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1. Introduction 
 

One of the most topical tasks of artificial intelligence is searching for optimal policy of 

interaction with an environment by autonomous intelligence software agent. Classical 

methods of reinforcement learning are performing successfully in the so-called Markovian 

environments. In this work the idea and implementation approach are stated for non-

Markovian environments. The approach offered represents a way of ambiguous states 

detection. The paper includes definition and detailed scrutiny of ambiguous states forms. The 

detection is the prerequisite phase for building optimal policy using internal representation of 

states. In its turn, the internal representation preserves properties and advantages of the 

classical algorithm of reinforcement learning and its condition of convergence is important. 

The central part of the paper is focused on the indication of ambiguous cells and its 

detection. As shown in the paper, it is rather difficult to recognize different “copies” of the 

same states. The paper contains a theoretical introduction, ideas and problem description, and, 

finally, an illustration of results and conclusions. 

 

2. Agent task and environment 
 

The experiments are carried out in a well-known task - searching for a path in 

labyrinth (kind of agent control), in other words, building an optimal policy (strategy) of 

actions by exploration of the environment. The reason for our choice is obviousness and 

simple understanding of the received results. SARSA(λ) learning algorithm [1] is preferred as 

a base learning algorithm, which will be combined with the investigated algorithms. 

Let's consider the static cellular world - a labyrinth. Each cell of the labyrinth is either 

free for agent pacing, or occupied by some static obstacle. One of the cells contains food 

(sometimes called target cell or goal cell). In our case, the goal cell is labelled by letter G. An 

example of simple grid world is depicted in Figure 1. 
 



 

 
 

 
 

 
 

 
 

 
 

Figure 1. Example of simple grid world 
 

To make the grid world usable like the environment, we must define a set of data 

which represent the state of the agent. Usually the state is all the information available to an 

agent that is provided by its sensors. The set of agent sensors (according to available 

information) depends on task conditions. In our case the agent possesses only four sensors: sS, 
sN, sW, sE, each of them returns value 1, if the obstacle is detected in a neighbour cell, in the 

corresponding direction, otherwise value 0. Thus, agent state might be expressed in binary 

form, where each bit corresponds to each sensor. For example, if the obstacle is north and east 

directions, then state in binary form will be equal to S = 01012. For further calculation 

convenience, it is better to convert the binary value to decimal form: S = 10102 = 0�2
3 

+ 1·2
2
 

+ 0·2
1
 + 1·2

0
 = 510. Thus, on each step by getting values of sensors the agent can compute the 

current state by equation (1):  

S =    8·ssouth  +  4·seast  +  2·swest  +  snorth    (1) 

The value obtained is the state of the agent. Only 16 different states are available in our 

task (including zero state interpreted as the absence of obstacle around). Figure 2 depicts the 

grid world with calculated values for each cell (state). 

 

 

 

 

 

Figure 2. Grid world with evaluated states for each cell 
 

The agent possesses four actions: to step only one cell in each of four directions. It is 

important to point out that each action of the agent is surely executed. In other words, if in a 

previous state s action a was applied, the probability of obtaining next state s’ is equal to one: 

P(s, a, s’) = 1. If we wish to use a probabilistic model for defining probabilities of transitions, 

it requires including additional 3-dimensional table.  

Having a set of state, actions and probability of transition, the grid-world-like 

environment now might be represented in transition graph form which is often used for 

representing the Markovian processes [2]: 
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Figure 3. Agent environment in the graph form (states and transitions form) 
 

In the depicted graph, arrows denote possible transitions through implementing 

corresponding actions (moving north, east, south and west). It is important to point out that 

the grid world form is the form which is closer to the real world form and keeps more 

properties than a graph one. The graph form is a model which only keeps information 

sufficient enough to the agent. For example, looking at the grid world we can see why a 

transition from one cell to another is available. In graph mode we have only the fact of 

available transitions. The reason might be interpreted as additional information available for 

operation. In our case the essential difference between two forms is the properties that belong 

to the nature of cell. Additional existence and the number of non-Markovian states depend on 

the precision of external world reproduction. Moreover, the number of non-Markovian states 

might be reduced by involving eight sensors instead of the existing four. So, the graph 

representation is less attractive than other forms; nevertheless it is worth considering in detail 

because of its representation of state-action model, which is used in reinforcement learning 

algorithms. In Table 1 the main differences between grid-world form and graph form are 

given.  

Table 1 

Differences between two forms of environment representation 

Grid world form Graph form 

• The coordinate system in the  labyrinth is 

caused by the conception of cell 

 

• Transitions move the agent through cells 

 

 

• The obstacles and cells arrangement 

describe the actions execution ability  

 

• Equally valued  state cells are different 

copies of the same state 

• There is no conception of a cell, thus 

the absence coordinates takes place 

 

• Transitions move the agent from one 

state to another  

 

• There are no reasons that could 

describe the ability of executing actions  

 

• There is no conception of the same 

state copies, instead of that the 

non-Markovian conception or 

inconstancy of transition takes place. 

 

Two last distinctions cause the greatest interest. These distinctions raise three 

fundamental problems in the task of agent control in non-Markovian environments: 

 

1) detection of ambiguous states; 

2) detection of states with inconstant transition; 

3) agent learning and its ability to distinct different copies of the same states. 
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The paper considers the ambiguous states detection problems for situated agent 

(according to state-action concept [3]). 

 

3. The sensor signals interpreting problem 
 

As was mentioned above, in task of building optimal policy through exploring non-

Markovian environment three problem cases might be revealed. 

Case 1. The case supposes that from some state at different moments of time it is 

necessary to execute different actions. In other words, the current state does not fully define 

the next action [2, 5]. This case is called non-Markovian state. The Woods101 environment is 

a classical example of such case [4] (see Figure 4). 

The cells denoted by a and b correspond to the same state because of their equal 

values evaluated upon agent sensors signals. Having appeared in that state the agent 

sometimes is compelled to move east, but sometimes west. Thus, having only current state’s 

information, the agent is not capable of making a decision and defining the optimal action. 

 
 

Figure 4. Non-Markovian environment Woods101 (bottom) and example of ambiguous state 
 

Case 2 is the evolution of the previous case and consists in taking the same action 

from the same state at different times, and the different reaction of environment is observed. 

Let’s call this case the transition inconstancy .Let’s see cells c and d, for example. Again, 

each of them represents the same state. An attempt to move north will lead to different future 

states (see Figure 5).  

 

Figure 5. Example of inconstant transition from state 6 
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Case 3 relates to the problem of interpreting the return of the same state (equal to 

source state). Let’s consider state «9» depicted in Figure 6 (left). While the agent is trying to 

move north, it meets the obstacle, so, the environment returns the agent to the source 

(previous) state, which equals «9». Thus, two ways of interpreting the situation are 

appropriate: 1) the agent was returned to the source state (see Figure 6, on the right), or 2) the 

agent was moved to another copy of the same state (like moving west or east, see Figure 6, on 

the left). Different interpretations of states are possible: either we do not take sensors nature 

into account or instead of sensors methodology the special channel for already evaluated state 

transmission is used. If the agent “understands” the sensors meaning, it might be used as 

additional signs. These signs might be sufficient to distinguish different copies of the state. 

The model and agent-environment conditions interaction are defined by the task. 

 
 

Figure 6. Two ways of interpreting the state «9» 

 

The problem of distinguishing two equal states is connected to that of representing 

same states in a graph form or Markov chains. Should we duplicate state «9» or leave it 

unique but having multiple connections to neighbours? In its turn, there should be «return 

links» which are responsible for agent returning in source state in case of bumping to 

obstacle.  

 

3.1. The indication of ambiguous state and algorithm for its detection 

 

Non-Markovian states and states with inconstant transition due to their common nature 

have common simple indication: if observations of transition from state s by action a moves 

agent to different target states then source state s is ambiguous. A simple example is shown in 

Figure 7. 
 

 
 
 
 
 

Figure 7. A simple example with ambiguous state «9» 
 

During environment exploration, the agent finds out that applying of action «step east» 

being in state «11» always moves him to state «9». In its turn, applying action «step east» 

being in state «9» sometimes moves it to state «9» and sometimes to state «13». Such an 

uncertainty makes building the Q-table difficult. The formal indication of ambiguous state 

might be expressed as follows (2): 

 
1''1 :),(:),( ++ ≠ tt

ji
tt

ji sassas     (2) 

 

where t
ji as ),(  and '),( t

ji as  are same corteges observed at different moments of time, 

1+tS  and 1'+tS  - states returned by the environment (through sensors) at next time tick.  
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Ambiguous states detection is executed within the framework of Q-learning cycles and 

requires only additional table size SxA for keeping observable transitions. Each cell [s, a] 

keeps target state s’. As soon as next observation brings different target state, the source state 

s will be marked as ambiguous. 

It is important to point out, that the indication does not require knowing of the goal 

state. Ambiguous states detection occurs while Q-learning builds its policy and does not 

require special exploration steps of the agent. For experiments, the algorithm was executed on 

a set of MacCallum’s mazes and other environments. A short analyzing log for each 

environment is given in Table 2. For the environment depicted in Figure 2 no ambiguous 

states were detected. This result is true. 

Table 2 

Found ambiguous states 

Maze 
Found ambiguous 

states (state:action) 
Woods101: 

 
 

Maze5: 

 
 
 
Maze7: 

 
 

MazeT: 

 

 
(6 :↑ )  
(9: →) 
(9: ←) 

 

 

 

 

(1:→); (1:↓); (1:←); 

(2:→); (2:↓); (2:↑); 

(3:→); (3:↓);  

(4:←); (4:↓); (4: ↑);  

(5:←); (5:↓); 

(6: ↑); (6:↓);  

(8:→); (8:↑); (8:←); 

(9:→); (9:←);  

(10:→); (10:↑); (12:↑); 

 

 

(6:↑); 

(6:↓); 

 

 

 

 

 

 

 

(9:→);        

(9:←); 
 

 
 

 

 



Initialize Q(s,a) arbitrarily and  

for all s,a: e(s,a) = 0, L[s,a] = -1 
Repeat (for each  episode): 

Initialize s, a 

Repeat (for each step of episode): 

   Take action a, observe r, s΄ 

   CheckTransition(s,a,s’) 
   Choose a΄ from s΄ using e-greedy  

   δ ← r + γQ(s΄,a΄) – Q(s,a) 

   e(s,a) ← e(s,a) + 1 

   for all s,a : 

      Q(s,a) ← Q(s,a) + α δ e(s,a) 

      e(s,a) ← γ λ e(s,a) 

      s ← s’; a ← a΄ 

until s is terminal 

 
function CheckTransition(s, a, s’) 
 
  if L(s,a) = -2 then // skip if nonM 
    exit 
  if L(s,a) = -1 then        
    L(s,a) ← s’ 
    exit 
  if L(s,a) <> next_s then 
    L(s,a) ← -2 
 
EndOfFunction 

 

 

 
Figure 8. SARSA(λ) upgraded up to ambiguous states detection 

 

 In the listed algorithm (see Figure 8) only detection of ambiguous states occurs. The 

bolded fragments are modifications of original SARSA(λ) algorithm. 

In task of ambiguous state identification, the L array keeps state-action history of deep 

one. Initially each action a in state s is marked by -1. In the course of exploration, each next-

state s’ is stored in L-table for appropriate state s and action a. If a new value of next-state s’ 
differs from the existing one, L(s,a) is marked by value -2. Since L-table is of the same size 

and structure like Q, it might be integrated into Q-table’s structure. Implementing task of 

internal state representation the L-table might be upgraded by additional signs and features, so 

it could be declared separately. 

The modifications do not affect the convergence, but take more memory size (like 

additional Q-table). After executing, the gained L-table keeps value -2 for all ambiguous 

state-action pairs. All three forms are included. 

 

4. Conclusions 
 

The proposed algorithm is the first look at non-Markovian environment in terms of 

forms of ambiguous states. The proposed algorithm is integrated into a host one and is able to 

recognize ambiguous states while a host algorithm is running. It easily copes even with 

difficult (i.e. several number of copies of the same states series are exist) mazes like Maze5. 

Three forms and indication of ambiguous states were formulated. The algorithm for 

ambiguous states detection is provided and described. The formulated ideas were successfully 

implemented in Borland Delphi environment. The results of developed software are given in 

Table 2. 

The proposed algorithm still does not cope with the problem of dynamically changed 

goals. This problem is one of the significant disadvantages of reinforcement learning [6]. 

The future research will be focused on using the gained result for optimal policy 

building in non-Markovian environment by internal representation of states. To solve this 

problem, the L-table must be provided with additional features and supplied with 

corresponding algorithms. 
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Čižovs Jurijs, Zmanovska Tatjana un Borisovs Arkādijs. Daudznozīmīgo stāvokĜu noteikšana nemarkova 
vidēs 
Klasiskās apmācības ar pastiprināšanu metodes veiksmīgi funkcionē tā saucamajās nemarkova vidēs. Šajā 
darbā tiek izvirzīta ideja un algoritma izpildīšana nemarkova videi. Ierosinātā pieeja piedāvā daudznozīmīgo 
stāvokĜu apmeklēšanas paĦēmienu. Raksts definē un sīki apskata daudznozīmīgu stāvokĜu formas nemarkova 
vidēs. Apmeklēšana ir svarīga fāze pirms politikas uzbūvei nemarkova vidēs izmantojot stāvokĜu iekšējo 
reprezentāciju. Savukārt, stāvokĜu iekšējai reprezentācijai ir jāsaglābj konverăences noteikumi, apmācības ar 
pastiprinājumu īpašības un priekšrocības. Raksta būtiska daĜa ir veltīta daudznozīmīgo stāvokĜu izrādīšanas 
pazīmēm un atrāšanas algoritmiem. Kā ir rādīts rakstā, pats grūtākais uzdevums ir atšėirt viena un tā paša 
stāvokĜa divus eksemplārus. Raksts iekĜauj sevī teorētisko ievadu, problēmu aprakstu un tās izpausmi šūnu 
pasaulē. Tika formulēti daudznozīmīgu stāvokĜu trīs formas un izvirzīta tās atklāšanās ideja. Lai iegūtu 
praktiskus rezultātus, tika izstrādāta programmatūra, kas dotai pasaulei veido visu daudznozīmīgu stāvokĜu 
sarakstu. Pamatojoties uz iegūtiem rezultātiem, izvirzīti secinājumi. Šīs darbs ir nepieciešamā iepriekšēja fāze 
aăenta nemarkova vidē funkcionēšanas uzdevuma izpētē. 
 
Jurij Chizhov, Tatyana Zmanovska and Arkady Borisov. Ambiguous states determination in non-
Markovian environments 
Classical methods of reinforcement learning are performing successfully in the so-called Markovian 
environments. In this work the idea and implementation approach are stated for non-Markovian environments. 
The approach offered represents a way of ambiguous states detection. The paper includes definition and detailed 
scrutiny of ambiguous states forms. The detection is the prerequisite phase for building optimal policy using 
internal representation of states. In its turn, the internal representation preserves properties and advantages of 
the classical algorithm of reinforcement learning; its condition of convergence is important. The central part of 
the paper is focused on the indication of ambiguous cells and its detection. As shown in the paper, it proves quite 
difficult to recognise different “copies” of the same states. The paper includes a theoretical introduction, 
problem description and its display in grid worlds (mazes). Three forms of ambiguous states and the idea of its 
detection are posed. Testing software is developed to obtain the practical results. The work is a preliminary step 
in research of agent functioning task in non-Markovian environments. 

 
Чижов Юрий, Змановская Татьяна и Борисов Аркадий. Обнаружение неоднозначных состояний в 
немарковских средах 
Классические методы обучения с подкреплением успешно функционируют в так называемых 
немарковских средах. В данной работе выдвигается идея алгоритма и его исполнение для немарковских 
сред. Рассматриваемый подход предлагает способ обнаружения так называемых неоднозначных 
состояний. Статья включает определение и детальное рассмотрение трех форм неоднозначных 
состояний в немарковских средах. Фаза обнаружения является предварительным этапом в процессе 
построения политики в немарковских средах через внутреннее представление состояний. В свою 
очередь, введение внутреннего представления состояний должно сохранить условия сходимости, 



свойства и преимущества классических алгоритмов обучения с подкреплением. В данной статье 
внимание уделено признакам обнаружения неоднозначных состояний и, собственно, их обнаружению. 
Как показано в статье, основную сложность составляет задача различения отдельных экземпляров 
одного и того же состояния. В статье приведено теоретическое введение, описаны проблемы и их 
проявление в клеточном мире, сформулированы три формы неоднозначных состояний. Выдвинута идея 
обнаружения неоднозначного состояния. Для получения практических результатов разработана 
программа, которая для каждой рассматриваемой среды формирует ряд найденных неоднозначных 
состояний. Данная работа является предварительным исследованием в задаче функционирования 
агента в немарковской среде. 


