

13th Paul Walden Symposium September 14th-15th, 2023

Program and abstracts

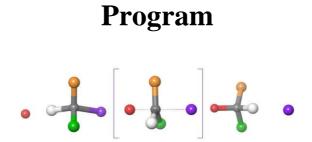
Riga, Latvia

Supported by the European Regional Development Fund "Support for international cooperation projects in research and innovation in Latvian Institute of Organic Synthesis", contract No. 1.1.1.5/18/I/007

Poster awards by

Paul Walden 13th Symposium on Organic Chemistry

We have the great pleasure of inviting you to the 13th Paul Walden Symposium on Organic Chemistry, which is hosted by the Latvian Institute of Organic Synthesis (LIOS) and Riga Technical University (RTU).


Paul Walden (Pauls Valdens) was an expert in three different research areas: organic chemistry, electrochemistry, and science history. His first scientific results were obtained in Riga under the supervision of Nobel Prize winner Professor Wilhelm Ostwald. In 1896, he discovered his famous rule, later called the "Walden inversion". Starting from 1987, RTU awards a Paul Walden medal in chemistry and science history, both beloved Walden's scientific disciplines. In 2023, the recipient of the Paul Walden medal is Prof. Olafs Daugulis from the University of Houston, USA. His research interests are synthetic organic and organometallic methodology.

The goal of this Conference is to bring together scientists, scholars, and students from universities, research institutes, and industry across the Baltic States. The traditional format of the Walden Symposium comprises plenary lectures by renowned organic chemists and a poster session, where students communicate their research.

In addition, two oral presentations are offered by the best Latvian PhD students. Furthermore, this year, we will uphold all the long-standing traditions of the Walden Symposium, including the student poster competition that commenced 22 years ago. A panel consisting of invited speakers and local professors will determine the recipients of the best poster prizes in the bachelor, master, and PhD categories. We are pleased to announce that this year's best poster prize is generously sponsored by the Ukrainian company Enamine.

We wish you a successful and inspiring event with many interesting discussions and debates!

On behalf of the Organizing Committee, Dr. Peteris Trapencieris Latvian Institute of Organic Synthesis, Latvia

Program

Thursday, September 14th

9.00	Welcoming remarks Prof. Edgars Sūna (Chairman of the Scientific Board, Latvian Institute of Organic Synthesis)
9.10	Presentation of the Paul Walden medal to Prof. Olafs Daugulis (University of Houston, Texas, US) by Prof. Māris Turks , Dean of the Faculty of Materials Science and Applied Chemistry (Riga Technical University)
9.30	Prof. Olafs Daugulis (University of Houston, US) New methods for carbon-hydrogen bond functionalization
10.20	Prof. Nicolai Cramer (Ecole polytechnique fédérale de Lausanne, Switzerland) <i>From [] to L</i> *
11.10	Symposium group photo and Coffee break
11.40	Prof. Andrew D. Smith (University of St Andrews, UK) Promoting the forbidden: catalytic enantioselective [1,2]-rearrangements
12.30	Poster pitches (PhD students)
12.45	Lunch

Paul Walden 13th Symposium on Organic Chemistry, Riga, September 14-15, 2023

Prof. Zoltan Novak (Eötvös Loránd University, Hungary) Synthesis of fluoroalkylated derivatives: feedstocks, reagents, catalysis and media

15.30	Poster pitches (PhD students)
15.45	Coffee break
16.15	Poster pitches (PhD students)
16.30	Prof. Lutz Ackermann (Georg-Au Göttingen, Germany)

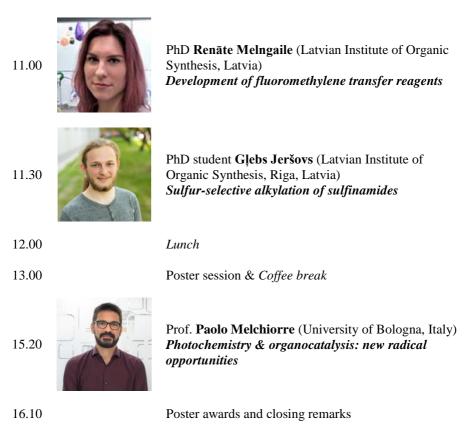
ugust-University (tingen, Germany) Metallaelectro-catalyzed bond activation

17.20

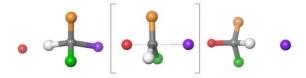
Guided tour of the Paul Walden and Wilhelm Ostwald monuments

Friday, September 15th

Prof. Pierangelo Metrangolo (Politecnico Milano, Italy) Journey through the World of halogen bonding


Prof. Rebecca Melen (University of Cardiff, UK) Group 13 Lewis acids for synthesis and catalysis

9.50



10.40

Coffee break

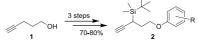
Table of contents

Table of contents

PL-1	<i>Olafs Daugulis</i> . New methods for carbon-hydrogen bond functionalization	13
PL-2	Nicolai Cramer. From [] to L*	14
PL-3	<i>Andrew D. Smith</i> . Promoting the forbidden: catalytic enantioselective [1,2]-rearrangements	15
PL-4	<i>Zoltán Novák</i> . Synthesis of fluoroalkylated derivatives: feedstocks, reagents, catalysis and media	16
PL-5	Lutz Ackermann. Metallaelectro-catalyzed bond activations	17
PL-6	<i>Pierangelo Metrangolo</i> . A journey through the world of halogen bonding	18
PL-7	Rebecca L. Melen. Group 13 Lewis acids for synthesis and catalysis	19
PL-8	Renāte Melngaile. Development of fluoromethylene transfer reagents	20
PL-9	Glebs Jersovs, Dzonatans Melgalvis, Matiss Bojars. Sulfur-selective alkylation of sulfonamides	21
PL-10	<i>Paolo Melchiorre</i> . Photochemistry & organocatalysis: new radical opportunities	22
B-1	<i>Rihards Lācis, Elza Fedorovska, Vladislavs Kroškins</i> . Synthesis and application of pentacyclic triterpenoid phosphonates	24
B-2	Laura Laimina. Ether-functionalized imidazolium ionic liquids	25
B-3	<i>Dāgs Dāvis Līpiņš</i> . Sulfonyl group dance for the synthesis of 4-azido- 6,7-dimethoxy-2-sulfonylquinazolines	26
B-4	<i>Ketrina Plantus</i> . Synthetic application of monofluorocyclopropylsulfinate	27
M-1	Oto Filipsons. Design of S and Se containing nucleophilic catalysts	28
M-2	<i>Marija Ivanova</i> . Elaborating the new route toward Phragmalin methanoindene cage key intermediate	29

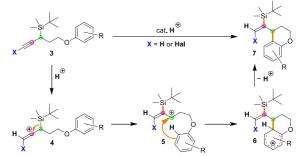
M-3	<i>Mārtiņš Ķaukulis</i> . Bromination of 2,6-methyl groups of <i>bis</i> -1,4- dihydropyridines and bromine nucleophilic substitution	30
M-4	<i>Davis Lacis</i> . Synthesis of 1,2-dihydropyridine derivatives and their aromatization	31
M-5	<i>Rebeka Ločmele</i> . Hydrosilylation of esters to silyl acetals catalysed by using SilBoRed [™] technology	32
M-6	Jānis Šadauskis. Synthesis of potential IRE1a inhibitors	33
M-7	<i>Emanuels Šūpulnieks</i> . Palladium catalysed [3+2] cycloaddition of trimethylenemethane to sulfur dioxide	34
M-8	<i>Artjoms Ubaidullajevs</i> , <i>Rasma Kroņkalne</i> . Tandem 1,2-silyl shift – Friedel–Crafts synthetic approach to substituted vinyl chromanes	35
M-9	<i>Niklāvs Ūdris</i> . First total synthesis of (+)-Sitsirikine and (+)- Dihydrositsirikine	36
D-1	<i>Vladislavs Baškevičs</i> . 3-Heteroaryl 2-aminopyridine modified triplex-forming peptide nucleic acids	37
D-2	<i>Rūdolfs Beļaunieks</i> , <i>Mikus Puriņš</i> , <i>Rebeka Anna Līpiņa</i> . 1,3-Difunctionalization of propargyl silanes for the synthesis of allyl functionalized vinyl silanes	38
D-3	<i>Laima Bērziņa</i> . Synthesis and antiradical properties of Meldrum's acid decorated dendrimer	39
D-4	<i>Aleksejs Burcevs</i> . Synthesis of a cyclen containing purine derivative as a potential photo-catalyst	40
D-5	<i>Aleksandrs Cizikovs, Emīls Edgars Basens, Paula Amanda Zagorska</i> . Indole synthesis via C(sp ²)-H bond functionalization of amino acids	41
D-6	<i>Madara Dārziņa</i> , <i>Dmitrijs Černobrovkins</i> . Electrochemical cleavage and subsequent oxyfluorination of cyclopropane C-C bond	42
D-7	<i>Armands Kazia</i> . Probing of irreversible covalent warheads for plasmodium serine protease SUB1 inhibitors	43

D-8	<i>Anastasiya Krech</i> . Ring-opening cross-coupling of cyclopropanols with electrophilic alkenes <i>via</i> photoinduced charge transfer facilitated by decatungstate catalyst	44
D-9	<i>Rasma Kroņkalne</i> , <i>Rūdolfs Beļaunieks</i> . Electrophile induced 1,2-silyl migration in propargyl silanes: a pathway towards saturated heterocycles	45
D-10	<i>Vladislavs Kroškins</i> . C(sp ³)-H arylation of pentacyclic triterpenoids	46
D-11	<i>Marharyta Laktsevich-Iskryk</i> , <i>Anastasiya Krech</i> , <i>Mihhail Fokin</i> . HFIP-Promoted nucleophilic ring opening of non-activated aziridines under continuous flow conditions	47
D-12	<i>Kristaps Leškovskis</i> . Synthesis and physical properties of 2,6,8-triazidopurine and 2,4,6,8-tetraazidopyrimido[5,4-d]pyrimidine	48
D-13	<i>Artūrs Mazarevičs</i> . Non-isomeric impurity-induced phosphorescence in carbazole derivatives	49
D-14	<i>Danylo Merzhyievskyi</i> . Mechanochemical synthesis of 5-aminooxazole-4-carbonitriles	50
D-15	Annette Miller, Kaarel Erik Hunt. Multifunctional chiral hydrogen and halogen bond containing catalysts in glycosylation reactions	51
D-16	<i>Tatsiana Nikonovich</i> , <i>Jagadeesh Varma Nallaparaju</i> , <i>Tatsiana Jarg</i> , <i>Artjom Kudrjašov</i> . Greener pharmaceutical synthesis <i>via</i> mechanochemical C–N bond formation	52
D-17	<i>Reinis Putralis</i> . Synthesis of new styrylpyridinium dyes and evaluation of the self-assembling and biological properties	53
D-18	<i>Artūrs Sperga</i> . Fluorohalomethylsulfonium salts as a novel fluorohalocarbene source	54
D-19	<i>Georgijs Stakanovs</i> . Semisynthesis and structure revision of Linariophyllenes A–C and Rumphellolide H	55


Tandem 1,2-silyl shift – friedel–crafts synthetic approach to substituted vinyl chromanes

Artjoms Ubaidullajevs, Rasma Kroņkalne

Institute of Technology of Organic Synthesis, Faculty of Materials Science and Applied Chemistry, Riga Technical University, Latvia e-mail: artjoms.ubaidullajevs@rtu.lv


Herein we report a new synthetic route to substituted 4-vinyl chromanes. The key synthetic step involves tandem 1,2-silyl shift – Friedel–Crafts cyclization of propargyl silyl group containing aryl ethers 2.

Aryl ethers 2 can be obtained from commercially available pent-4-yn-1-ol (1) in 3 steps: O-silylation, retro-Brook rearrangement¹ under Schlosser conditions and modified² Mitsunobu reaction with corresponding phenols (Scheme 1).

Scheme 1. Synthesis of aryl ethers 2.

Aryl ethers **3** in the presence of strong Brønsted acids undergo cyclization³ to yield chrormanes **7** (Scheme 2). In order to increase functionalization of the molecule, terminal alkyne can be easily converted to haloalkyne and employed in same catalytic conditions to yield chromane with *E*-selective alkene side chain.

Scheme 2. Tandem 1,2-silyl shift – Friedel–Crafts cyclization of aryl ethers 3.

Supervisor: Dr. chem. Māris Turks

References

- Wang, X.; Gao, Q.; Buevich, A. V.; Yasuda, N.; Zhang, Y.; Yang, R.-S.; Zhang, L.-K.; Martin, G. E.; Williamson, T. R. J. Org. Chem. 2019, 84, 10024.
- 2. Hirose, D.; Gazvoda, M.; Košmrlj, J.; Taniguchi, T. J. Org. Chem. 2018, 83, 4712.
- 3. Puriņš M.; Mishnev, A.; Turks, M. J. Org. Chem. 2019, 84, 3595.