing gadgets have a digital signature code. Therefore this approach is only sometimes 

appropriate. Latter, also called forensics, do not require additional data related to the image. Thus, their objective is to 

determine an image’s authenticity by studying it and looking for signs of any special processing it may have undergone. 

The image forgeries[4] can be done in different ways, such as copy-move image forgery, in which copying and pasting 

one or more regions of an image into the same image at various locations are performed to significantly alter the 

semantic content of the target image and concealing the information or duplicating objects and people. In contrast to 

copy-move forgeries, this one uses portions of other photos that have been taken out to create the pasted regions and 

objects. To hide some content or provide a fictitious context, splicing forgeries might be performed. A portion or "hole" 

in the image is filled with believable content in this type of attack. Usually, in-painting is used to repair damaged areas 

in pictures. However, potential attackers may use it maliciously to remove a visible watermark or conceal information 

from an image. Furthermore these tampering techniques use post processed by applying different operations such as 

contrast enhancement, blurring, and compression to make it hard for the detection systems. 

Researchers have made several efforts in recent years to combat forgery practices to detect image forgeries by 

incorporating conventional forgery detection techniques and deep learning. The section-II will discuss the most current 

and prominent approaches that have evolved during recent years 

The proposed deep learning-based forgery detection mechanism comprises the following key contributions 

 

1. The suggested approach employs state-of-the-art deep networks and parameter optimization mechanisms to 

prevent image forgery and establish a cost-effective tool for forgery detection. 

2. Using SWT for image decomposition helps to identify the most similar and discriminative image 

characteristics. Also, optimizing parameters like start level, wavelet type, and norm using HTS-BESO 

algorithm optimization technique enhance decomposition performance and improve the performance of the 

Adaptive Forgery Identification and Localization Framework. 

3. The Hybrid dilated VGG16 network model employs convolution kernels with varying dilation rates across its 

layers. This design guarantees full coverage of a square area, eliminating gaps or missing information through 

convolution operations. Consequently, the model efficiently captures the most pertinent features from image 

patches, enhancing accuracy during training and testing while reducing time consumption. 

4. We conducted a comparative analysis to assess the effectiveness of our proposed method, which utilizes the 

HTS-BESO-HDA-VGG16 Net-based forgery detection scheme. We evaluated its performance against various 

existing algorithms and recently developed techniques. 

 

Here is a brief explanation of the paper’s reminder section. Section 2 covers the associated research for the forgery 

detection techniques. Section 3 details the proposed adaptive forgery detection and localization framework. Section 4 

discusses the experimental setup, evaluation parameters, results and discussions of the proposed forgery detection 

method. Section 5 concludes the proposed HTS-BESO-HDA-VGG16Net-based forgery detection technique. 
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2. Literature Survey 

Over the years, researchers have proposed various techniques for determining whether an input image has been 

forged, emphasizing forged areas. According to the literature review, the first block-based method for identifying 

forgery images was put forth in 2003[5]. They later developed various strategies using different feature extraction and 

matching methodologies. They most recently applied deep learning models to enhance detection outcomes and lessen 

the computational burden of detecting fake photos. Therefore this section summarizes the most recent methods based on 

conventional feature extraction and matching techniques and the deep learning models developed in recent years. 

2.1 Conventional forgery detection techniques 

These methods are primarily classified as block-oriented and key-point-oriented. In the former, an entire image is 

divided into irregular or regular overlapping shaped blocks and processed to extract significant features from each 

image block, followed by some block matching algorithm to isolate the forged blocks. In the latter, correlated pixels are 

discovered by removing the image’s key points of significance. 

In the paper, [6] proposed a technique based on Gaussian-Hermite Moments (GHM), which divides an input image 

into constant-sized overlapping blocks, and then the Gaussian-Hermite moments are extracted from each block. Later, 

the lexicographical sorting and matching process is used to find similar blocks. The forgery detection technique 

proposed in the paper[7] combines SURF and BRISK descriptors. A similar work in the paper[8] combines block-based 

and keypoint-based techniques using FMT and  SIFT for forgery detection. The paper[9] introduces a method where 

features are extracted and compressed using a combination of DCT and SVD techniques. These features are then used 

for training support vector machine (SVM), enabling the identification of forgery regions within an image by applying 

the K-means machine learning technique. The work referenced in [10] identifies both types of forgeries, such as 

splicing and copy-move simultaneously, by extracting features using DCT, DWT, and   Ensemble classifier to classify 

the input images as forged or authentic. 

Further, it utilizes a key point-based method to detect the forgery regions. The paper in [11] presents a 

comprehensive approach for investigating JPEG compressed test images that are suspected of being altered through 

splicing or copy-move forgery and localizing the tampered region in forged images. The paper  [12] proposes a 

technique that includes double matching and region-localizing processes for filtering isolated keypoint pairs, finding 

approximate suspicious parts, and localizing copy-move areas. The paper [13] introduces a frequency-domain image 

manipulation method that utilizes DWT and inverse DWT to identify the region within the host image that will be 

manipulated. 

These techniques effectively locate the tampered areas even though the tampered regions are post-processed. 

However, the algorithm did not do any further robustness tests, and the size of the feature vectors increased the 

computational complexity. So, deep learning frameworks are evolved to overcome the difficulties identified in the 

conventional forgery detection techniques to achieve higher classification and detection accuracy rates 

2.2 Deep learning models 

The prior research has looked at residual patterns, wavelet transform, statistical properties, image pixel information, 

and other image attributes to verify the authenticity of an image. Due to the growing popularity of deep neural network 

frameworks recently, some efforts have been made to incorporate CNN to design deep learning models to improve 

forgery image detection. In paper,[14]the present paper investigates copy-move forgery detection with fusion 

comprising of a deep convolutional and an adversarial model. The proposed algorithm enables constantly update its 

learning via training data to differentiate areas from forged ones. The paper[15] presents a novel approach for detecting 

and locating non-aligned JPEG forgery. The method utilizes a deep neural network to perform semantic pixel-wise 

segmentation of JPEG blocks. The paper, [16]A high-confidence tampering localization structure is proposed by 

utilizing Long Short-Term Memory (LSTM) cells and an encoder-decoder network to distinguish tampered regions 

from un-tampered ones based on resembling features. In 2020, Lin and Li[17] investigated a segmentation-based 

forgery detection technique. This method focuses on the local uniformity of visually hidden clues, which helps 

overcome the limitations of existing segmentation methods that rely solely on visually perceptible content. Additionally, 

they proposed a forgery localization method based on PRNU.In the paper[18], CNN is used to train hierarchical features 

represented from an input image for identifying altered and original images. In the paper[19], proposed two approaches, 

a model using a custom architecture and a model using transfer learning to distinguish between altered and original 

images. The paper[20], proposes a method based on color illumination, deep CNN, and semantic segmentation is 

employed to detect and localize image forgeries. The paper[21] introduces a deep learning approach with a dual-branch 

CNN to detect passive copy-move forgery by extracting multi-scale features using various kernel sizes.  An automated 

deep learning-based fusion model is implemented in[22] by combining GANs and densely connected network 

(DenseNets) models to create a layer for encoding the input vectors with the initial layer of the extreme learning 

machines(ELM) classifier along with artificial fish swarm technique to adjust parameters to distinguish between the 

input and target areas in a fake image. In 2022, Ganeshanet al.[23]Offered a GAN based on Autoregressive Elephant 

Herding Optimization (A-EHO-based GAN) for copy move forgery detection. The paper [24]presents a lightweight 
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model constructed using mask R-CNN with MobileNet V1 for detecting and identifying copy move and image splicing 

forgeries present in an image along with corresponding percentages. In 2022,Koulet al.[24], proposed convolutional 

neural network with 3-Layered CNN algorithm for feature extraction and classification. Table 1 summarizes the 

methodology, features and future challenges of the current forgery detection techniques. 

Table 1. Summarization of methodology, features and challenges of previous forgery detection systems 

Author 

[citation] 
Methodology Features Challenges 

M. Bilal et al. [7] 
DWT, 
SURF and 

BRISK 

 Identify single and multiple tampered regions 

that are processed with post processing 

operations. 

 Complex post-processing attacks such as large 
scaling, smoothening, and brightness change. 

K. B. Meena and 

V. Tyagi[8] 

FMT and 

SIFT 

 Capable of detecting forged areas scaled by a 

factor of 50% to 200% and subjected to JPEG 
compression. 

 Unable to detect copy-move forgery regions 
present in videos. 

G. S. Priyanka 

and K. Singh[9] 

DCT and 

SVD 
 Detect copy-move forgery and provides better 

results against post-processed images. 

 Difficult in the detection of small-sized forged 

regions. 

 Appropriate clustering by the K-means and 

selecting optimal threshold values pose 

significant challenges. 

S. P. Jaiprakash 

et al.[10] 

DCT and 

DWT 

 Can detect both spliced and copy-move 

forgeries simultaneously, exhibits high 
accuracy across various image formats and 

demonstrates generalization capability. 

 Hard to detect images with varying 
resolutions, blurring attacks, and multiple 

forgery regions. 

Dua, J. Singh, 
and H. 

Parthasarathy[11] 

DCT 

 Precisely identify duplicated regions within 
uncompressed, compressed, and doubly 

compressed images of various formats. 

 Locate single and multiple manipulated areas 
with precision, even when similar objects and 

regions are present. 

 Experiences slightly higher rates of false 
detections, mainly when there is a change in 

illumination and blurring 

 Extracting phase congruency features from 
multiple orientations in the covariance matrix 

poses a challenge. 

Q. Lyu et al.[12] 
LIOP 
keypoints 

 Achieves high recall with acceptable 

precision, and robustness. 

 Precision decreases due to the extended 
triangles and increased number of keypoint 

pairs resulting from the double-matching 
process. 

T. Qazi, et al.[13] 
DWT and 

Inverse DWT 

 Detect copy-move forgery regions using 

DWT and IDWT features 
 The method fails to detect when the patch is 

not taken from the host image and high JPEG 

compression. 

Y. Abdalla et 

al.[14] 

Fusion of 
CNN and 

GAN. 

 Detect image with different sized forgeries 

than the ones used during training. 
 Experiences more training time 

Bappyet al.[16] CNN-LSTM 
 Classify the different types tampering such as 

object removal, copy-move and splicing and 

Handles the large dimensional dataset 

 Missing useful information during the splicing 
of large dimensional datasets and affected by 

noise. 

X. Lin and C. T. 

Li [17] 
PRNU 

 It highly exploits the local homogeneity from 
indiscernible clues and able to detect and 

localize the object insert and object removal 

forgeries 

 Need to investigate potential of image 
segmentation in other forensic detectors and 

the combination of different techniques in 

future work. 

M. A. Elaskily et 

al[18] 
CNN 

 Able to classify original and forgery images 
accurately within no time. 

 There is a need to address the detection and 
localization of other digital image forgeries. 

Y. Rodriguez-
Ortega[19] 

Custom 
model and 

VGG16 with 

transfer 
learning 

 Addressed the issue of generalization by 
training the architecture with only one dataset 

and evaluated on a variety of datasets instead 

of training on an extensive dataset. 

 There is a need for further exploration in 
expanding the training dataset, understanding 

the influence of hyper-parameters on classifier 

performance, and investigating hybrid 
techniques that integrate deep learning-based 

feature extraction with domain 

transformation. 

N. Jindal[20] 

super‑ BPD 

segmentation 
and deep 

CNN 

 Able to accurately detect multiple, rotated, 
and scaling forgeries with large-scale scaling 

forgeries and small manipulated image areas. 

 Incorporates local information features from 
the shallow network outputs and employs the 

Atrous spatial pyramid pooling (ASPP) layer 

to create a feature pyramid to improve the 
overall performance. 

 Detection of small altered regions needs to be 

improved which exhibits sharp edges and 

background shadow. 

 The SD-Net’s segmentation module and dual-

branch structure have complicated the 

method. 

N. Goel et al.[21] 

dual branch 
convolutional 

neural 

network 

 Classify the image is original or forged. 

 Forgery region detection is need to be 
addressed in the model. It is important to 

focus on improving the model's generalization 
capabilities, particularly in terms of handling 

varying image sizes and different types of 

forgeries. 

N. Krishnaraj et 
al.[22] 

GANs and 
DenseNets 

 Classify the input image is forged or original 

 Achieved higher training and validation 
accuracy 

 Unfortunately, training a GAN becomes 
challenging when the generator and 

discriminator are highly proficient, as GANs 
typically require significant training time. 
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Ganeshanet 
al.[23] 

A-EHO based 
GAN 

 It accurately captures the copied image portion 
in the host image. 

 Employing the separation operator with clan 

updating with regressive terms successfully 
achieves global convergence. 

 Currently, the model does not address the 

detection of forgery regions, and achieving 

generalization of the model remains a 
challenge. 

Koulet al.[24] CNN 
 It provides improved forgery detection 

accuracy than the other methods and alleviate 

the derelictions. 

 It loses some information during merging. 

 It is affected by white Gaussian noise. 

2.3 Forgery detection challenges in existing systems 

With widespread digital devices and freely available open-source and commercial image editing tools, image 

modification poses a significant challenge in visual media. Due to this, an authenticity of an image becomes 

questionable. Moreover, it can lead to misleading testimonies within a court of law and poses a challenge because 

human eyes cannot discern alterations made to an original image due to its tiny nature. Also, the localization process is 

crucial for locating the places that have been altered. As a result, several conventional and deep learning methods are 

evolved to authenticate and detect forgery regions but exhibit several limitations. The preceding techniques carry a 

more significant burden of computational complexity and yield imprecise outcomes when manipulated images are 

subjected to a range of post-processing maneuvers, including substantial and subtle scaling, smoothening, and 

brightness adjustments. 

Furthermore, this approach needs to be revised in identifying instances where the altered patch originates from a 

different source image, and it struggles in cases of high-level JPEG compression, rendering it unsuitable for real-time 

applications. In contrast, deep learning models focus solely on discriminating between forged and authentic images. 

Nonetheless, these models necessitate extensive training data and heightened computational capabilities. Despite these 

requirements, achieving effective model generalization remains an ongoing challenge. 

3. Proposed Adaptive Forgery Detection and Localization Framework 

Although many conventional and deep learning approaches mentioned above have demonstrated promising results 

in classifying images as forged or authentic and locating forgery regions, still, they have some drawbacks as mentioned 

in section 2.3. Furthermore, these current methods are susceptible to fuzzy attacks and necessitate usage in a distinct 

space, making distinguishing between innocent and malicious retouching difficult. Hence, they need to be revised, 

including imprecise results, low resilience, and a high rate of false alarms. Therefore, we propose a model called HTS-

BESO-HDA-VGG16Net-based forgery detection that offers a solution to improve the training and testing performance 

and generalize the model for detecting forgeries to overcome some of these constraints. The suggested model can be 

used by various web applications, government agencies and social media platforms as the back end to verify the 

legitimacy of each image data provided during transactions. Fig. 1 depicts the visual representation of suggested forgery 

detection approach. 

 

 

Fig. 1. Visual representation of the proposed forgery detection technique. 
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In the first step, we gathered the required images from two datasets. Then SWT is applied to decompose each 

image by optimizing the parameters like start level, wavelet type and norm with the help of the suggested HTS-BESO 

algorithm. Before the images are decomposed using SWT, all images are preprocessed to reduce the size to 400×400 

image.The decomposed images split into several patches. Later the significant image features are extracted from the 

patch using hybrid dilated adaptive VGG16. The parameters from the VGG16, like hidden neuron count and epochs, are 

optimized to maximize the accuracy and precision values. Finally, keeping one patch as a constant and a matching 

process is performed to determine the similarity value for the remaining patches. If the similarity value exceeds 0.7, we 

consider the image forged and mark the forgery regions in the image; otherwise, we believe it is authentic. Finally, the 

final results are contrasted with the existing algorithms to evaluate the effectiveness of the offered HTS-BESO-HDA-

VGG16Net-based forgery detection scheme. Comprehensive explanations of each step are explained in the following 

sections, encompassing all essential particulars. 

3.1 Image Decomposition using Adaptive SWT 

The input images collected from the datasets are indicate , 1, 2, 3, .....,ln
col wherea Aa  as the total number of images. 

In the first step, each input image is decomposed by applying adaptive SWT[25]to divide an input image into a few 

frequency bands. The choice of adaptive Stationary Wavelet Transform (SWT) for image decomposition is founded on 

its ability to capture both high-frequency and low-frequency details within an image effectively. The adaptive SWT 

adjusts the filter lengths depending on the scale of analysis, unlike conventional SWT, which employs preset filter 

banks for decomposition. This versatility enables SWT to capture local image characteristics, improving the 

representation of structures at different scales and ensuring that essential features are not lost throughout the 

decomposition process. In the proposed approach, the SWT parameters such as norm, start level, decomposition level, 

and wavelet type are optimized using HTS-BESO, enabling the retention of significant image details for extracting 

discriminative features and achieving high forgery detection accuracy and precision. By incorporating the adaptive 

SWT-based decomposition, we greatly enhance the detection reliability of the proposed model. The adaptive SWT 

image decomposition process and corresponding mathematical expressions are depicted and illustrated in Fig. 2 and 

equation (1-6), respectively. 

 

( ) ' ( ), ,d y m mk l k l
m X

 


                                                                        (1) 

 

Here, discrete wavelet is represented as )(' , mlk  and its value is determined using equation (2). 

 

)),(2(2)(' 0,0

)2/(

, lmm kk

lk                                                                   (3) 

 

  )()(1)(.1  ymimdb l  

  )()(1)(.1  ymhmde l                                                                    (4) 

 

The above equations are generalized and written in equation (5). 

 

   

  )()(][2)( ,1.11

1

,  lk

k

lk

k

lk dbmidbimdb  

   

  )()()(][2)( ,1.11

1

,  lk

k

lk

k

lk bemhldehmde                                                  (5) 

 

Here, lkdb , and lkde , are the approximate and detailed coefficients, respectively. These coefficients are generated 

with the help of signal sequence and are represented as )(my , 1i and 1j is the adaptive size of the high and low pass 

filter respectively, over sampling of high pass and low pass filter at coefficient values of )(1 mik and )(1 mhk is indicated 

as )(][2 1

1 mii kk  
and )(][2 1

1 mhh kk  
the expression is used to find the values and it is written in equation (6). 

 

1(2 ) ( )

(2 1) 0

1(2 ) ( )

(2 1) 0

j jh m h m
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 

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 

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                                                                          (6)
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The above equation gives very accurate output signals by utilizing adaptive SWT method. The output obtained 

from this process is denoted as SWTD
b

. 

 

 

Fig. 2. Illustration of adaptive SWT-based image decomposition 

3.2 Optimization Technique Adopted  in Image Decomposition and VGG16 

We have implemented the HTS-BESO algorithm in a proposed forgery detection scheme. This algorithm aims to 

optimize the parameters of SWT and VGG16 to enhance the detection performance. The proposed algorithm 

demonstrates an advantage over alternative swarm-based metaheuristic algorithms by effectively balancing exploitation 

and exploration to conduct a thorough search and identify the best answer. It also ensures the capacity to converge 

quickly to optimal or almost optimal solutions. The information-sharing and adaption mechanisms of the algorithm 

allow it to focus on promising areas of the search space efficiently. In contrast, the BESO algorithm reduces costs and 

provides high comfort. 

Consequently, the HTS-BESO algorithm addresses the limitations of existing algorithms by significantly 

improving accuracy and maximizing precision in detecting forgeries. To implement the suggested HTS-BESO 

algorithm, we incorporate an updated uniform random number based on the fitness value. This allows us to obtain the 

best solution by adjusting the random parameters. The key requirement is to update the candidates' positions, as 

specified in equation (7). 

 

B f
if c

W f
                                                                                    (7) 

 

𝐵𝑓 and  𝑊𝑓 stand for the best and worst fitness values, respectively, and c is a uniform random number. The 

conventional method’s c weight varies between [0-1]. The suggested strategy provides a highly optimized solution in 

the problem space under the abovementioned criterion. The HTS-BESO algorithm also enhances the proposed system’s 

rate of convergence. 

 Tuna Swarm(TSO) 

TSO[26] algorithm is designed based on individual movement and interaction principles within a swarm, enabling 

it to tackle complex optimization problems effectively. The marine predatory fish known as tuna is officially known as 

Thunnini. Tuna comes in a variety of species, and they come in a wide range of sizes. Tuna are top marine predators 

that eat various surface and midwater fish. The fishtail form, which tunas use to swim, is a unique and effective 
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swimming style that keeps the body tight while allowing the long, thin tail to swing quickly. Tunas are continuous 

swimmers. Despite swimming rapidly, the lone tuna takes longer to react than the nimble little fish. So the tuna will 

hunt in groups, using the “group travel” strategy. To locate and catch their prey, they employ intellect. Numerous 

valuable and clever foraging techniques have evolved in these species. 

The first technique is Spiral foraging. To lure their prey into shallow water, where they may be more readily 

attacked, tuna swim in a spiral shape when feeding. Parabolic foraging is the second tactic. Each tuna form a parabolic 

shape as it swims behind the one before it to encircle its prey. The two approaches mentioned above are effective for 

tuna foraging. Following is a description of the TSO's mathematical model. Like most swarm-based metaheuristics, 

TSO initiates the optimization process by uniformly generating beginning populations at random in the search space 

and it is given in equation (8). 

 

( ), 1, 2, 3, ........,I rand ua lb j MPY j                                                                 (8) 

 

The rand is used to represent a uniformly distributed random vector and has a range of [0-1]. The upper and lower 

boundaries of MP are given as 𝑢𝑎 𝑎𝑛𝑑 𝑙𝑏, respectively. MP is the number of Tuna populations. The initial individual in 

the thj  direction is denoted by I thJY j , 

Sardines, herring, and other small schooling fish establish a thick configuration when they come into contact with 

predators, which makes it harder for the predator to lock on a victim. The tuna school forms a tight spiral formation. It 

begins chasing the prey at this point, even though most of the fish in the school has a poor sense of direction. When a 

small number swims steadily in a particular sequence, the neighboring fish gradually alter their focus until they 

eventually form a large group with the same aim and begin to hunt. Tuna schools communicate with one another in 

addition to spiraling after their prey. Since each tuna follows the one before, information can be shared between nearby 

tuna. Based on the above principles, the mathematical formula for the spiral foraging strategy is as follows: equation (9). 
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Where 
1uYj
 thj individual of the 1u   iteration, the weight coefficients 1  and 2   govern how inclined 

people are to travel in the direction of the ideal person and the preceding person, respectively. Parameter b determines 

how closely the tuna follow the ideal person and the preceding individual in the first phase. The current iteration is 

denoted by u, while the maxu  represents the maximum iteration, the current optimal individual is indicated as
uYpremi , 

the parameter c denotes uniform random number and its ranges in between ]1,0[ .  

All tuna can utilize the search space surrounding the food when they forage spirally around it. However, 

unthinkingly following the ideal individual to feed is not advantageous for group foraging when that person cannot find 

food. As a result, we consider creating a random coordinate in the search space as a starting point for the spiral search to 

enable everyone to look for a larger area and offer TSO the power to explore the entire world. The details of the specific 

mathematical model are as follows in equation (10). 
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As a result, the random generated reference point in the search space is denoted by u

randY . 

Metaheuristic algorithms usually start by engaging in sizeable global exploration before progressively shifting to 

focused local exploitation. As a result, TSO switches the spiral foraging reference points from random individuals to 

optimal individuals with each subsequent iteration. The final mathematical model summarizes the spiral foraging 

strategy illustrated in equation (11) as follows. 
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Tunas also engage in cooperative parabolic feeding in addition to spiral formation feeding. Tuna use food as a 

point of reference to construct an illustrative structure, using their surroundings as a search area and hunting for food by 

searching around themselves. To perform these two approaches simultaneously, we assume a selection probability of 

50%. And we describe the specific mathematical model as in equation (12) as follows. 
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Here, UG is a random number and the value is between ]1,1[ . 

Tuna uses two foraging techniques to locate their prey cooperatively. The initial population is generated at random 

in the search space for the TSO optimization procedure. Each person determines whether to regenerate their location in 

the search space based on probability ‘x’ or selects one of the two foraging strategies to use randomly in each iteration. 

The value of the parameter ‘x’ is determined using parameter setting simulation experiments for parameter setting. All 

TSO members are continually updated and calculated throughout the optimization procedure until the end condition is 

satisfied. The ideal person is then given back along with the associated fitness value. 

 Bald Eagle Search Optimization (BESO) 

The BESO[27] algorithm, inspired by the hunting behaviors of bald eagles, captures the sequential nature of each 

hunting phase. This algorithm can be divided into three stages: search space selection, exploration of the selected search 

space, and decisive swooping. 
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Select stage: During the selection stage, bald eagles exhibit a strategic behavior of choosing the optimal hunting 

location within a defined search region based on the abundance of available food. This behavior is mathematically 

represented by equation (13). 

 

( ) . .( ( ))SW j SW rand SW SW jnew best mean                                                       (13) 

 

Where   is a control parameter for regulating positional changes and ranges between ]2,5.1[  and rand is a random 

number with a range of values between 0 and 1. The term SWbest  refers to the area of the search that bald eagles have 

chosen based on the best location they discovered during their previous quest. The ( )SW jnew  signifies new position and 

Eagles randomly search all locations near the pre-selected search zone. While doing so, SWmean  shows that these 

eagles have consumed all of the information from the earlier points. 

Search stage: Bald eagles maneuver in a spiral pattern within the chosen search zone during the search stage to 

speed up their quest for prey. Equation 14 mathematically expresses the ideal swoop position. 
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Here, directional coordinates for thj position is signified by o , m parameters. 
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S is a parameter that accepts a value between 0.5 and 2 to represent the number of search cycles, and b is a 

parameter that takes a value between 5 and 10 to represent the corner between the point searches in the central point. 

Swooping stage: Bald eagles swing to their intended prey in the swooping stage from the best location in the 

search area. Every point moves in the direction of the ideal time. This behavior is represented quantitatively in equation 

(16). 

 

( ) . 1( ).( ( ) 1. ) 1( ) .( ( ) 2. )np premi m premiSW j rand SW n j SW j d SW o j SW j d SW                        (16) 

 

In this context, the random number is denoted as d1 and d2, respectively, while the directional coordinates are 

indicated as n1 and o1. Finally, the values of the directional coordinates are calculated using equation (17). 
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Here, directional coordinates are denoted by m and o , respectively, and b is signifies a control parameter. 

Pseudocode 1 provides a visual representation of the algorithmic steps employed in the proposed HTS-BESO method. 

 
Pseudocode 1: HTS-BESO algorithmic steps 

Set the initial population size as 𝑁𝑝 

Set maximum iteration value 𝑈𝑚𝑎𝑥 

Compute the value of 𝐵𝑓 and 𝑇𝑓 then 

Calculate the value of uniform random number 𝐶 

for t=1 to 𝑈𝑚𝑎𝑥 

  for j=1 to 𝑁𝑝 

 𝑖𝑓𝑐 < 𝐵𝑓 𝑊𝑓⁄  
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                  Discovery the value of  𝑌𝑟𝑎𝑛𝑑
𝑢  

                  Update the position using the TSO method mentioned in equation   
                 (10). 

       Else 

                Find the value of best position  

  Update the position using BESO by equation (13) 

        end if 

 end for 

end for 

3.3 Block tilig process 

Here, the decomposed image SWT
Db

is input to the block tiling process to divide an image into blocks. The image 

block is a small rectangular box composed of several pixels to help the image processing algorithms easily carry the 

feature extraction process to identify the similarity values in detecting the forged images with high accuracy and reduce 

the computational complexity. Initially, we mark the seed points to divide an image into different blocks. After that, we 

find the movement of this point using the slight gradient. We must increase the number of seed points to separate the 

image into small patches. The decomposed images are split into nine non-overlapping patches of size 128 x 128denoted 

as sp
Pc .The developed forgery detection model employs a non-overlapping block tiling process to reduce the 

redundancy and higher computational complexity during feature extraction and help to capture more global features and 

textures in an image. Fine details can be captured from individual patches during the feature extraction process from 

hybrid dilated VGG16 later. The smaller block sizes can capture finer details but might increase storage requirements 

and introduce block artifacts. 

3.4 Hybrid Dilated Adaptive VGG16 Network for Forgery Detection and Localization 

In many traditional image classification algorithms, the conventional CNN plays a vital role. However, in these 

traditional CNN models, increasing the network depth by stacking layers is often employed to achieve higher accuracy 

and handle more complex scenarios. Unfortunately, this approach results in excessive computational resource 

consumption and can lead to the vanishing gradient problem, where gradients become extremely small as they 

propagate through the network layers. Consequently, the performance of the network may saturate or even deteriorate 

significantly. To address these challenges, a dilated CNN model is introduced as an alternative to the convolution layers 

of traditional CNN models. In this approach, dilated convolution layers, which include holes within the convolution 

kernels, are utilized. This strategy helps reduce the computational resource requirements during feature extraction while 

expanding the receptive field without increasing the number of parameters[28]. However, simply stacking dilated 

convolution kernels can expedite the training process and improve training accuracy to some extent. Nevertheless, it 

does not effectively enhance testing accuracy because dilated convolution kernels can result in the omission of specific 

pixels, leading to the potential neglect of continuity information within the image. Additionally, when the size rate 

remains constant, it becomes challenging to consider both large and small-scale information simultaneously while 

extracting the image’s feature map.  

Therefore, we have employed hybrid dilated convolution(HDC) layers[29] to process images and ensure that the 

vital information won’t be lost to the greatest extent when extracting the feature map. In this process, the image patches 

sp
Pc obtained from block tiling process are given as an input to HDC-VGG16Net to extract relevant image features and 

incorporate the HTS-BESO for parameter optimization to efficiently detection the forgery images. The dilated 

convolution kernels in the HDC model have different dilation rates in the various layers. Instead of using the same 

dilation rate for all layers after down sampling, we use a different dilation rate for each layer. The dilation rates in the 

dilated convolution kernels are set as 1, 2, and 5 in one set and 1, 2, and 5 in another set, respectively, to cover every 

pixel point in the image and preserve critical information during a series of convolution operations—the Fig. 3 

Illustrates dilated convolution kernel stacking effect that contributes to the calculation of the center pixel marked as a 

red through three convolution layers with kernel size 3 x 3. (a) All convolution layers have a dilation rate r = 2. (b) 

Subsequent convolution layers have dilation rates of r = 1, 2, 3, respectively. It can be seen that (a) always leaves some 

holes between pixels, and these holes, with different dilation rates, every single step in the HDC model can fill the gaps. 

Hence the top layer can access information from a broader range of pixels in the same region as the original 

configuration. This process is repeated through all layers, thus making the receptive field unchanged at the top layer. 

We constructed the HDC model with six dilated convolution-pooling modules, two fully connected layers, and a 

softmax function. To prevent overfitting, we optimized the model using a two-layer dropout function. 
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Fig. 3. Dilated convolution kernel stacking effect[30] 

Hence the designed HDC model effectively retrieves the most relevant features from the image patches, improves 

accuracy in training and testing, and reduces time consumption. As a result, it maximizes accuracy and precision values, 

thereby increasing the system’s overall effectiveness. We represent the objective function of the proposed deep 

learning-based forgery detection scheme as equation (18). 
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Thus, accuracy and precision is represented as AD , and PPV respectively, , , ,
T L SL NT T T TSW SW SW SW are the 

optimized parameters of SWT and they are wavelet type and it is ranges between ]4,0[ , level and its value is ranges 

between ]15,5[ , start level and the value is ranges between ]4,1[ , norm and its value is ranges between ]1,0[ and

16 , 16
Hn e

VGG VGG  are the optimized parameters of VGG16 and they are hidden neuron count its value is ranges 

between ]255,5[  and epochs and its value is range in between ]50,5[  respectively. The value of accuracy and precision 

also called as positive predictive value (PPV) is determined by using equation (23) and equation (24).The block 

diagram of hybrid dilated adaptive VGG16-based forgery detection in Fig. 4. 
 

 

Fig. 4. Block diagram of Hybrid dilated VGG16-based forgery detection process 
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3.5 Multi-Similarity-based Image Localization 

We use a multi-similarity analysis technique to identify similar regions in images. When copy-move image 

tampering occurs, the copied parts do not need to be precisely positioned where they should be, resulting in altered 

blocks that do not intersect with the duplicated region. After splitting the image patches, we adopt a multi-similarity 

analysis by keeping one patch constant and comparing the others to find similar image patches. If the similarity value 

exceeds 0.7, we consider the image patch altered; otherwise, it belongs to the original image. So, this process allows us 

to separate the forgery and original image patches precisely. Finally, to visualize the resulting image with the 

discovered forgery region, we apply binary mapping techniques and additional morphological operations like opening 

and closing to remove isolated image patches. Fig. 5 presents a Multi-similarity-based image localization process for 

highlighting forgery regions. 

 

 

Fig. 5. Multi-similarity-based image localization process 

4. Experimental Setup 

The proposed forgery detection model HTS-BESO-HDA-VGG16Net, was implemented using Python 3.8 with 

Keras and TensorFlow as the backend toolkit for training and testing. The Keras default function is used to initialize the 

parameters of all layers. We use the Adam optimizer with a learning rate 0.01 and the binary cross-entropy loss function. 

The epoch and mini-batch sizes are set to 90 and 30, respectively. The proposed framework is tested on an Intel Core i7 

64-bit processor with 16 GB RAM and an 8GB GPU. To assess the efficiency of the proposed method, we have set the 
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population and maximum iteration value as 10 and 50, respectively. To evaluate the proposed approach, we have used 

two publicly available benchmark datasets employing various evaluation parameters and the results were compared 

with those of existing algorithms. The comparative study was performed by considering the Jaya(JA)[31], Deer Hunting 

Optimization (DHOA)[32], TSO[26], and BESO[27] algorithms and different deep learning techniques. The subsequent 

subsection provides detailed information about the dataset, evaluation metrics and analysis of the results. 

4.1 Dataset description and performance evaluation metrics employed 

The presented approach for detecting forgeries utilizes two diverse benchmark datasets, CMFD[33]and 

CoMoFoD[34], to perform an experiment to detect and localize forged content. These datasets consists of large image 

samples with real-world scenarios and the diversity of forgeries encountered (plane image forgery with post-processing). 

The CMFD, comprised of medium-sized BMP format images measuring 1000x700 or 700x1000 pixels, is divided into 

different subsets (D0, D1, D2, and D3). D0 consists of 50 images that are exact translations of the original images and 

corresponding binary masks indicating the source and destination areas of tampering. D1 contains tampered images 

created by copy-pasting objects after rotation, while D2 comprises tampered images obtained through scaling. Finally, 

D3 includes 50 original, untampered images. Hence, it encompasses 1,210 images of originals, tampered versions, and 

tampered images subjected to post-processing attacks. On the other hand, the CoMoFoD dataset comprises 200 primary 

images with a resolution of 512X512 pixels. These photographs are categorized based on four types of geometric 

alterations: translation, rotation, scaling, and distortion. Each category consists of 40 pictures. Within each category, six 

subcategories correspond to six different post-processing techniques that can be applied to an image: JPEG compression, 

noise addition, image blurring, brightness alteration, color reduction, and contrast changes. Considering all geometric 

alterations and post-processing methods, the CoMoFoD dataset encompasses 10,400 image samples. The 

comprehensive description of these datasets are tabulated in the table as follows. 

Table 2. Comprehensive description of these datasets 

Dataset Post processing methods Parameters and corresponding values 

CMFD 
Rotation (Range, step)= [((-25°, 25°), 5°),((0°, 360°),30°), ((-5°, 5°), 1°))] 

Scaling (range, step)=[((0.25, 2), 0.25), ((0.75, 1.25), 0.05)] 

CoMoFD 

Post processing methods Parameters and corresponding values 

Jpeg Compression Factors=[20,30,40,50,60,70,80,90,100] 

Noise adding µ=0, σ2=[0.009, 0.005,0.0005] 

Image blurring Average filter=[3x3,5x5,7x7] 

Brightness change (lower bound, upper bound)=[(0.01,0.95),(0.01,0.9),(0.01,0.8)] 

Contrast adjustment (lower bound, upper bound)=[(0.01,0.95),(0.01,0.9),(0.01,0.8)] 

 

The model is validated on an image level by considering both forgery images and post-processed with JPG 

compression, image blurring, rotation and scaling from both datasets to practical applicability and generalization to 

ensure whether or not the model can accurately classify forged and original images. Once the fake image has been 

accurately identified, we use the block similarity matching algorithm to construct a bounding box around the affected 

region to highlight it. The following assessment metrics stated in the equations (19-28) are formulated to assess the 

proposed model’s effectiveness and compare it to other state-of-the-art methodologies.  

 

Accuracy (D
A
) 

The accuracy rate represents the ratio of accurately detected forged images among all the images in the dataset. It 

is computed using, 

 

( )
p nT TAAccuracy D

p n p nT T F F




  
                                                             (19) 

 

True positive rate (TPR) 

This is defined as the ratio of correctly detected forged images. The TPR is calculated by, 

 

pT
TPR

p nT F



                                                                              (20) 

 

True Negative rate (TNR) 

It indicates the negative event rates i.e. it defines the rate of the identified forged images. The TNR is calculated by, 



Copy-Move Forgery Detection and Localization Framework for Images Using Stationary Wavelet Transform and Hybrid Dilated 

Adaptive VGG16 with Optimization Strategy 

52                                                                                                                                                                       Volume 16 (2024), Issue 1 

nT
TNR

n nT F



                                                                               (21) 

 

Positive predictive value (PPV) 

It defines the ratio of correctly forged images and total predicted forged images. The PPV rate indicates that the 

detected forged images are true. It is calculated by  
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                                                                   (22) 

 

False positive rate (FPR) 

It indicates the original images which are not detected as not forged. The FPR rate is calculated by, 
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False negative rate (FNR) 

It indicates the missing detection rate of the forged images. i.e., the detection system failed to detect the forged 

images is shown as FNR. Getting lower values on this metric is much better for improving the performance. The FNR is 

calculated by, 
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Negative Predictive Value (NPV) 

Negative Predictive Value (NPV) is the proportion of −1 instances correctly classified by the ML classifier. 
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                                                         (25) 

False discovery rate (FDR) 

Defined as the number of images that are forged, but are identified as original, divided by the total number of 

forged images. It is calculated by, 

 

pF
FPR

p pF T



                                                                          (26) 

 

F1-score 

It integrates the PPV and TPR rates and gives the single value and it is given by, 
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Matthews Correlation Coefficient (MCC) 

It includes all the parameters and it is defined as the geometric mean of the regression coefficients of the problem 

and it’s dual. It can be also formulated as follows, 
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                                                              (28) 

 

Where the parameters , , ,p n p nandT T F F  signifies true positive, true negative, false positive and false negative.  
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4.2 Performance Evaluation and results discussions 

Convergence analysis of proposed system is performed to optimize the training procedure and ensure model 

achieves the best possible performance on unseen data. According to the analysis’s findings, the proposed deep 

network-based forgery detection system delivers more accuracy and PPV because its cost function converges at the 15th 

iteration 40% more than that of JA-DA-VGG16Net, 50% more than TSO-DA-VGG16Net, and 60% more than BESO-

DA-VGG16Net. The analysis’s findings indicate that the proposed method’s convergence rate is higher when compared 

to the current techniques. Fig. 6 depicts the result of convergence analysis for both CMFD and CoMoFoD datasets 

comparison with the existing methods. The performance analysis in terms of accuracy, FNR, PPV and MCC for both 

datasets are depicted in Fig. 7 and Fig. 8 and Fig. 9 and Fig. 10, respectively, along with the comparison with existing 

techniques. The comparison reveals that none of the current algorithms achieve satisfactory results in detecting 

forgeries. The x-axis represents the linear stage, and the performance analysis considers the Linear, Sigmoid, Tanh, and 

Relu activation functions, enabling clear visualization of the suggested model’s performance. Remarkably, the proposed 

HTS-BESO-HDA-VGG16Net-based forgery detection scheme outperforms JA-DA-VGG16Net, DHOA-DA-

VGG16Net, TSO-DA-VGG16Net, and BESO-DA-VGG16Net by 9.60%, 6.36%, 5.40%, and 2.87%, respectively, at 

the linear stage. Consequently, the output demonstrates that the proposed method achieves a high false negative rate 

(FNR) for the CMFD dataset. On the other hand, the proposed forgery detection system surpasses that of JA-DA-

VGG16Net by 35.2%, TSO-DA-VGG16Net by 28.5%, and BESO-DA-VGG16Net by 14.34%. The analysis indicates 

an increased convergence rate of the proposed method compared to the existing algorithms, as evidenced by the output. 

 

  

(a) (b) 

Fig. 6. Convergence analysis of proposed technique and existing methods for (a) CMFD and (b) CoMoFoD datasets 

  

(a) (b) 
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(c) (d) 

Fig. 7. Performance estimation of the proposed technique in terms of  (a) FNR, (b) Accuracy, (c) PPV, (d) MCC with existing algorithms for  CMFD 
dataset 

  

(a) (b) 

  

(c) (d) 

Fig. 8. Performance estimation of the proposed technique in terms of  (a) FNR, (b) Accuracy, (c) PPV, (d) MCC with existing techniques  for  CMFD 

dataset
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Fig. 9. Performance estimation of the proposed technique in terms of  (a) FNR, (b) Accuracy, (c) PPV, (d) MCC with existing algorithms for  

CoMoFoD dataset 

  

(a) (b) 
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(c) (d) 

Fig. 10. Performance estimation of the proposed technique in terms of  (a) FNR, (b) Accuracy, (c) PPV, (d) MCC with existing techniques  for  

CoMoFoD dataset 

4.3 Overall analysis of the suggested model 

The overall analysis of the proposed model is tabulated in Table 3 and Table 4. The accuracy and PPV values are 

used to find out the fitness value. Fitness is the main parameter, and it is used to find the value of a random number. The 

proposed HTS-BESO-HDA-VGG16Net-based forgery detection scheme obtained a TPR value of 8.08% more than JA, 

6% more than DHOA, 4.24% more than TSO, and 1.84% more than BESO. Therefore, the analysis results show that the 

proposed HTS-BESO-HDA-VGG16Net-based forgery detection scheme attains better than the presented algorithms. 

Fig.12 and Fig. 13 depict the suggested forgery detection scheme results, showing forgery detection and the highlighted 

regions. Fig. 12 includes the plane forgery image (rows 2 and 5) and the forgery image post-processed with rotation and 

scaling (rows 1, 3 and 4). Fig. 13 includes the plane forgery image (rows 1 and 2) and the forgery image post-processed 

with JPG compression and image blurring (rows 3 and 4). To comprehend the suggested model’s effectiveness, we 

compared the proposed model and a pre-existing metaheuristic algorithm for image forgery detection. The results in 

Table 5 and Fig. 11 indicate that the presented model outperforms the current metaheuristic optimization methods. 

Table 3. Comparison of results obtained for proposed HTS-BESO-HDA-VGG16Net-based forgery detection scheme with existing algorithms for 

target datasets 

Algorithm Comparison 

CMFD dataset CoMoFoD dataset 

Assessment 

metrics 
JA[31] DHOA[32] TSO[26] BESO[27] 

HTS-

BESO 
JA[31] DHOA[32] TSO[26] BESO[27] 

HTS-

BESO 

Accuracy 87.28261 88.58696 90.54348 92.5 95.0117 91.58621 93.24138 94.62069 96.27586 97.8753 

TPR 86.9936 88.69936 90.1919 92.32409 94.0301 91.57303 93.25843 94.66292 96.34831 98.1219 

TNR 87.58315 88.47007 90.90909 92.68293 93.0133 91.59892 93.22493 94.57995 96.20596 98.2881 

PPV 87.93103 88.88889 91.16379 92.91845 94.3204 91.31653 92.9972 94.39776 96.07843 97.1771 

FPR 12.41685 11.52993 9.090909 7.317073 6.97661 8.401084 6.775068 5.420054 3.794038 2.82001 

FNR 13.0064 11.30064 9.808102 7.675906 4.87015 8.426966 6.741573 5.337079 3.651685 2.45309 

NPV 86.62281 88.27434 89.91228 92.07048 94.7054 91.84783 93.47826 94.83696 96.46739 98.2213 

FDR 12.06897 11.11111 8.836207 7.081545 4.65913 8.683473 7.002801 5.602241 3.921569 2.90212 

F1-Score 87.45981 88.79402 90.67524 92.62032 95.1211 91.4446 93.12763 94.53015 96.21318 97.8841 

MCC 0.745653 0.771663 0.810885 0.84998 0.89019 0.831682 0.864794 0.892388 0.9255 0.95557 

Table 4. Classification results comparison of proposed HTS-BESO-HDA-VGG16Net-based forgery detection scheme with existing techniques for 
target datasets 

Classifier Comparison 

CMFD dataset CoMoFoD dataset 

Assessment 
metrics 

CNN[35] LSTM[36] TCN[37] 
TCN-

LSTM[36] 
HTS-

BESO 
CNN[35] LSTM[36] TCN[37] 

TCN-
LSTM[36] 

HTS-

BESO 

Accuracy 87.93478 89.13043 91.19565 93.36957 95.0114 91.72414 92.96552 94.2069 95.31034 97.6773 

TPR 88.0597 88.91258 91.04478 93.60341 95.0275 91.57303 92.69663 94.10112 95.22472 97.5791 

TNR 87.80488 89.35698 91.35255 93.12639 94.0113 91.86992 93.22493 94.30894 95.39295 97.2797 

PPV 88.24786 89.67742 91.6309 93.40426 94.1307 91.57303 92.95775 94.10112 95.22472 97.1889 

FPR 12.19512 10.64302 8.64745 6.873614 5.98219 8.130081 6.775068 5.691057 4.607046 2.72027 

FNR 11.9403 11.08742 8.955224 6.396588 4.77019 8.426966 7.303371 5.898876 4.775281 2.52809 

NPV 87.61062 88.57143 90.7489 93.33333 94.1071 91.86992 92.97297 94.30894 95.39295 98.5543 
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FDR 11.75214 10.32258 8.369099 6.595745 4.86923 8.426966 7.042254 5.898876 4.775281 2.90132 

F1-Score 88.15368 89.29336 91.3369 93.50373 94.1202 91.57303 92.827 94.10112 95.22472 98.3252 

MCC 0.758615 0.782592 0.823886 0.867337 0.8703 0.83443 0.859261 0.884101 0.906177 0.95327 

Table 5. Comparison of results with existing metaheuristic algorithms for image forgery detection 

Existing techniques Accuracy TPR TNR 

Cristin R  et al. [38] 95.1 95.1 93.8 

S. Uma and P. D. 

Sathya[39] 
96.0 94.2 100.0 

C. B and P. V. 
Bhaskar Reddy [40] 

91.9 92.6 92.8 

Proposed 97.6 97.5 97.2 

 

 

Fig. 11. Comparison of results with existing metaheuristic algorithm for image forgery detection 

Sample # Original Image Forged images Ground truth image 
Forgery localization by 

Proposed model 
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Fig. 12. Visualization of forgery detection results obtained using proposed technique for CMFD dataset 
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Sample # Original Image Forged images Ground truth image 
Forgery localization by 

Proposed model 
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Fig. 13. Visualization of forgery detection results obtained using proposed technique for CoMoFoD dataset 

5. Conclusion 

This article has presented a deep learning-based forgery detection and localization model. The proposed technique 

encompasses the fusion of HTS-BESO-HDA-VGG16Net modules. Initially, the input images are selected from two 

datasets and decomposed with the help of the SWT technique. The SWT and VGG16 parameters are optimized to 

reduce the model complexity. The proposed model uses dilated convolution kernels with different dilation rates in the 

various layers VGG16 to ensure complete coverage of a square area without any holes or missing information during 

convolution operations. As a result, it maximizes accuracy and precision values, thereby increasing the system’s overall 

effectiveness. The proposed model is evaluated using two standard datasets: CMFD and CoMOFoD. As per the results 

discussed in Section 5, the proposed methodology outperforms with a TPR value of 8.08% JA, 6% than DHOA, 4.24% 

than TSO, and 1.84% than BESO. Therefore the analysis shows that the HTS-BESO-based forgery detection scheme 

achieves maximized accuracy and precision value compared to the existing algorithms. The proposed technique also 

addressed the post-processing operations (scaling and rotation). However, the forgery attacks with a blend of multiple 

post-processing operations, such as JPEG compression, Noise, Texture, and a combination of these, can hide forgery 

clues. In this instance, the forgery detection significantly increases its complexity and difficulty. In the future, we 

extend this work to overcome all these complexities. 
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