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1. Introduction 
 
Thin shells are efficient structures that can support very high buckling loads. However, unlike columns 
and plates, shells usually have a very unstable post-buckling behaviour that strongly influences their 
buckling characteristics. Hence their buckling and post-buckling have presented scientific and 
engineering challenges for decades. [1] Axially compressed cylinder may be one of the last classical 
problems in structural mechanics for which it remains difficult to obtain close agreement between 
careful experiments and the best predictions from numerical modelling, therefore this is a subject of 
continuous research. [2] 
Buckling and post-buckling of axially compressed, homogenous isotropic cylinders has been 
investigated since it was first identified in the beginning of the last century by “wrinkling” or 
“secondary flexure” in columns. [3] In practice, buckling of cylindrical shells under axial compression 
became important as their use in aircraft structures broadened as thin-walled columns and stressed-
skin construction of fuselages and wings, introduced in the late twenties. Since then the shell buckling 
phenomena became the central design problem of aerospace structures. [4] 
According to the well-known and accepted linear classical theory, the linear bifurcation buckling 
stress for a perfect isotropic cylindrical shell under ideal conditions (of medium length, with pre-
buckling stresses by the boundary conditions and boundaries that restrain circumferential 
displacements during buckling) is (1): 
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where E is the elastic modulus of the material, v is the Poisson ratio, t is wall thickness and r is the 
radius of the cylinder. This buckling stress equation was independently found by Lorenz [5], 
Timoshenko [6] and Southwell [7] and is known as the “classical elastic critical stress”. 
At this buckling stress, a very large number of different buckling modes or eigenmodes are all 
simultaneously critical, sometimes over 100 modes within 1% above the first one. The steeply falling 
post-buckling path is associated with the proximity of these many modes. [2] 
As mentioned before, significant effort has been applied to understand the post-buckling phenomena 
for axially compressed cylinders, though it is still difficult to obtain good accordance of experimental 
results and numerical predictions. The initial imperfections are dependant on production technology 
and post-processing, therefore it is still impossible to produce cylinders with no imperfections that 
would affect the buckling strength. There are imperfections in the shell geometry, thickness variations, 
residual stresses and poor definition of boundary conditions. It is widely accepted that the most 
important factor contributing to the discrepancy between theory and experiment for axially 
compressed cylinders is initial imperfections in the shell geometry. [2, 8] Since initial imperfections 
are obviously random by nature, stochastic stability analysis can be used. The buckling of 
imperfection sensitive structures with small random imperfections has been studied by several 
investigators, such as Bolotin [9], Faser and Budiansky [10] and Amazigo [11]. However, considering 
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the absence of experimental evidence about type of imperfections that occur in practice and in order to 
reduce the mathematical complexity of the problem, all the above-named investigators have been 
working with some form of idealised imperfection distribution. [1] 
Extensive experimental and analytical studies on the buckling of composite cylinders made of carbon 
fibre reinforced plastics (CFRP) have been conducted at the Institute for Aerospace Studies, 
University of Toronto in the seventies and eighties. Special emphasis was given in these studies to the 
effect of initial geometrical imperfections of the cylinder. The random distributions of the geometrical 
imperfections of the shells were determined by mounting the shell in a transversing device equipped 
with two, diametrically opposed low pressure, linear contracting transducers. The imperfection data 
was fed into Fourier analysis program, and imperfection amplitudes and an estimated line of power 
spectral density as a function of special frequency was computed. The data recorded by transducers 
were also used to compute the average shell thickness. The cylinders were tested with their ends 
clamped into fitted aluminium plates and bonded. 
The analytical estimates of the buckling capacity of the imperfect shells were based on the maximum 
value of the imperfection amplitude, which was obtained from the statistical representation of the 
measured initial geometrical imperfection. The magnitude of the imperfection amplitude was in the 
order of the shell wall thickness, and resulted in significantly lower buckling strength comparing to 
perfect cylinders. It has been reported that the agreement between the predicted response and the 
experiments was consistently good, with discrepancy not exceeding 20 percent. [12] 
More recently, buckling tests on composite cylinders manufactured from CFRP prepregnated material 
were conducted at the German Aerospace centre DLR, Brauschweig, Germany. One study was 
devoted to experimental confirmation of the computed large difference between the optimum and 
pessimum designs, where the optimum may be as high as 2.8 times that of the worst one, for laminates 
consisting of the same number of plies. The comparison with the analytical predictions yielded in 
“knock-down” factors ranging from 0.80 – 1.03, their scatter was small and they were not significantly 
smaller for the optimal cylinders (about 0.8) than the pessimal ones (about 0.9). [13] 
The same authors also have performed search for imperfection tolerant laminate lay-up. The results 
show that imperfection sensitivity of composite cylinders depends on lay up. A knock-down factor of 
0.68 was experienced with the (±75/±75) laminates, while a knock-down factor of 0.91 was found for 
the (02/±19/±37/±45/±51) laminates. [14] 
Extensive experimental, analytical and numerical investigations on the buckling behaviour of 
composite cylindrical shells were carried out at the Departments of Aerospace Engineering and 
Structural Engineering, Politechnico di Milano, Italy. The cylinders investigated were 700 mm long, 
with 700 mm diameter and reinforced at the ends to facilitate their fixing into loading rig. Cross-ply 
(0/90)S, angle-ply (±45)S and eight-ply quasi-isotropic lay-ups were used in these investigations. 
Particular attention has been paid to the boundary conditions. The employed loading rig provided 
good-accuracy displacement-controlled loading, and elaborate clamping devices were used to 
constrain the ends of the specimens. The inner and outer surfaces were scanned using non-contact 
measuring device to record the initial geometrical imperfections and their growth during the loading. 
The results were compared to theoretical predictions and knock-down factors raging from 0.86 for 
angle-ply cylinders to 0.88 for cross-ply cylinders were obtained. [15] 
There are are number of studies performed on post-buckling of composite cylinders, which included 
measuring of initial imperfections and applying to numerical models. These investigations include 
works by Meyer-Piening et al. [16] and Bisagni et al. [17]. Employing the updated models, fair 
agreement of experimental and numerical results has been achieved for torsional loading. 
Most investigations on buckling of axially compressed cylinders have been focused on metallic 
cylindrical shells. In this paper, buckling behaviour of thin E-glass fabric/polyester resin matrix 
composite cylinders of medium length has been investigated. 
 
 
2. Specimens 
 
Series of thin cylinders have been produced for this study. All the specimens share the same wall 
thickness of 1.1 mm and material – E-glass fibre fabric / polyester resin matrix composite. 290 g/m2 



fabric was used and 4 layers of fabric were winded to achieve the specified wall thickness. The 
cylinders had diameters (D) of 300 mm and 500 mm and lengths (L) of 400 mm, 560 mm and 660 
mm. Numbers of the specimens and their dimensions are presented in Table 1. Additionally, flat 
specimens of the same fabric and resin were produced for determination of material properties 
according to LVS EN ISO 527-4:2000 [18] standard. 
 

Table 1 
Dimensions and designations of specimens 
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All the specimens were produced employing cylindrical, slightly conical mould. The conical shape is 
necessary for easy removal of the specimens without any damage. Vacuum bag moulding was 
employed to remove excess resin and ensure more consistent material properties, excluding specimens 
RTU #1-5 through RTU #1-7. The flat specimens were produced using vacuum bag moulding as 
well. 
The specimens with diameter of 300 mm were cured in an autoclave with 80˚C temperature, but 
specimens with diameter of 500 mm were cured in ambient temperature of about 20˚C. 
Special end fixture was necessary [19] to assure balanced load distribution and consistent boundary 
conditions (see Fig. 1). After curing the specimens were cut to their lengths and the ends were potted 
into gaps of circular plates using mixture of aluminium powder and epoxy resin. The plates were cut 
out of MDF and plywood boards for specimens of 500 mm and 300 mm in diameter, respectively. 
Finally, the specimens were painted white using acrylic spray paint for post-buckling shape 
monitoring using moiré fringes. 
 
 
3. Determination of material properties 
 
The material properties have been determined by tensile experiments, where the flat plates were cut 
into tension specimens. The tests were performed according to the ISO 527-4:2000 standard, and the 
chosen specimen configuration is shown in Fig. 2. According to the standard, end tabs were bonded 
before cutting. Tensile tests were performed at a laboratory of the RTU Institute of Materials and 
Structures, equipped with Zwick Z100 machine. The test was displacement-controlled, the load was 
measured by a load cell and the strains were registered by a laser extensometer. Total of 14 specimens 
were tested, half of them in 0º direction and other half in 90º direction. The average elastic modulus 
was computed for every direction separately from the 0.05% to 0.25% strain, according to the ISO 
standard. The obtained load-extension curves are presented on Fig. 3. 
The average elastic modulus E of this E-glass fibre fabric / polyester resin matrix composite has been 
measured 18.28 GPa in 0º direction and 18.66 GPa in 90º direction and the standard deviations are 



0.78 MPa and 0.48 MPa, respectively. The average measured breaking tensile stress σmax was 
registered 219 MPa with 13 MPa standard deviation in 0º direction and 296 MPa in 90º direction with 
26 MPa standard deviation. 
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Fig. 1 
The test specimen 

 

 
 

Fig. 2 
Specimen for determination of composite’s tensile properties 

 
4. Experimental set-up 
 
The experimental rig prepared at the laboratory of the RTU Institute of Materials and Structures 
consists of Instron 8802 hydraulic frame, Instron 3520 hydraulic pump, Instron 8800 Fast Track 
controller and a computer (Fig. 4). The load is being introduced through pair of grips and two steel 
plates. The top plate is fixed to the grip, while the bottom plate is spherically supported to distribute 
the load evenly when the specimen end plates aren’t strictly parallel. The rotation centre of the 
spherical support is 150 mm above the bottom plate. The load cell that registers the axial load of the 
cylinder is located between the lower grip and the frame.  
In order to monitor the post-buckling shapes of the cylinders, a basic interferometry set-up has been 
created. A moiré fringe with both line thickness and distance between lines of 1 mm was placed in 



front of the specimens. Placing a spotlight and a camera at different angles resulted in pictures with 
moiré patterns clearly indicating post-buckling shapes on the taken pictures (Fig.7, 8). 
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Fig. 3 
Load-extension curves of the tests for determination of tensile properties 
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Fig. 4 
The set-up for buckling experiments 

 
 

5. Experimental results 
 
All the specimens were repeatedly loaded until post-buckling to determine their buckling loads and 
corresponding buckling shapes within a timeframe of 6 months. The scatters of obtained critical load 
values for specimens with diameters of 300 mm and 500 mm are summarized in Figure 5 and Figure 
6, respectively. It should be noted that the results for specimens with different lengths are presented on 



the same figure, as according to the linear classical theory the buckling load for a perfect cylindrical 
shell is not dependent on it’s length, as the shells under investigation are of medium length [2]. 
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Fig. 5 

Buckling loads for D = 300 mm specimens 
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Fig. 6 

Buckling loads for D = 500 mm specimens 
 

As it is seen from the scatter plots, there is significant discrepancy between the maximum and 
minimum buckling loads. Comparing all the results for the cylinders of the same diameter, the 
observed difference is 60% for 300 mm specimens and 40% for 500 mm specimens. The differences 
are significantly smaller when comparing only the results for each cylinder. Average experimentally 
obtained buckling loads and their standard deviations for each cylinder configuration are summarized 
in Table 3. 
For some cylinders the buckling loads had a minor scatter during the repeated loading, as for cylinders 
RTU #1-5, RTU #7, RTU #12, RTU #13, RTU #16. However, for some cylinders, the buckling load 
and also post-buckling behaviour did vary significantly, as in case of cylinders RTU #3, RTU #5 and 
RTU #7. However, no visible damage has been observed on these specimens. 



Not only the buckling loads differ, but the registered post-buckling mode shapes of the cylinders as 
well. Pictures of the typical post-buckling mode shapes for the 300 mm and 500 mm cylinders are 
summarized in Figures 7 and 8. The load-shortening curves with the maximum and minimum obtained 
buckling loads for each specimen configuration are presented in Figure 9. 
After performing the ABAQUS/Explicit [20] finite element analysis and obtaining the buckling 
modes, it is clearly evident that the specimens having the buckling modes close to the numerically 
obtained have the highest buckling loads. The specimen with the highest load-carrying capacity for 
each configuration, namely, RTU #1-4, RTU #3, RTU #11 and RTU #16 all have fairly similar 
buckling mode shapes (see Figures 7 and 8) comparing to the buckling mode shapes obtained 
numerically (see Figure 15). It should be also noted that the pre-buckling stiffness, recorded during the 
experiments, is significantly lower than the calculated one in case of D = 500 mm specimens. It can be 
explained by the low elastic modulus of the MDF end fixture used for these specimens and the fact 
that the shortening has been measured between the steel loading plates. 
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Fig. 7 
Experimentally obtained buckling mode shapes of D = 300 mm specimens 
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Fig. 8 
Experimentally obtained buckling mode shapes of D = 500 mm specimens 
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Fig. 9 
Load-shortening curves for experiments where maximum and minimum buckling loads have been 

obtained for each configuration, and results of ABAQUS/Explicit numerical analysis 



6. Finite Element modelling 
 
Finite Element models of the experimentally investigated shells have been created to assess the 
accordance with numerically obtained result. ANSYS [21] and ABAQUS/Implicit [20] finite element 
codes were considered for this task. The results of linear analysis are buckling modes that are very far 
from the experimentally obtained ones (compare Fig. 10 a, b and Fig.7, Fig. 8), thus confirming that 
the linear eigenvalue and eigenmode analysis techniques can’t be used for comparison with physical 
tests. However, linear analysis was used later for calculation of eigenmodes that were applied to the 
model as “worst case scenario” imperfections. The effect of these artificial geometrical imperfections 
will be discussed later in this article. In case of non-linear analysis, implicit finite element codes had 
serious convergence problems and therefore very unrealistic initial imperfections or too high damping 
factors had to be applied to obtain converging solution. Thus, ABAQUS/Explicit dynamic solution has 
been used to perform the non-linear buckling analysis throughout the study [20]. 
  

a b c  
 

Fig. 10 
Eigenmodes and Post-buckling mode shapes of 300 mm cylinders: a – first eigenmode (Pcr=69.9 kN); 

b – 50th eigenmode (Pcr=72.5 kN); c – non-linear post-buckling mode (Pcr=68.6 kN) 
 
The study on mesh sensitivity and boundary condition study has been performed to elaborate a 
suitable modelling approach. According to the benchmark results presented in [22] 4-node shell 
element S4R has been selected. The mesh sensitivity analysis results show that element size to shell 
radius ratio of 1/20 is most appropriate for the simulation. The load-shortening curves obtained during 
the mesh sensitivity analysis are presented in Fig. 11a and the corresponding post-buckling mode 
shapes are summarized in Fig. 12. The mesh sensitivity analysis was performed on two model sizes – 
on D = 300 mm and L = 560 mm model, and on D = 500 mm diameter and L = 660 mm model. 
Simply supported boundary conditions were used throughout the mesh sensitivity analysis.  
Three sets of boundary conditions were considered during this study (see Fig. 13) – simply supported  
(SS) and clamped along the edges (CL), and a set designated as (SF). The latter is a boundary 
condition set for more realistic representation of the conditions during the experiment that incorporates 
a rigid body connecting the lower edge of the specimen with a reference point located at the centre of 
the spherical support. The difference between the predicted buckling loads in the cases of simply 
supported and clamped boundary conditions did not exceed 5% and therefore the less constraining 
simply supported boundary conditions were used for the idealized reference model. The SF boundary 
conditions included 10 mm eccentricity of the reference point, which represents the random 



eccentricity that can occur during the physical test. This modelling approach resulted in buckling 
mode shapes covering only one side of the circumference (see Fig. 14), as observed during the 
experiments, and slightly lower buckling loads. The load-shortening curves for the three boundary 
condition sets are presented in Fig. 11b. It is evident that inclusion of loading eccentricity of 10 mm 
affects the model with smaller radius more than the model with greater radius. 

Shortening u [mm]

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Lo
ad

 P
 [k

N
]

0

20

40

60

80

100
Model 300-560, a/R = 1/5
Model 300-560, a/R = 1/10
Model 300-560, a/R = 1/20
Model 300-560, a/R = 1/40
Model 500, a/R = 1/5
Model 500, a/R = 1/10
Model 500, a/R = 1/20
Model 500, a/R = 1/40

Shortening u [mm]

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Lo

ad
 P

 [k
N

]
0

20

40

60

80
Model 300-560 SS
Model 300-560 CL
Model 300-560 SF
Model 500 SS
Model 500 CL
Model 500 SF

 
         a          b 

 
Fig. 11 

a - Results of the mesh sensitivity analysis. 
b - Load-shortening  curves obtained with different boundary condition sets: 

SS – simply supported, CL – clamped, SF – with simulation of spherical support 
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Fig. 12 
Buckling modes obtained during the mesh sensitivity analysis for D = 300 mm and D = 500 mm 



 
The SF boundary conditions were used to perform the imperfection sensitivity analysis. Eigenmodes 
were calculated for all of the specimens, and their shapes were used to introduce geometrical 
imperfections. As the eigenvalues are very closely spaced, one of the first 10 eigenmodes was chosen 
for introduction of the imperfections, so the buckling pattern would cover largest part of the shell. 
Imperfection amplitudes were 1/1, 1/2, 1/4 and 1/8 of the skin thickness. The results of imperfection 
sensitivity analysis will be discussed in the next chapter. 
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Fig. 13 
Boundary condition sets considered for numerical analysis 

 
7. Numerical results 
 
According to the linear theory, the critical stress of perfect, anisotropic cylindrical shell is 
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As the elastic moduli E1 and E2, and v1 and v2 are very close for the material under investigation, 
equation (2) becomes the same as the one for isotropic shells (1). According to this formula, the 
critical stress for a perfect axially compressed cylindrical shell is not dependent on its length. After 
modifying the formula to calculate the critical load, the shell radius parameter is also absent: 
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and thus the buckling load is not dependent on the shell radius as well. As the wall thickness of all of 
the specimens investigated was constant, the critical buckling load of perfect shells for all of the 
specimen sizes is equal to 84.09 kN. 
The critical loads obtained from non-linear buckling analysis for the idealized models (with simply 
supported boundary conditions and no imperfections) and “realistic models” with different factors of 
initial imperfections are summarized in Table 2. The corresponding load-shortening curves are 
presented in Fig. 15.  
The results for the idealized models with simply supported boundary conditions confirm the small 
influence of the length of the cylinder on the buckling load. Comparison of the results for models with 

(3) 

(2) 



different radius shows the small influence of the radius as well. All the differences are within 5% for 
the models with simply supported boundary conditions. 

Table 2 
Critical loads for the models considered 

 
 Model 300-400 Model 300-560 Model 300-660 Model 500-660
Analytical formula 84.09 kN 84.09 kN 84.09 kN 84.09 kN 
SS, no imperfections 68.36 kN 68.64 kN 68.64 kN 69.62 kN 
SF, no imperfections 63.14 kN 64.36 kN 64.52 kN 66.94 kN 
SF, imperfection factor t/8 44.39 kN 44.99 kN 45.27 kN 48.46 kN 
SF, imperfection factor t/4 37.09 kN 37.15 kN 36.90 kN 39.54 kN 
SF, imperfection factor t/2 34.12 kN 31.82 kN 32.47 kN 34.80 kN 
SF, imperfection factor t 33.31 kN 28.59 kN 28.18 kN 31.97 kN 
 
It is also evident that buckling loads calculated with non-linear ABAQUS/Explicit finite element code 
are about 18% lower that the ones calculated using the analytical formula (2) based on linear classical 
theory. 
The buckling modes obtained with the non-linear numerical analysis are in good agreement with the 
experiments, considering the fact that the initial geometrical imperfections of the experimentally 
investigated specimens were not included in the analysis. The tested specimens that have the greatest 
critical buckling loads and therefore least initial imperfections had buckling patterns very similar to 
the modes obtained by the “realistic” model that included the spherical support (see Fig. 14). The 
buckling modes for idealized model with simply supported boundary conditions were similar, except 
the buckles were of same magnitude all across the circumference. 
Updating the model with representation of the spherical support also resulted in drop of numerically 
obtained critical buckling load by more than 10%. This makes the numerical solution closer to the 
experimental results, however, the ABAQUS finite element predictions still give a considerable 
overestimation of the buckling load comparing to the experiments. 
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Fig. 14 

Influence of boundary conditions and magnitude of initial imperfections 
on post-buckling shape of the cylinder (results shown only for model 300-560) 

 
Adding initial imperfections to the model decreases the numerically obtained buckling loads and 
confirms that the drop of the critical load depends on the shape and the magnitude of the 
imperfections. As the initial imperfections of the test specimens could not be measured, eigenmode 
shaped initial geometrical imperfections were applied to the finite element models. The magnitude of 
the imperfections is defined as the maximum deviation from the perfect geometry and is called 
“imperfection factor” in this paper. Fractions of the shell thickness were used as the imperfection 
factors in this study. Imperfection factor of t/8 results in a 30 % drop comparing to the intact model, 



and drop up to 59 % has been observed with the imperfection factor equal to the skin thickness t. 
Critical loads obtained analytically, with idealized finite element models and models with different 
imperfection factors are summarized in Table 2, and the corresponding load-shortening curves are 
shown in the Figure 15. The numerical results closest to the average experimental results are 
summarized in the Table 3. The results show, that it probably possible to predict average buckling 
loads of series of composite cylinders, provided that statistical data of their imperfection character and 
magnitude is available. Though, further studies on buckling of imperfect shells are needed, along with 
experimental and numerical imperfection sensitivity analysis of axially compressed composite 
cylinders. 
 

Table 3 
Comparison of experimental and numerical results 

 
Specimen 
configuration 

Average experimental 
Pcr [kN] 

Standard 
deviation [kN] 

Closest numerical 
Pcr [kN] 

Imperfection 
factor 

300-400 36.99 2.84 37.09 t/4 
300-560 39.73 3.90 37.15 t/4 
300-660 28.15 6.00 28.18 t 
500-660 28.87 3.93 31.97 t 
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Fig. 15 
Numerically obtained load-shortening curves for different imperfection magnitudes 



8. Conclusions 
 
An experimental and numerical investigation on buckling behaviour of composite cylinders has been 
performed. 18 specimens with diameters of 300 mm and 500 mm and lengths of 400 mm to 660 mm 
have been repeatedly loaded until post-buckling. The performed experiments were also simulated 
using ABAQUS/Explicit finite element code. 
The experimental results had significant scatter of critical loads, differing up to 40% for the specimens 
that have same dimensions (see Figures 5 and 6), while the maximum difference between the results of 
repeated experiments was ranging from 3% in case of specimen RTU #16 to 21% in case of specimen 
RTU #3. The knockdown factors obtained in the experiments were ranging from 0.25 for specimen 
RTU #10 to 0.58 for specimen RTU #3. These knockdown factors are within the margins observed by 
Harris et al [24]. 
The numerical results have been obtained by ABAQUS/Explicit finite element code for perfect models 
of the test specimens as well as for models updated with more “realistic” boundary conditions and 
introduced initial imperfections. Use of ANSYS and ABAQUS/Implicit finite element codes has been 
assessed as well, but with less success due to highly non-linear response of the structure. The critical 
buckling loads were also analytically obtained using classical linear theory. 
The comparison of experimentally obtained buckling mode shapes with the ones obtained by 
ABAQUS/Explicit show good accordance between the modes observed for the specimens with the 
highest buckling loads and the numerical result. However, the buckling loads of the perfect models are 
significantly higher than the highest experimentally obtained buckling loads, but lower than 
analytically obtained ones. Application of the artificial imperfections in shape of eigenmodes to the 
finite element model lowered the buckling load significantly and the higher magnitude imperfections 
also changed the numerically obtained buckling mode shapes. The shorter specimens have the greatest 
experimentally obtained buckling loads and least standard deviations in the test series, which means 
they have less initial imperfections. Consequently, relatively small imperfections had to be introduced 
to the numerical model to obtain close result. In contrary, the specimens with greater length had 
smaller buckling loads, greater standard deviations, and the greatest considered amplitude of artificial 
imperfections resulted in close numerical results. 
Good agreement between experimental and numerical results can be observed, however, further 
studies are necessary. First of all, the effect of loading eccentricity has to be assessed to build a more 
realistic finite element model. Other materials and t/r ratios of specimens should be used to validate 
the results of finite element analysis. Technology for measurement of geometrical and thickness 
imperfections has to be developed to update the finite element models with actual imperfections. This 
measurement technology would also allow performing statistical analysis of imperfection size and 
shape of the imperfections in specimens, as well as quality control. A scanning technology that would 
allow measuring the buckled shape of the specimens should be developed for advanced comparison 
between experimental and numerical results. Some steps on adopting laser scanning equipment used in 
geomatics for these measurements have already been made. 
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Eglītis E., Kalniņš K., Ozoliņš O. Centriski spiestu kompozīto cilindru noturības eksperimentāls un skaitlisks 
pētījums 
Plānsienu čaulas ir racionālas konstrukcijas, kas ir vieglas un ar augstu nestspēju, taču, atšķirībā no stieņiem 
un plātnēm, čaulām ir ļoti nestabila pēcnoturības uzvedība, kas sarežģī to projektēšanu un noturības aprēķinus. 
Centriski spiesta cilindra noturība ir vienkāršs, klasisks čaulas aprēķina uzdevuma piemērs, tomēr iegūt labu 
sakritību starp aprēķiniem un natūras eksperimentiem joprojām ir grūti. Šī pētījuma ietvaros ir tikuši izgatavoti 
18 stikla šķiedras auduma kompozīti cilindri ar sieniņas biezumu 1.1 mm un diametriem 0.3 un 0.5 m, dažādiem 
augstumiem, kā arī plakani paraugi materiāla elastīgo īpašību noteikšanai. Cilindri tika atkārtoti slogoti pāri 
noturības robežai, iegūstot slodzes-pārvietojumu līknes un noturības formas attēlus. Salīdzinājumam galīgo 
elementu programmā ABAQUS tika izveidoti šo cilindru modeļi un veiktas eksperimentu simulācijas, kā arī 
veikti analītiski kritiskā spēka aprēķini šādiem cilindriem. Pakāpeniski pilnveidojot skaitlisko modeli un 
papildinot to ar sākotnējām ģeometriskām nepilnībām, ir izdevies iegūt ar eksperimentiem saskanošu rezultātus. 
Arī eksperimentos novērotās noturības formas atbilst galīgo elementu simulācijās iegūtajām. 
 
 
Eglītis E., Kalniņš K., Ozoliņš O. Experimental and numerical study on buckling of axially compressed 
composite cylinders 
Thin shells are lightweight, efficient structures that can support very high buckling loads. However, unlike 
columns and plates, shells usually have a very unstable post-buckling behaviour that strongly influences their 
buckling characteristics. Axially compressed cylinder may be one of the last classical problems in structural 
mechanics for which it remains difficult to obtain close agreement between careful experiments and the best 
predictions from numerical modelling, and therefore much more research is needed on this subject. Within this 
investigation, 18 glass fibre composite shells with wall thickness of 1.1 mm, 0.3 m and 0.5 m diameters and 
various lengths have been produced along with flat specimens for determination of elastic properties of the 
material. The cylinders were repeatedly loaded until post-buckling and load-shortening curves and pictures of 
buckling mode shapes have been registered. Finite element models of the specimens have been developed in 
ABAQUS finite element package and non-linear explicit dynamic analyses have been performed for comparison 
with experimental and analytical results. Gradually improving the finite element model and adding artificial 
initial imperfections resulted in good agreement between the experimental and numerically obtained critical 
loads. The buckling modes observed during the experiments are in good agreement with the results of finite 
element simulations as well. 
 



Эглитис Э., Калниньш К., Озолыньш О. Эксперементальное и численное исследование 
устойчивости композитных цилиндров под осевым сжатием 
Тонкостенные оболочки – это лёгкие, рациональные конструкции, которые способны нести высокие 
нагрузки. В отличие от стержней и пластин, оболочкам свойственно очень нестабильное пост-
критическое поведение и поэтому в инженерных науках проблемы устойчивости оболочек 
десятилетиями являются актуальными. Центрально сжатый цилиндр является однои из последних 
задач в строительной механике, для которых до сих пор трудно добиться хорошего совпадения между 
самыми точными экспериментами и рассчетами, и, следовательно, требуются дополнительные 
исследования. 18 композитных цилиндров разной длинны, с толщинои стенки 1.1 мм, диаметрами 0.3 м 
и 0.5 м, а так же плоские образцы для определения механических своиств материала, были 
подготовлены для данного исследования. Цилиндры подвергались повторному осевому сжатию до пост-
критического состояния. При этом записывались диаграммы нагрузки-перемещения и формы потери 
устоичивости. С помощю программы ABAQUS были разработаны конечно-элементные модели 
цилиндров и проведен нелинеиный динамический рассчет для сравнения с экспериментальными и 
аналитическими результатами. Постепенно совершенствуя численную модель, и пополняя её 
начальними геометрическими несовершенствами удалось получить результаты близкие к 
эксперементальным. 


