COMPUTER SCIENCE

ISSN 1407-7493 DATORZINATNE

2008-7493

INFORMATION TECHNOLOGY AND
MANAGEMENT SCIENCE
INFORMACIJAS TEHNOLOGIJA UN
VADIBAS ZINATNE

AMBIGUOUS STATES DETERMINATION IN NON-MARKOVIAN
ENVIRONMENTS

Jurij Chizhov, Mg.sc.ing., Ph.D. student, Department of Modelling and Simulation, Riga Technical University
1 Kalku Street, Riga LV-1658, Latvia, e-mail: Jurijs.Cizovs@rtu.lv.

Tatyana Zmanovska, Mg.sc.ing., Department of Modelling and Simulation, Riga Technical University, 1
Kalku Street, Riga LV-1658, Latvia, e-mail: zm@itl.rtu.lv.

Arkady Borisov, Dr.habil.sc.comp., Professor, Department of Modelling and Simulation, Riga Technical
University, 1 Kalku Street, Riga LV-1658, Latvia, e-mail: Arkadijs.Borisovs@cs.rtu.lv.

Keywords: reinforcement learning, non-Markovian deterministic environments, intelligent agent control

1. Introduction

One of the most topical tasks of artificial intelligence is searching for optimal policy of
interaction with an environment by autonomous intelligence software agent. Classical
methods of reinforcement learning are performing successfully in the so-called Markovian
environments. In this work the idea and implementation approach are stated for non-
Markovian environments. The approach offered represents a way of ambiguous states
detection. The paper includes definition and detailed scrutiny of ambiguous states forms. The
detection is the prerequisite phase for building optimal policy using internal representation of
states. In its turn, the internal representation preserves properties and advantages of the
classical algorithm of reinforcement learning and its condition of convergence is important.

The central part of the paper is focused on the indication of ambiguous cells and its
detection. As shown in the paper, it is rather difficult to recognize different “copies” of the
same states. The paper contains a theoretical introduction, ideas and problem description, and,
finally, an illustration of results and conclusions.

2. Agent task and environment

The experiments are carried out in a well-known task - searching for a path in
labyrinth (kind of agent control), in other words, building an optimal policy (strategy) of
actions by exploration of the environment. The reason for our choice is obviousness and
simple understanding of the received results. SARSA(A) learning algorithm [1] is preferred as
a base learning algorithm, which will be combined with the investigated algorithms.

Let's consider the static cellular world - a labyrinth. Each cell of the labyrinth is either
free for agent pacing, or occupied by some static obstacle. One of the cells contains food
(sometimes called target cell or goal cell). In our case, the goal cell is labelled by letter G. An
example of simple grid world is depicted in Figure 1.

Figure 1. Example of simple grid world

To make the grid world usable like the environment, we must define a set of data
which represent the state of the agent. Usually the state is all the information available to an
agent that is provided by its sensors. The set of agent sensors (according to available
information) depends on task conditions. In our case the agent possesses only four sensors: s,
SN, Sw, Sg, €ach of them returns value 1, if the obstacle is detected in a neighbour cell, in the
corresponding direction, otherwise value 0. Thus, agent state might be expressed in binary
form, where each bit corresponds to each sensor. For example, if the obstacle is north and east
directions, then state in binary form will be equal to S = 0101,. For further calculation

convenience, it is better to convert the binary value to decimal form: S=1010, =0- 22+ 122
+0-2' + 1-2° = 5,). Thus, on each step by getting values of sensors the agent can compute the
current state by equation (1):

S = 8'Ssouth + 4'Seast + 2'Swest t Snorth (1)

The value obtained is the state of the agent. Only 16 different states are available in our
task (including zero state interpreted as the absence of obstacle around). Figure 2 depicts the
grid world with calculated values for each cell (state).

14

1112

Figure 2. Grid world with evaluated states for each cell

The agent possesses four actions: to step only one cell in each of four directions. It is
important to point out that each action of the agent is surely executed. In other words, if in a
previous state s action a was applied, the probability of obtaining next state s’ is equal to one:
P(s, a, s’) = 1. If we wish to use a probabilistic model for defining probabilities of transitions,
it requires including additional 3-dimensional table.

Having a set of state, actions and probability of transition, the grid-world-like
environment now might be represented in transition graph form which is often used for
representing the Markovian processes [2]:

Figure 3. Agent environment in the graph form (states and transitions form)

In the depicted graph, arrows denote possible transitions through implementing
corresponding actions (moving north, east, south and west). It is important to point out that
the grid world form is the form which is closer to the real world form and keeps more
properties than a graph one. The graph form is a model which only keeps information
sufficient enough to the agent. For example, looking at the grid world we can see why a
transition from one cell to another is available. In graph mode we have only the fact of
available transitions. The reason might be interpreted as additional information available for
operation. In our case the essential difference between two forms is the properties that belong
to the nature of cell. Additional existence and the number of non-Markovian states depend on
the precision of external world reproduction. Moreover, the number of non-Markovian states
might be reduced by involving eight sensors instead of the existing four. So, the graph
representation is less attractive than other forms; nevertheless it is worth considering in detail
because of its representation of state-action model, which is used in reinforcement learning
algorithms. In Table 1 the main differences between grid-world form and graph form are
given.

Table 1
Differences between two forms of environment representation

Grid world form Graph form

e The coordinate system in the labyrinth is | e There is no conception of a cell, thus
caused by the conception of cell the absence coordinates takes place

¢ Transitions move the agent through cells | e Transitions move the agent from one
state to another

e The obstacles and cells arrangement | @ There are no reasons that could
describe the actions execution ability describe the ability of executing actions

e Equally valued state cells are different | ¢ There is no conception of the same
copies of the same state state copies, instead of that the
non-Markovian conception or
inconstancy of transition takes place.

Two last distinctions cause the greatest interest. These distinctions raise three
fundamental problems in the task of agent control in non-Markovian environments:

1) detection of ambiguous states;
2) detection of states with inconstant transition;
3) agent learning and its ability to distinct different copies of the same states.

The paper considers the ambiguous states detection problems for situated agent
(according to state-action concept [3]).

3. The sensor signals interpreting problem

As was mentioned above, in task of building optimal policy through exploring non-
Markovian environment three problem cases might be revealed.

Case 1. The case supposes that from some state at different moments of time it is
necessary to execute different actions. In other words, the current state does not fully define
the next action [2, 5]. This case is called non-Markovian state. The Woods101 environment is
a classical example of such case [4] (see Figure 4).

The cells denoted by a and b correspond to the same state because of their equal
values evaluated upon agent sensors signals. Having appeared in that state the agent
sometimes is compelled to move east, but sometimes west. Thus, having only current state’s
information, the agent is not capable of making a decision and defining the optimal action.

Cella = Cellb =1001; = 99 9

S| d--->

Figure 4. Non-Markovian environment Woods101 (bottom) and example of ambiguous state

Case 2 is the evolution of the previous case and consists in taking the same action
from the same state at different times, and the different reaction of environment is observed.
Let’s call this case the transition inconstancy .Let’s see cells ¢ and d, for example. Again,

each of them represents the same state. An attempt to move north will lead to different future
states (see Figure 5).

moving NORTH from state 6]
(cell ¢) leads to state 3: | 3 |
Cellc = Celld =110, = 6] _
Llo] | —
— moving NORTH from state 6 | 5 |
A N (cell d) leads to state 5:

G

Figure 5. Example of inconstant transition from state 6

Case 3 relates to the problem of interpreting the return of the same state (equal to
source state). Let’s consider state «9» depicted in Figure 6 (left). While the agent is trying to
move north, it meets the obstacle, so, the environment returns the agent to the source
(previous) state, which equals «9». Thus, two ways of interpreting the situation are
appropriate: 1) the agent was returned to the source state (see Figure 6, on the right), or 2) the
agent was moved to another copy of the same state (like moving west or east, see Figure 6, on
the left). Different interpretations of states are possible: either we do not take sensors nature
into account or instead of sensors methodology the special channel for already evaluated state
transmission is used. If the agent “understands” the sensors meaning, it might be used as
additional signs. These signs might be sufficient to distinguish different copies of the state.

The model and agent-environment conditions interaction are defined by the task.
1. Moving NORTH

leads to state 9 action
> INORTH
9 o1 How to distinguish the returned state 9?
T Is this a return to source cell or moving to a
—» | - action copy (exemplar)?
> EAST
2. Moving EAST
leads to state 9

Figure 6. Two ways of interpreting the state «9»

The problem of distinguishing two equal states is connected to that of representing
same states in a graph form or Markov chains. Should we duplicate state «9» or leave it
unique but having multiple connections to neighbours? In its turn, there should be «return
links» which are responsible for agent returning in source state in case of bumping to
obstacle.

3.1. The indication of ambiguous state and algorithm for its detection

Non-Markovian states and states with inconstant transition due to their common nature
have common simple indication: if observations of transition from state s by action a moves
agent to different target states then source state s is ambiguous. A simple example is shown in
Figure 7.

11| 9 | 9 [13G

Figure 7. A simple example with ambiguous state «9»

During environment exploration, the agent finds out that applying of action «step east»
being in state «11» always moves him to state «9». In its turn, applying action «step east»
being in state «9» sometimes moves it to state «9» and sometimes to state «13». Such an
uncertainty makes building the Q-table difficult. The formal indication of ambiguous state
might be expressed as follows (2):

(s.a,) 5™ # (sl.,aj)" st)

where (s,,a,)" and (s,q,)" are same corteges observed at different moments of time,

S and S"*' - states returned by the environment (through sensors) at next time tick.

Ambiguous states detection is executed within the framework of Q-learning cycles and
requires only additional table size SxA for keeping observable transitions. Each cell [s, a]
keeps target state s’. As soon as next observation brings different target state, the source state
s will be marked as ambiguous.

It is important to point out, that the indication does not require knowing of the goal
state. Ambiguous states detection occurs while Q-learning builds its policy and does not
require special exploration steps of the agent. For experiments, the algorithm was executed on
a set of MacCallum’s mazes and other environments. A short analyzing log for each
environment is given in Table 2. For the environment depicted in Figure 2 no ambiguous
states were detected. This result is true.

Table 2

Found ambiguous states

Found ambiguous

Maze states (state:action)
Woods101:
HNEEEEE 6:T)
B: 21958 (9:-)
s Hs Hs B ©:¢)
s s
HEEEEER

(1:>); (1), (1)
2:>):) @M
(3:>); (3:d);
(4:¢); (4d); @)
(5:¢); (5:4);
6:1); (6:4);
&:—); (871 (8:¢«);
9:>); 9:¢);
(10:—); (10:1); (12:1);

6:1);
(6:4);
MazeT:
9:>);
119 1 9 13| (9:¢);

HEEEs BIEN
Bc N
LI

Initialize QO(s,a) arbitrarily and

for all s,a: e(s,a) = 0, L[s,a] = -1 function CheckTransition(s, a, s’)
Repeat (for each episode):

Initialize s, a if L(s,a) = -2 then // skip if nonM
Repeat (for each step of episode): exit

Take action a, observe r, s’ if L(s,a) = -1 then

CheckTransition(s,a,s’) L(s,a) — s’

Choose a” from s’ using e-greedy exit

6~ r+ yo(s’,a’) - Q(s,a) if L(s,a) <> next_s then

e(s,a) « e(s,a) + 1 L(s,a) « -2

for all s,a :

O(s,a) « Q(s,a) + a 6 e(s,a) EndOfFunction

e(s,a) « y A e(s,a)
S « 8’; a— a’
until s is terminal

Figure 8. SARSA()L) upgraded up to ambiguous states detection

In the listed algorithm (see Figure 8) only detection of ambiguous states occurs. The
bolded fragments are modifications of original SARSA(L) algorithm.

In task of ambiguous state identification, the L array keeps state-action history of deep
one. Initially each action a in state s 1s marked by -1. In the course of exploration, each next-
state s’ is stored in L-table for appropriate state s and action a. If a new value of next-state s’
differs from the existing one, L(s,a) is marked by value -2. Since L-table is of the same size
and structure like Q, it might be integrated into Q-table’s structure. Implementing task of
internal state representation the L-table might be upgraded by additional signs and features, so
it could be declared separately.

The modifications do not affect the convergence, but take more memory size (like
additional Q-table). After executing, the gained L-table keeps value -2 for all ambiguous
state-action pairs. All three forms are included.

4. Conclusions

The proposed algorithm is the first look at non-Markovian environment in terms of
forms of ambiguous states. The proposed algorithm is integrated into a host one and is able to
recognize ambiguous states while a host algorithm is running. It easily copes even with
difficult (i.e. several number of copies of the same states series are exist) mazes like Maze5.

Three forms and indication of ambiguous states were formulated. The algorithm for
ambiguous states detection is provided and described. The formulated ideas were successfully
implemented in Borland Delphi environment. The results of developed software are given in
Table 2.

The proposed algorithm still does not cope with the problem of dynamically changed
goals. This problem is one of the significant disadvantages of reinforcement learning [6].

The future research will be focused on using the gained result for optimal policy
building in non-Markovian environment by internal representation of states. To solve this
problem, the L-table must be provided with additional features and supplied with
corresponding algorithms.

References

1. Sutton, R., Barto, R., 1998. Reinforcement learning. An Introduction // Cambridge, MA:
MIT Press.

2. Russell, S., Norvig, R. 2003, Artificial Intelligence: A Modern Approach // Prentice Hall.
New Jersey, 2nd edition.

3. Padgham, L., Winikoff, M., 2004. Developing Intelligent Agent Systems. A practical
guide // John Wiley & Sons, Ltd.

4. Kwee, 1., Hutter, M., Schmidhuber J. Market-Based Reinforcement Learning in Partially
Observable Worlds. 2001.

5. Lin, L-J., 1993, PhD thesis: Reinforcement Learning for Robots Using Neural Networks,
Carnegie Mellon University, Pittsburgh, CMU-CS-93-103.

6. Jiming Liu, 2001. Autonomous agents and multi-agent systems. Hong Kong Baptist
University.

Cizovs Jurijs, Zmanovska Tatjana un Borisovs Arkadijs. Daudznozimigo stavoklu noteik§ana nemarkova
vides

Klasiskas apmdcibas ar pastiprinasanu metodes veiksmigi funkcioné ta saucamajas nemarkova vides. Saja
darba tiek izvirzita ideja un algoritma izpildiSana nemarkova videi. lerosindata pieeja piedava daudznozimigo
stavoklu apmeklésanas panémienu. Raksts definé un siki apskata daudznozimigu stavoklu formas nemarkova
vides. ApmekléSana ir svariga faze pirms politikas uzbiivei nemarkova vidés izmantojot stavokju iekséjo
reprezentaciju. Savukart, stavokju iekséjai reprezentdcijai ir jasaglabj konvergences noteikumi, apmdacibas ar
pastiprindjumu ipasibas un prieksrocibas. Raksta biutiska daja ir veltita daudznozimigo stavokju izradisanas
pazimem un atrasanas algoritmiem. Ka ir radits raksta, pats gritakais uzdevums ir atSkirt viena un ta pasa
stavokja divus eksemplarus. Raksts ieklauj sevi teorétisko ievadu, problemu aprakstu un tas izpausmi Sinu
pasaulé. Tika formuléti daudznozimigu stavokju tris formas un izvirzita tas atklasanas ideja. Lai iegitu
praktiskus rezultatus, tika izstradata programmatiira, kas dotai pasaulei veido visu daudznozimigu stavokju
sarakstu. Pamatojoties uz iegiitiem rezultatiem, izvirziti secindjumi. Sis darbs ir nepiecieSama iepriekséja fize
agenta nemarkova vide funkcionésanas uzdevuma izpéte.

Jurij Chizhov, Tatyana Zmanovska and Arkady Borisov. Ambiguous states determination in non-
Markovian environments

Classical methods of reinforcement learning are performing successfully in the so-called Markovian
environments. In this work the idea and implementation approach are stated for non-Markovian environments.
The approach offered represents a way of ambiguous states detection. The paper includes definition and detailed
scrutiny of ambiguous states forms. The detection is the prerequisite phase for building optimal policy using
internal representation of states. In its turn, the internal representation preserves properties and advantages of
the classical algorithm of reinforcement learning; its condition of convergence is important. The central part of
the paper is focused on the indication of ambiguous cells and its detection. As shown in the paper, it proves quite
difficult to recognise different “copies” of the same states. The paper includes a theoretical introduction,
problem description and its display in grid worlds (mazes). Three forms of ambiguous states and the idea of its
detection are posed. Testing software is developed to obtain the practical results. The work is a preliminary step
in research of agent functioning task in non-Markovian environments.

YUn:xoB FOpwii, 3manosckas Tarbsina u Bopucos Apkaamii. O0HapyskeHHe HEOJHO3HAYHBIX COCTOSTHUN B
HEMapPKOBCKHUX cpeaax

Knaccuueckue memoovl o0byuenuss ¢ nooKpenjieHuem YCHewHo @OYHKYUOHUPYIOM 6 mMAaK HA3bI8AeMbIX
HeMapKo8cKux cpedax. B oannoii pabome eviosucaemcs udes aneopumma u €20 UCHOIHEHUe 0Nl HeMAPKOBCKUX
cpeo. Paccmampueaemviti nooxod npeonazaem cnocob o0OHApYJiceHusi Max HA3bIBACMbIX HEOOHO3ZHAYHBIX
cocmosinuti. Cmambsi eKkmiouaem onpeoeienue u O0emaibHoe paccmMompenue mpex Gopm HeoOHOZHAUHbIX
cocmosinutl 8 Hemapkosckux cpedax. Daza oOHAPYdICenUs SN NPEOSAPUMENbHBIM IMANOM 6 Npoyecce
ROCMPOEHUsT NOJUMUKU 8 HEMAPKOBCKUX CPedax uepe3 GHympenHee npedcmasiieHue cocmosuuil. B ceorw
ouepedb, 68e0eHUEe GHYMPEHHE20 NPEeOCMAGIeHUsT COCMOSIHULL OO0MICHO COXPAHUMb VCIO0GUSL CXOOUMOCHU,

CBOUCMEA U NPEUMYWECMBA KIACCUHECKUX ANOPUMMOE 00yueHusi ¢ nookpenjenuem. B Oannou cmamove
BHUMAHUE YOeNeHO NPUSHAKAM OOHAPYICEHUS. HEOOHOZHAYHBIX COCMOSHULL U, COOCMBEHHO, UX OOHAPYICEHUIO.
Kax nokasano 6 cmamve, 0CHOBHYIO CNLOJCHOCHMb COCMAGNAEM 3A0a4a pPA3IUdeHUss OMOeIbHbIX IKIEMNISPOS
00HO20 U MO20 dice cocmosnus. B cmamve npusedeno meopemuueckoe 66edeHuUe, ONUCAHbL NPOOIEeMbL U UX
nposieiieHue 8 KNemouyHoM mupe, chopmyiuposansvl mpu Gopmbl HECOOHOZHAUHBIX COCMOsIHUL. Bvldgunyma udest
O0OHApYIICEHUsL HEOOHOZHAUHO20 COCMOsAHUs. JUIsi NOAydeHus: NPpAKMUYecKux pe3yibmamos pa3pabomand
npoepamma, KOmopas 01 KajicOOu paccmMampueaemoi cpedvl Gopmupyem psod HAUOEHHbIX HeOOHO3ZHAYHLIX
cocmosinutl. Jlannas paboma sGAsAemMcs NPeOSapUmMenbHblM UCCIe008AHUEM 6 3a0aye (DYHKYUOHUPOBAHUSL
azenma 68 HeMapKoBCKOU cpeoe.

