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1. Introduction 
 

Multi-echelon supply chain cyclic planning and optimisation problem is complicated 

by the presence of uncertainty, which could be provided, for example, by deviations of 

customer demand and lead times of the processes. When the number of supply chain echelons 

is increased, it could result in magnified performance variance in a supply chain. As a result, 

the solution considered as optimal could perform different when used in practice. Therefore, it 

is important to create the so-called robust solutions, which are tolerated to certain deviations 

in environmental variables without a total loss of quality. 

There are various classifications of uncertainties described in the literature [1-3]. The 

most common classification is provided by Jin and Branke [4], where uncertainties are 

divided into four categories based on the evolutionary computation theory: 

1. Noise in fitness evaluations. The fitness evaluation often includes a noise, which could 
come from various sources. For example, the simulation model used to estimate an 

objective function could produce a noise while running different simulation replications.  

2. Deviations in the environmental variables. Deviations of environmental variables could 

occur after the optimal solution is determined. For example, the end-customer demand 

variation could increase after a cyclic planning decision is made.  

3. Fitness approximation errors. When the fitness function is expensive to evaluate, its 

approximation, called a meta-model, is often applied. This meta-model usually contains 

the approximation error. 

4. Errors in time – varying optimum evaluations. The fitness function is deterministic, but 

it is time-dependent. As a result, optimum also changes over time. 

Different methods and algorithms are developed to solve supply chain planning and 

optimisation problems. However, only few of them take into account the presence of 



uncertainties. This paper investigates the category of uncertainties labelled as ‘deviations in 

environmental variables’ in the above-described classification. 

 

2. Optimisation problem statement 

In this section the optimisation model and assumptions are presented, as well as the 

properties of the optimal solution are discussed. 

The multi-objective optimisation problem with the presence of uncertainty in 

environmental variables can be symbolically represented in compact form as: 
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 subject to: g(x, δe) = E[r(x, δe)] ≤ 0 and h(x, δe) ≤ 0, 

 

where E[⋅] is a mathematical expectation; x = (x1,…xK) ∈ X, f = (f1,…,fM) ∈ F; x is called a 
vector of decision variables; f is called a vector of objective functions; g is a vector of 
stochastic constraints; h is a vector of deterministic constraints on the decision variables; r is 
a random vector that represents several responses of the simulation model for a given x; δe 

represents the uncertainty associated with environmental variables; x1,…xK denote K decision 
variables; f1,…,fM denote M objective functions; X is called the decision space; F is the 
objective space. 

As regards the problem of cyclic planning within multi-echelon supply chain network, we 

deal with two objective functions [5]. The first one is to minimise the average total cost 

represented by the sum of inventory holding, production and ordering costs. The second is 

aimed to maximise the average order fill rate FR that is defined as the percentage of end-
customers’ orders filled from the available inventory. 

Proceeding from (1), the solution of multi-objective stochastic optimisation problem is 

a vector of decision variables x that satisfies all feasible constraints and provides the best 
trade-off between multiple objectives. This problem is characterised by two conflicting 

objectives, i.e. average total cost and average order fill rate, to be optimised simultaneously. 

Therefore, instead of a single optimal solution, there is a whole set of optimal trade-offs 

solutions of equivalent quality. An optimal trade-off solution, also called a Pareto – optimal, 

is the solution that is not dominated by any other solution in the search space. It means that 

there doesn’t exist any other solution that is better in all objectives. The entire set of these 

solutions is called a Pareto – optimal set [6]. 

For example, Figure 1 illustrates the problem with two conflicting objectives. 

Solutions A and B dominate the others by objective1 and objective2, respectively. Solution C 
dominates the other solutions at least by one objective. 

 

 
 

Figure 1. Concept of Pareto optimality 

 



3. Multi – objective evolutionary algorithms 

Evolutionary algorithms are well suited to solving multi-objective optimisation 

problems, because they could evolve a set of non-dominated solutions instead of a single 

solution. Historically, multi-objective evolutionary algorithms can be divided into three 

groups: Algorithms based on aggregating functions, Population-based algorithms and Pareto - 

based algorithms. 

The idea behind aggregating functions is to combine all objective functions into a 

single composite objective function using arithmetic operations. Population – based 

algorithms apply a separate sub-population for each objective function. Pareto – based 

algorithms use the selection schemes based on the concept of Pareto optimality. The last 

group of multi-objective evolutionary algorithms can be historically studied as covering two 

generations. Algorithms that belong to the first generation use fitness sharing and niching 

combined with Pareto ranking. The second generation of algorithms is characterised by the 

concept of elitism [7]. In the proposed work the last group of evolutionary algorithms are 

described and analysed. 

4. Multi – objective robust evolutionary algorithms 
 

Multi-objective evolutionary algorithms described in Section 3 are not intended to 

search for robust solutions. Let’s remind that robust are such solutions, which are not 

sensitive to slight changes in the environment.  

There exist a range of enhanced evolutionary algorithms improved to find robust solutions 

mostly by enlarging the search space, i.e. by analysing neighbours of candidate solutions. 

Most popular robust evolutionary algorithms are: 

- Single/Multi – objective Inverse Robust Evolutionary (SMIRE). The algorithm does not 

make assumptions about the uncertainty structure in the formulation of the optimization 

search process. For searching robust solutions it uses different IRE schemes, for example 

Single, Bi – objective, Tri – objective IRE schemes [8]. 

- Genetic Algorithm with Robust Searching Scheme (GA/ RS3). In this algorithm the 

probable noise vector is added to genotype before fitness evaluation. In order to generate 

phenotype, genotype is coded with noise and then it interacts with the environment [9]. 

- Enhanced Genetic Algorithm. This algorithm combines a simulation model with 

stochastic non-dominating multi-objective optimization method and genetic algorithms. 

The concept of robustness is implemented in selection process of non-dominated 

solutions. In this case solution A dominates solution B with confidence level (1 - α)%, and 
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- Robust Multi – Objective Evolutionary Algorithm (RMOEA). The RMOEA considers 

robustness as independent optimization criteria and implements the features of micro – 

genetic algorithm, Tabu restriction, and archival re-evaluation [11]. 

- Evolutionary Approach for Assessing the Degree of Robustness of Solutions to Multi – 

Objective Models. The concept of degree of robustness is incorporated into evolutionary 

algorithm and is used in the fitness evaluation process. Non – dominated solutions are 

classified by their degree of robustness [12]. 

- Evolutionary Multi – Objective Approach. In order to find robust solution the fitness of 

solution is evaluated by averaging different points from a set of its neighbours [13]. 

Genetic algorithms, such as Non – dominated Sorting Genetic Algorithm – II (NSGA 

II) [14], do not search for robust solutions in a direct way. Instead, they evaluate the 

robustness of trade-offs solutions included in the Pareto – optimal set. This approach allows 

decreasing the computational time. However, it could lead to losing some potential solutions. 



5. Development of robust multi-objective genetic algorithm 
 

A robust multi-objective genetic algorithm is developed on the basis of MOSGA [5] 

and is called rMOSGA. It is aimed to provide robust solutions to multi-echelon supply chain 

cyclic planning and optimisation problem. 

The concept of worst scenario robustness measure, which reflects the degree of 

variation resulting from the worst objective function value, is taken from RMOEA [11] and 

incorporated in rMOSGA. This robustness measure could be defined for the i-th objective as 
follows [12]: 
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where xnX  is a set of neighbours of the candidate solution x, [lb, up] denotes the lower and 
upper bounds of replenishment cycles in the neighbourhood of the candidate solution. 

The multi – objective problem to be solved can be re-formulated as follows: 
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The following blocks of the original RMOEA have been implemented in rMOSGA: 

1. fitness evaluation based on robustness measure (3), 

2. selection strategy modified to search for compromise solutions for non-robust and robust 

Pareto-optimal sets. 

 

Table 1 represents the main blocks of MOSGA and rMOSGA. 

 

Table 1 

Developed blocks of the MOSGA and rMOSGA algorithms 

Algorithms 
Blocks 

MOSGA rMOSGA 

Fitness 

assignment 

Pareto-based ranking 

 

Pareto-based ranking and 

robustness measure 

Crossover and 

mutation 

Uniform crossover 

One point mutation 

Reproduction 

strategy 

To the next generation go N individuals from the union of parent 

and offspring populations  

Selection 

strategy 

Tournament selection based on 

crowded comparison operator 

Tournament selection based on 

the crowded comparison 

operator and robustness measure 

 

6. Computational study 

In this section, an illustrative example of multi-echelon cyclic planning and 

optimisation problem is provided to compare the performance of non-robust (MOSGA) and 

robust (rMOSGA) genetic algorithms with respect to the robustness of solutions. 



6.1. Input data description 

 
The chemical manufacturing supply chain network is used as a test bed to compare 

MOSGA and rMOSGA. Both algorithms are applied to find an optimal cyclic plan of a 

chemical product, i.e. liquid based raisin, in order to minimise average total cost and 
maximise average order fill rate. Total cost consists of inventory holding, ordering and 
production costs. Order fill rate is defined as the percentage of end-customers’ orders filled 

from the available inventory. Decision variables are replenishment cycles, which determine 

the reorder period for each mature product in the network. Order-up-to levels which define the 

quantity to be ordered or produced each cycle are calculated using analytical calculi. The 

following assumptions are introduced in the problem: the end-customer demand is normally 

distributed and lead times of the processes are constant. Replenishment cycles are defined 

according to the power-of-two policy, and are presented in weeks as follows: 7, 14, 28 and 56, 

where 56 days is the maximal cycle that corresponds to one full turn of a “planning wheel”. 

Initial stocks are equal to order-up-to levels plus average demand multiplied by cycle delays. 

Backorders are delivered in full. 

 

6.2. Experimental setup 

 

Both algorithms, i.e. MOSGA and rMOSGA, try to find solutions with a minimised 

average total cost and maximised average order fill rate. Additionally, rMOSGA takes into 

account the robustness of candidate solutions. To estimate the objective functions values, the 

algorithms use a supply chain simulation model. This procedure could be explained as 

follows: the genetic algorithm chooses values of decision variables and uses the responses 

generated by the simulation model to make decisions regarding the selection of the next 

potential solution. To solve the problem, the algorithms are executed with the parameters 

summarised in Table 2.  

 

Table 2 

Parameters of the algorithms 

Algorithms 
Parameters 

MOSGA rMOSGA 

Population size 10 10 

Iterations 16 16 

Neighbours of each individual in population - 2 

Number of decision variables 33 33 

Number of objective functions 2 2 + robustness 

measure 

The increase in customer demand standard deviation 1%, 2%, 5% 1%, 2%, 5% 

 
 
7. Results and discussion 
 

The results provided by MOSGA are better than those provided by rMOSGA with 

respect to objective functions values (see Figure 2). The reason is that MOSGA selects 

optimal solutions based on dominance relation. However, rMOSGA takes into account 

robustness of candidate solutions as an additional objective function. 

 



 
 

a) MOSGA and rMOSGA (1st generation) 

 
 

b) MOSGA and rMOSGA (16th generation) 

Figure 2. Pareto-optimal fronts generated by MOSGA and rMOSGA 

Therefore, to determine an algorithm able to provide robust solutions, it is necessary to check 

the stability of solutions to uncertainties in environmental variables. For that purpose, two 

solutions are randomly selected from non-robust and robust Pareto-optimal fronts. 

Subsequently, standard deviations of end-customer demand are increased by 1%, 2% and 5%. 

From Figure 3 it can be seen that rMOSGA provides solutions that are less sensitive to 

demand variations. For example, the total cost of the first solution is increased by 0.001% 

only when standard deviations of end-customer demand are increased by 5%. Solutions found 

by MOSGA are less tolerated to deviations of the demand. For example, the total cost of the 

second solution is increased after changing standard deviation by 1%. 

 

 
a) Comparison of the algorithms (on TC) 

 
b) Comparison of the algorithms (on FR) 

 

Figure 3. The offset of solution points in the presence of uncertainty 
 
 
8. Conclusions 
 

In this paper the importance of searching for robust solutions is emphasized. The 

robust evolutionary algorithm rMOSGA is developed on the basis of the MOSGA algorithm. 

The robustness measure is added to fitness assignment block of rMOSGA in order to evaluate 

the robustness of candidate solutions.  

Both algorithms are applied to the multi-echelon supply chain cyclic planning and 

optimization problem. Two types of optimization experiments were performed with these 

algorithms. The experimental results indicate that MOSGA performs better on objective 

functions, but in the case of solutions sensitivity to uncertainties, it is less tolerated to 



deviations of the demand than rMOSGA whose solutions proved to be more stable under 

stochastic demand conditions. 

 

Acknowledgments 
 
The authors would like to thank Liana Napalkova from Riga Technical University for the 

development of the MOSGA algorithm and helpful comments. 

 
References 
 
1. Ong Y.S., Nair P. B. and Lum K.Y. (2006) Min-Max Surrogate Assisted Evolutionary 

Algorithm for Robust Aerodynamic Design. In: Special Issue on Evolutionary 

Optimization in the Presence of Uncertainties, Vol. 10, No. 4. 

2. Ben-Haim Y. (2001) Information Gap Decision Theory. Academic Press, California. 

3. Oberkampf W.L., et al. (2000) Estimation of Total Uncertainty in Modeling and 

Simulation. In: Sandia Report SAND2000-0824. 

4. Jin Y. and Branke J. (2005) Evolutionary Optimization in Uncertain Environments – A 

Survey, IEEE Transactions on Evolutionary Computation, Vol. 9, No.3, pp.303-317. 

5. Merkuryeva G. and Napalkova L. (2008) Two-Phase Simulation Optimisation Procedure 

with Applications to Multi-Echelon Cyclic Planning. In: 20th European Modelling and 

Simulation Symposium EMSS-2008. 

6. Abraham A and Jain L. (2005) Evolutionary Multiobjective Optimization. In: Ajith 

Abraham, L.J., Goldberg, R. (Eds.), Evolutionary Multiobjective Optimization. 

Theoretical Advances and Applications, Springer, pp.1-6. 

7. Coello Coello C. A. (2005) Recent Trends in Evolutionary Multiobjective Optimization, 

In: Ajith Abraham, L.J., Goldberg, R. (Eds.), Evolutionary Multiobjective Optimization. 

Theoretical Advances and Applications, Springer, pp. 7-16. 

8. Lim D., Ong Y. S. et al. (2007) Single/ Multi – objective Inverse Robust Evolutionary 

Design Methodology in the Presence of Uncertainty// Studies in Computational 

Intelligence. - Springer Berlin / Heidelberg, pp. 437 – 456. 

9. Tsuitsui S. and Ghosh A. (1997) Genetic Algorithms with a Robust Solution Searching 

Sheme, IEEE Transactions on Evolutionary Computation, Vol. 1, No. 3, pp. 201 – 208. 

10. Eskandari H., Rabelo L. and Mollaghasemi M. (2005) Multiobjective Simulation 

Optimization Using an Enhanced Genetic Algorithm // Proceedings of the 2005 Winter 

Simulation Conference. pp. 833 – 841. 

11. Goh C. K. and Tan K. C. (2007) Evolving the Tradeoffs between Pareto – Optimality and 

Robustness in Multi – Objective Evolutionary Algorithms // Studies in Computational 

Intelligence. - Springer Berlin / Heidelberg, pp. 457 – 478. 

12. Barrico C. and Antunes C. H. (2007) An Evolutionary Approach for Assessing the Degree 

of Robustness of Solutions to Multi – Objective Models // Studies in Computational 

Intelligence. - Springer Berlin / Heidelberg, pp. 565 – 582. 



13. Jin Y. and Sendhoff B. (2003) Trade – off between Performance and Robustness: An 

Evolutionary Multiobjective Approach. Published in: Evolutionary Multi – Criterion 

Optimization, LNCS 2632, pp. 237 – 252 

14. Deb K. and Gupta H. (2006) Introducing Robustness in Multi – Objective Optimization // 

Evolutionary Computation 14(4), pp. 463. – 494. 

 

 
Merkurjeva GaĜina, LagzdiĦa Tatjana. Robustie evolūcijas algoritmi daudz ešelonu piegādes ėēžu 
ciklisko plānu optimizācijas uzdevumam 
Daudz ešelonu piegādes ėēdes ciklisko plānu optimizācijas uzdevumā ir nepieciešams, lai risinājumi tiktu 
meklēti nenoteiktības apstākĜos. Nenoteiktības var nākt no pasūtījuma apstrādes aizkavēšanas laikiem un 
svārstībām gala patērētāju pieprasījumā. Galvenās grūtības šajā problēmā ir saistītas ar to, ka atrastais 
risinājums var nozīmīgi izmainīties pie nenozīmīgām izmaiĦām ārējos faktoros. Tāpēc ir svarīgi definēt tā 
saucamos robustos risinājumus, kuri ir mazāk jūtīgi pret šīm izmaiĦām. Rakstā ir piedāvāta robusto evolūcijas 
algoritmu analīze. Šo algoritmu mērėis ir meklēt robustus risinājumus, kuri pieĜauj noteiktas nobīdes ārējos 
faktoros tajā pašā laikā nezaudējot risinājuma kvalitāti. Rakstā ir izpētītas divas evolūcijas algoritmu paaudzes 
un izanalizēta virkne robusto evolūcijas algoritmu daudzmērėu problēmu risināšanai. Visbeidzot, rakstā tiek 
piedāvāti daudzmērėu ăenētiskā un robustā ăenētiskā algoritma pielietošanas piemēri piegādes ėēžu ciklisko 
plānu optimizācijas uzdevumā. Tika veikts arī abu algoritmu salīdzinājums nenoteiktību iespaidā, pievienojot 
svārstības gala patērētāju pieprasījumam, tā iemesla dēĜ, ka nav lietderīgi salīdzināt ăenētiskā un robustā 
ăenētiskā algoritma darbības rezultātus pēc mērėa funkcijām, jo pirmais meklē optimālus, bet otrais -  robustus 
risinājumus. 
 
Merkuryeva Galina, Lagzdina Tatyana. Robust evolutionary algorithms for multi-echelon supply chain 
cyclic planning and optimisation task 
Multi-echelon supply chain cyclic planning and optimisation problem requires searching for solutions in the 
presence of uncertainty. Uncertainty could be provided by deviations in lead times of the processes and customer 
demand. A key difficulty in this problem is that solutions found could falter completely, when a slight change of 
the environment occurs. Therefore, it is important to define the so-called robust solutions, which are less 
sensitive to such changes. This paper focuses on the analysis of robust multi-objective evolutionary algorithms. 
These algorithms are aimed to search robust solutions, which are tolerated to certain deviations of 
environmental variables without a total loss of quality. In this paper, two generations of non-robust evolutionary 
algorithms and a range of robust evolutionary algorithms for multi-objective problems are investigated. Finally, 
the paper provides the application examples of multi-objective robust and non-robust genetic algorithms for 
solving multi-echelon supply chain cyclic planning and optimisation problem. Also a comparison of results of 
both algorithms under the influence of uncertainties is made, when fluctuations are added to end customer 
demand, since a comparison of Genetic Algorithm with robust Genetic Algorithm on objective functions will not 
allow to draw an objective conclusion because the first searches for optimal, but the second – for robust 
solutions. 
 
Меркурьева Галина, Лагздыня Татьяна. Робастные эволюционные алгоритмы для задачи 
оптимизации циклического планирования в цепях поставок 
Проблема циклического планирования и оптимизации многоэшелонной системы поставок требует, 
чтобы поиск решений происходил в условиях неопределенности. Неопределенность может быть 
вызвана отклонениями во временах поставок и спросе конечного потребителя. Ключевая сложность 
этой проблемы состоит в том, что найденные решения могут сильно колебаться при небольших 
изменениях в окружающих факторах. Поэтому важно определить так называемые робастные 
решения, которые менее чувствительны к изменениям такого рода. В данной статье предложен анализ 
робастных многоцелевых эволюционных алгоритмов. Эти алгоритмы нацелены на поиск робастных 
решений, которые допускают определенные отклонения окружающих переменных без потери качества 
решения. В статье исследованы два поколения неробастных эволюционных алгоритмов и ряд 
робастных эволюционных алгоритмов для многоцелевых проблем, приведены примеры применения 
многоцелевых робастного и неробастного генетических алгоритмов для решения проблемы 
циклического планирования и оптимизации многоэшелонной системы поставок. Также проведено 
сравнение результатов обоих алгоритмов под влиянием неопределенностей, с добавлением колебания в 
спрос конечного потребителя, так как сравнение генетического алгоритма с робастным генетическим 
алгоритмом по целевым функциям не позволит сделать объективный вывод по той причине, что первый 
ищет оптимальные, а второй - робастные решения. 


