
COMPUTER SCIENCE
ISSN 1407-7493

DATORZINĀTNE
2008-7493

 INFORMATION TECHNOLOGY AND

MANAGEMENT SCIENCE

 INFORMĀCIJAS TEHNOLOĂIJA UN
VADĪBAS ZINĀTNE

AMBIGUOUS STATES DETERMINATION IN NON-MARKOVIAN
ENVIRONMENTS

Jurij Chizhov, Mg.sc.ing., Ph.D. student, Department of Modelling and Simulation, Riga Technical University
1 Kalku Street, Riga LV-1658, Latvia, e-mail: Jurijs.Cizovs@rtu.lv.

Tatyana Zmanovska, Mg.sc.ing., Department of Modelling and Simulation, Riga Technical University, 1
Kalku Street, Riga LV-1658, Latvia, e-mail: zm@itl.rtu.lv.

Arkady Borisov, Dr.habil.sc.comp., Professor, Department of Modelling and Simulation, Riga Technical
University, 1 Kalku Street, Riga LV-1658, Latvia, e-mail: Arkadijs.Borisovs@cs.rtu.lv.

Keywords: reinforcement learning, non-Markovian deterministic environments, intelligent agent control

1. Introduction

One of the most topical tasks of artificial intelligence is searching for optimal policy of

interaction with an environment by autonomous intelligence software agent. Classical

methods of reinforcement learning are performing successfully in the so-called Markovian

environments. In this work the idea and implementation approach are stated for non-

Markovian environments. The approach offered represents a way of ambiguous states

detection. The paper includes definition and detailed scrutiny of ambiguous states forms. The

detection is the prerequisite phase for building optimal policy using internal representation of

states. In its turn, the internal representation preserves properties and advantages of the

classical algorithm of reinforcement learning and its condition of convergence is important.

The central part of the paper is focused on the indication of ambiguous cells and its

detection. As shown in the paper, it is rather difficult to recognize different “copies” of the

same states. The paper contains a theoretical introduction, ideas and problem description, and,

finally, an illustration of results and conclusions.

2. Agent task and environment

The experiments are carried out in a well-known task - searching for a path in

labyrinth (kind of agent control), in other words, building an optimal policy (strategy) of

actions by exploration of the environment. The reason for our choice is obviousness and

simple understanding of the received results. SARSA(λ) learning algorithm [1] is preferred as

a base learning algorithm, which will be combined with the investigated algorithms.

Let's consider the static cellular world - a labyrinth. Each cell of the labyrinth is either

free for agent pacing, or occupied by some static obstacle. One of the cells contains food

(sometimes called target cell or goal cell). In our case, the goal cell is labelled by letter G. An

example of simple grid world is depicted in Figure 1.

Figure 1. Example of simple grid world

To make the grid world usable like the environment, we must define a set of data

which represent the state of the agent. Usually the state is all the information available to an

agent that is provided by its sensors. The set of agent sensors (according to available

information) depends on task conditions. In our case the agent possesses only four sensors: sS,
sN, sW, sE, each of them returns value 1, if the obstacle is detected in a neighbour cell, in the

corresponding direction, otherwise value 0. Thus, agent state might be expressed in binary

form, where each bit corresponds to each sensor. For example, if the obstacle is north and east

directions, then state in binary form will be equal to S = 01012. For further calculation

convenience, it is better to convert the binary value to decimal form: S = 10102 = 0�2
3

+ 1·2
2

+ 0·2
1
 + 1·2

0
 = 510. Thus, on each step by getting values of sensors the agent can compute the

current state by equation (1):

S = 8·ssouth + 4·seast + 2·swest + snorth (1)

The value obtained is the state of the agent. Only 16 different states are available in our

task (including zero state interpreted as the absence of obstacle around). Figure 2 depicts the

grid world with calculated values for each cell (state).

Figure 2. Grid world with evaluated states for each cell

The agent possesses four actions: to step only one cell in each of four directions. It is

important to point out that each action of the agent is surely executed. In other words, if in a

previous state s action a was applied, the probability of obtaining next state s’ is equal to one:

P(s, a, s’) = 1. If we wish to use a probabilistic model for defining probabilities of transitions,

it requires including additional 3-dimensional table.

Having a set of state, actions and probability of transition, the grid-world-like

environment now might be represented in transition graph form which is often used for

representing the Markovian processes [2]:

7

6

4

11

9 8

12

14

3

2

5

G

Figure 3. Agent environment in the graph form (states and transitions form)

In the depicted graph, arrows denote possible transitions through implementing

corresponding actions (moving north, east, south and west). It is important to point out that

the grid world form is the form which is closer to the real world form and keeps more

properties than a graph one. The graph form is a model which only keeps information

sufficient enough to the agent. For example, looking at the grid world we can see why a

transition from one cell to another is available. In graph mode we have only the fact of

available transitions. The reason might be interpreted as additional information available for

operation. In our case the essential difference between two forms is the properties that belong

to the nature of cell. Additional existence and the number of non-Markovian states depend on

the precision of external world reproduction. Moreover, the number of non-Markovian states

might be reduced by involving eight sensors instead of the existing four. So, the graph

representation is less attractive than other forms; nevertheless it is worth considering in detail

because of its representation of state-action model, which is used in reinforcement learning

algorithms. In Table 1 the main differences between grid-world form and graph form are

given.

Table 1

Differences between two forms of environment representation

Grid world form Graph form

• The coordinate system in the labyrinth is

caused by the conception of cell

• Transitions move the agent through cells

• The obstacles and cells arrangement

describe the actions execution ability

• Equally valued state cells are different

copies of the same state

• There is no conception of a cell, thus

the absence coordinates takes place

• Transitions move the agent from one

state to another

• There are no reasons that could

describe the ability of executing actions

• There is no conception of the same

state copies, instead of that the

non-Markovian conception or

inconstancy of transition takes place.

Two last distinctions cause the greatest interest. These distinctions raise three

fundamental problems in the task of agent control in non-Markovian environments:

1) detection of ambiguous states;

2) detection of states with inconstant transition;

3) agent learning and its ability to distinct different copies of the same states.

2 3 4 5

8 9
11
G 12

6

14

7
N

S

E W

W

E

E

W

The paper considers the ambiguous states detection problems for situated agent

(according to state-action concept [3]).

3. The sensor signals interpreting problem

As was mentioned above, in task of building optimal policy through exploring non-

Markovian environment three problem cases might be revealed.

Case 1. The case supposes that from some state at different moments of time it is

necessary to execute different actions. In other words, the current state does not fully define

the next action [2, 5]. This case is called non-Markovian state. The Woods101 environment is

a classical example of such case [4] (see Figure 4).

The cells denoted by a and b correspond to the same state because of their equal

values evaluated upon agent sensors signals. Having appeared in that state the agent

sometimes is compelled to move east, but sometimes west. Thus, having only current state’s

information, the agent is not capable of making a decision and defining the optimal action.

Figure 4. Non-Markovian environment Woods101 (bottom) and example of ambiguous state

Case 2 is the evolution of the previous case and consists in taking the same action

from the same state at different times, and the different reaction of environment is observed.

Let’s call this case the transition inconstancy .Let’s see cells c and d, for example. Again,

each of them represents the same state. An attempt to move north will lead to different future

states (see Figure 5).

Figure 5. Example of inconstant transition from state 6

 d

 G

b

Cell c = Cell d = 1102 = 610

a

moving NORTH from state 6
(cell c) leads to state 3:

moving NORTH from state 6
(cell d) leads to state 5:

6

c

3

5

 d

 G

b a
c

Cell a = Cell b = 10012 = 910 9

Case 3 relates to the problem of interpreting the return of the same state (equal to

source state). Let’s consider state «9» depicted in Figure 6 (left). While the agent is trying to

move north, it meets the obstacle, so, the environment returns the agent to the source

(previous) state, which equals «9». Thus, two ways of interpreting the situation are

appropriate: 1) the agent was returned to the source state (see Figure 6, on the right), or 2) the

agent was moved to another copy of the same state (like moving west or east, see Figure 6, on

the left). Different interpretations of states are possible: either we do not take sensors nature

into account or instead of sensors methodology the special channel for already evaluated state

transmission is used. If the agent “understands” the sensors meaning, it might be used as

additional signs. These signs might be sufficient to distinguish different copies of the state.

The model and agent-environment conditions interaction are defined by the task.

Figure 6. Two ways of interpreting the state «9»

The problem of distinguishing two equal states is connected to that of representing

same states in a graph form or Markov chains. Should we duplicate state «9» or leave it

unique but having multiple connections to neighbours? In its turn, there should be «return

links» which are responsible for agent returning in source state in case of bumping to

obstacle.

3.1. The indication of ambiguous state and algorithm for its detection

Non-Markovian states and states with inconstant transition due to their common nature

have common simple indication: if observations of transition from state s by action a moves

agent to different target states then source state s is ambiguous. A simple example is shown in

Figure 7.

Figure 7. A simple example with ambiguous state «9»

During environment exploration, the agent finds out that applying of action «step east»

being in state «11» always moves him to state «9». In its turn, applying action «step east»

being in state «9» sometimes moves it to state «9» and sometimes to state «13». Such an

uncertainty makes building the Q-table difficult. The formal indication of ambiguous state

might be expressed as follows (2):

1''1 :),(:),(++ ≠ tt

ji
tt

ji sassas (2)

where t
ji as),(and '),(t

ji as are same corteges observed at different moments of time,

1+tS and 1'+tS - states returned by the environment (through sensors) at next time tick.

 9

 9

2. Moving EAST
leads to state 9

1. Moving NORTH
leads to state 9

9
action

NORTH

9

action

EAST

9’

How to distinguish the returned state 9?
Is this a return to source cell or moving to a
copy (exemplar)?

9 13G

11 9

Ambiguous states detection is executed within the framework of Q-learning cycles and

requires only additional table size SxA for keeping observable transitions. Each cell [s, a]

keeps target state s’. As soon as next observation brings different target state, the source state

s will be marked as ambiguous.

It is important to point out, that the indication does not require knowing of the goal

state. Ambiguous states detection occurs while Q-learning builds its policy and does not

require special exploration steps of the agent. For experiments, the algorithm was executed on

a set of MacCallum’s mazes and other environments. A short analyzing log for each

environment is given in Table 2. For the environment depicted in Figure 2 no ambiguous

states were detected. This result is true.

Table 2

Found ambiguous states

Maze
Found ambiguous

states (state:action)
Woods101:

Maze5:

Maze7:

MazeT:

(6 :↑)
(9: →)
(9: ←)

(1:→); (1:↓); (1:←);

(2:→); (2:↓); (2:↑);

(3:→); (3:↓);

(4:←); (4:↓); (4: ↑);

(5:←); (5:↓);

(6: ↑); (6:↓);

(8:→); (8:↑); (8:←);

(9:→); (9:←);

(10:→); (10:↑); (12:↑);

(6:↑);

(6:↓);

(9:→);

(9:←);

Initialize Q(s,a) arbitrarily and

for all s,a: e(s,a) = 0, L[s,a] = -1
Repeat (for each episode):

Initialize s, a

Repeat (for each step of episode):

 Take action a, observe r, s΄

 CheckTransition(s,a,s’)
 Choose a΄ from s΄ using e-greedy

 δ ← r + γQ(s΄,a΄) – Q(s,a)

 e(s,a) ← e(s,a) + 1

 for all s,a :

 Q(s,a) ← Q(s,a) + α δ e(s,a)

 e(s,a) ← γ λ e(s,a)

 s ← s’; a ← a΄

until s is terminal

function CheckTransition(s, a, s’)

 if L(s,a) = -2 then // skip if nonM
 exit
 if L(s,a) = -1 then
 L(s,a) ← s’
 exit
 if L(s,a) <> next_s then
 L(s,a) ← -2

EndOfFunction

Figure 8. SARSA(λ) upgraded up to ambiguous states detection

 In the listed algorithm (see Figure 8) only detection of ambiguous states occurs. The

bolded fragments are modifications of original SARSA(λ) algorithm.

In task of ambiguous state identification, the L array keeps state-action history of deep

one. Initially each action a in state s is marked by -1. In the course of exploration, each next-

state s’ is stored in L-table for appropriate state s and action a. If a new value of next-state s’
differs from the existing one, L(s,a) is marked by value -2. Since L-table is of the same size

and structure like Q, it might be integrated into Q-table’s structure. Implementing task of

internal state representation the L-table might be upgraded by additional signs and features, so

it could be declared separately.

The modifications do not affect the convergence, but take more memory size (like

additional Q-table). After executing, the gained L-table keeps value -2 for all ambiguous

state-action pairs. All three forms are included.

4. Conclusions

The proposed algorithm is the first look at non-Markovian environment in terms of

forms of ambiguous states. The proposed algorithm is integrated into a host one and is able to

recognize ambiguous states while a host algorithm is running. It easily copes even with

difficult (i.e. several number of copies of the same states series are exist) mazes like Maze5.

Three forms and indication of ambiguous states were formulated. The algorithm for

ambiguous states detection is provided and described. The formulated ideas were successfully

implemented in Borland Delphi environment. The results of developed software are given in

Table 2.

The proposed algorithm still does not cope with the problem of dynamically changed

goals. This problem is one of the significant disadvantages of reinforcement learning [6].

The future research will be focused on using the gained result for optimal policy

building in non-Markovian environment by internal representation of states. To solve this

problem, the L-table must be provided with additional features and supplied with

corresponding algorithms.

References

1. Sutton, R., Barto, R., 1998. Reinforcement learning. An Introduction // Cambridge, MA:

MIT Press.

2. Russell, S., Norvig, R. 2003, Artificial Intelligence: A Modern Approach // Prentice Hall.

New Jersey, 2nd edition.

3. Padgham, L., Winikoff, M., 2004. Developing Intelligent Agent Systems. A practical

guide // John Wiley & Sons, Ltd.

4. Kwee, I., Hutter, M., Schmidhuber J. Market-Based Reinforcement Learning in Partially

Observable Worlds. 2001.

5. Lin, L-J., 1993, PhD thesis: Reinforcement Learning for Robots Using Neural Networks,

Carnegie Mellon University, Pittsburgh, CMU-CS-93-103.

6. Jiming Liu, 2001. Autonomous agents and multi-agent systems. Hong Kong Baptist

University.

Čižovs Jurijs, Zmanovska Tatjana un Borisovs Arkādijs. Daudznozīmīgo stāvokĜu noteikšana nemarkova
vidēs
Klasiskās apmācības ar pastiprināšanu metodes veiksmīgi funkcionē tā saucamajās nemarkova vidēs. Šajā
darbā tiek izvirzīta ideja un algoritma izpildīšana nemarkova videi. Ierosinātā pieeja piedāvā daudznozīmīgo
stāvokĜu apmeklēšanas paĦēmienu. Raksts definē un sīki apskata daudznozīmīgu stāvokĜu formas nemarkova
vidēs. Apmeklēšana ir svarīga fāze pirms politikas uzbūvei nemarkova vidēs izmantojot stāvokĜu iekšējo
reprezentāciju. Savukārt, stāvokĜu iekšējai reprezentācijai ir jāsaglābj konverăences noteikumi, apmācības ar
pastiprinājumu īpašības un priekšrocības. Raksta būtiska daĜa ir veltīta daudznozīmīgo stāvokĜu izrādīšanas
pazīmēm un atrāšanas algoritmiem. Kā ir rādīts rakstā, pats grūtākais uzdevums ir atšėirt viena un tā paša
stāvokĜa divus eksemplārus. Raksts iekĜauj sevī teorētisko ievadu, problēmu aprakstu un tās izpausmi šūnu
pasaulē. Tika formulēti daudznozīmīgu stāvokĜu trīs formas un izvirzīta tās atklāšanās ideja. Lai iegūtu
praktiskus rezultātus, tika izstrādāta programmatūra, kas dotai pasaulei veido visu daudznozīmīgu stāvokĜu
sarakstu. Pamatojoties uz iegūtiem rezultātiem, izvirzīti secinājumi. Šīs darbs ir nepieciešamā iepriekšēja fāze
aăenta nemarkova vidē funkcionēšanas uzdevuma izpētē.

Jurij Chizhov, Tatyana Zmanovska and Arkady Borisov. Ambiguous states determination in non-
Markovian environments
Classical methods of reinforcement learning are performing successfully in the so-called Markovian
environments. In this work the idea and implementation approach are stated for non-Markovian environments.
The approach offered represents a way of ambiguous states detection. The paper includes definition and detailed
scrutiny of ambiguous states forms. The detection is the prerequisite phase for building optimal policy using
internal representation of states. In its turn, the internal representation preserves properties and advantages of
the classical algorithm of reinforcement learning; its condition of convergence is important. The central part of
the paper is focused on the indication of ambiguous cells and its detection. As shown in the paper, it proves quite
difficult to recognise different “copies” of the same states. The paper includes a theoretical introduction,
problem description and its display in grid worlds (mazes). Three forms of ambiguous states and the idea of its
detection are posed. Testing software is developed to obtain the practical results. The work is a preliminary step
in research of agent functioning task in non-Markovian environments.

Чижов Юрий, Змановская Татьяна и Борисов Аркадий. Обнаружение неоднозначных состояний в
немарковских средах
Классические методы обучения с подкреплением успешно функционируют в так называемых
немарковских средах. В данной работе выдвигается идея алгоритма и его исполнение для немарковских
сред. Рассматриваемый подход предлагает способ обнаружения так называемых неоднозначных
состояний. Статья включает определение и детальное рассмотрение трех форм неоднозначных
состояний в немарковских средах. Фаза обнаружения является предварительным этапом в процессе
построения политики в немарковских средах через внутреннее представление состояний. В свою
очередь, введение внутреннего представления состояний должно сохранить условия сходимости,

свойства и преимущества классических алгоритмов обучения с подкреплением. В данной статье
внимание уделено признакам обнаружения неоднозначных состояний и, собственно, их обнаружению.
Как показано в статье, основную сложность составляет задача различения отдельных экземпляров
одного и того же состояния. В статье приведено теоретическое введение, описаны проблемы и их
проявление в клеточном мире, сформулированы три формы неоднозначных состояний. Выдвинута идея
обнаружения неоднозначного состояния. Для получения практических результатов разработана
программа, которая для каждой рассматриваемой среды формирует ряд найденных неоднозначных
состояний. Данная работа является предварительным исследованием в задаче функционирования
агента в немарковской среде.

