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1. Introduction

Thin shells are efficient structures that can support very high buckling loads. However, unlike columns
and plates, shells usually have a very unstable post-buckling behaviour that strongly influences their
buckling characteristics. Hence their buckling and post-buckling have presented scientific and
engineering challenges for decades. [1] Axially compressed cylinder may be one of the last classical
problems in structural mechanics for which it remains difficult to obtain close agreement between
careful experiments and the best predictions from numerical modelling, therefore this is a subject of
continuous research. [2]
Buckling and post-buckling of axially compressed, homogenous isotropic cylinders has been
investigated since it was first identified in the beginning of the last century by “wrinkling” or
“secondary flexure” in columns. [3] In practice, buckling of cylindrical shells under axial compression
became important as their use in aircraft structures broadened as thin-walled columns and stressed-
skin construction of fuselages and wings, introduced in the late twenties. Since then the shell buckling
phenomena became the central design problem of aerospace structures. [4]
According to the well-known and accepted linear classical theory, the linear bifurcation buckling
stress for a perfect isotropic cylindrical shell under ideal conditions (of medium length, with pre-
buckling stresses by the boundary conditions and boundaries that restrain circumferential
displacements during buckling) is (1):
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where FE is the elastic modulus of the material, v is the Poisson ratio, ¢ is wall thickness and 7 is the
radius of the cylinder. This buckling stress equation was independently found by Lorenz [5],
Timoshenko [6] and Southwell [7] and is known as the “classical elastic critical stress”.

At this buckling stress, a very large number of different buckling modes or eigenmodes are all
simultaneously critical, sometimes over 100 modes within 1% above the first one. The steeply falling
post-buckling path is associated with the proximity of these many modes. [2]

As mentioned before, significant effort has been applied to understand the post-buckling phenomena
for axially compressed cylinders, though it is still difficult to obtain good accordance of experimental
results and numerical predictions. The initial imperfections are dependant on production technology
and post-processing, therefore it is still impossible to produce cylinders with no imperfections that
would affect the buckling strength. There are imperfections in the shell geometry, thickness variations,
residual stresses and poor definition of boundary conditions. It is widely accepted that the most
important factor contributing to the discrepancy between theory and experiment for axially
compressed cylinders is initial imperfections in the shell geometry. [2, 8] Since initial imperfections
are obviously random by nature, stochastic stability analysis can be used. The buckling of
imperfection sensitive structures with small random imperfections has been studied by several
investigators, such as Bolotin [9], Faser and Budiansky [10] and Amazigo [11]. However, considering



the absence of experimental evidence about type of imperfections that occur in practice and in order to
reduce the mathematical complexity of the problem, all the above-named investigators have been
working with some form of idealised imperfection distribution. [1]

Extensive experimental and analytical studies on the buckling of composite cylinders made of carbon
fibre reinforced plastics (CFRP) have been conducted at the Institute for Aerospace Studies,
University of Toronto in the seventies and eighties. Special emphasis was given in these studies to the
effect of initial geometrical imperfections of the cylinder. The random distributions of the geometrical
imperfections of the shells were determined by mounting the shell in a transversing device equipped
with two, diametrically opposed low pressure, linear contracting transducers. The imperfection data
was fed into Fourier analysis program, and imperfection amplitudes and an estimated line of power
spectral density as a function of special frequency was computed. The data recorded by transducers
were also used to compute the average shell thickness. The cylinders were tested with their ends
clamped into fitted aluminium plates and bonded.

The analytical estimates of the buckling capacity of the imperfect shells were based on the maximum
value of the imperfection amplitude, which was obtained from the statistical representation of the
measured initial geometrical imperfection. The magnitude of the imperfection amplitude was in the
order of the shell wall thickness, and resulted in significantly lower buckling strength comparing to
perfect cylinders. It has been reported that the agreement between the predicted response and the
experiments was consistently good, with discrepancy not exceeding 20 percent. [12]

More recently, buckling tests on composite cylinders manufactured from CFRP prepregnated material
were conducted at the German Aerospace centre DLR, Brauschweig, Germany. One study was
devoted to experimental confirmation of the computed large difference between the optimum and
pessimum designs, where the optimum may be as high as 2.8 times that of the worst one, for laminates
consisting of the same number of plies. The comparison with the analytical predictions yielded in
“knock-down” factors ranging from 0.80 — 1.03, their scatter was small and they were not significantly
smaller for the optimal cylinders (about 0.8) than the pessimal ones (about 0.9). [13]

The same authors also have performed search for imperfection tolerant laminate lay-up. The results
show that imperfection sensitivity of composite cylinders depends on lay up. A knock-down factor of
0.68 was experienced with the (£75/+75) laminates, while a knock-down factor of 0.91 was found for
the (0,/£19/+37/+45/+£51) laminates. [14]

Extensive experimental, analytical and numerical investigations on the buckling behaviour of
composite cylindrical shells were carried out at the Departments of Aerospace Engineering and
Structural Engineering, Politechnico di Milano, Italy. The cylinders investigated were 700 mm long,
with 700 mm diameter and reinforced at the ends to facilitate their fixing into loading rig. Cross-ply
(0/90)s, angle-ply (£45)s and eight-ply quasi-isotropic lay-ups were used in these investigations.
Particular attention has been paid to the boundary conditions. The employed loading rig provided
good-accuracy displacement-controlled loading, and elaborate clamping devices were used to
constrain the ends of the specimens. The inner and outer surfaces were scanned using non-contact
measuring device to record the initial geometrical imperfections and their growth during the loading.
The results were compared to theoretical predictions and knock-down factors raging from 0.86 for
angle-ply cylinders to 0.88 for cross-ply cylinders were obtained. [15]

There are are number of studies performed on post-buckling of composite cylinders, which included
measuring of initial imperfections and applying to numerical models. These investigations include
works by Meyer-Piening et al. [16] and Bisagni et al. [17]. Employing the updated models, fair
agreement of experimental and numerical results has been achieved for torsional loading.

Most investigations on buckling of axially compressed cylinders have been focused on metallic
cylindrical shells. In this paper, buckling behaviour of thin E-glass fabric/polyester resin matrix
composite cylinders of medium length has been investigated.

2. Specimens

Series of thin cylinders have been produced for this study. All the specimens share the same wall
thickness of 1.1 mm and material — E-glass fibre fabric / polyester resin matrix composite. 290 g/m’



fabric was used and 4 layers of fabric were winded to achieve the specified wall thickness. The
cylinders had diameters (D) of 300 mm and 500 mm and lengths (L) of 400 mm, 560 mm and 660
mm. Numbers of the specimens and their dimensions are presented in Table 1. Additionally, flat
specimens of the same fabric and resin were produced for determination of material properties
according to LVS EN ISO 527-4:2000 [18] standard.

Table 1
Dimensions and designations of specimens

Diameter D
300 mm 500 mm

RTU #6
RTU #12
RTU #13
RTU #16

RTU #3
RTU #4
RTU #5
RTU #7

400 mm

Free length L
560 mm

RTU #9 ggz}é RTU #1-5
RTU #10 RTU #1.3 RTIU#1-6
RTU #11 MU f RTU#LT

660 mm

All the specimens were produced employing cylindrical, slightly conical mould. The conical shape is
necessary for easy removal of the specimens without any damage. Vacuum bag moulding was
employed to remove excess resin and ensure more consistent material properties, excluding specimens
RTU #1-5 through RTU #1-7. The flat specimens were produced using vacuum bag moulding as
well.

The specimens with diameter of 300 mm were cured in an autoclave with 80°C temperature, but
specimens with diameter of 500 mm were cured in ambient temperature of about 20°C.

Special end fixture was necessary [19] to assure balanced load distribution and consistent boundary
conditions (see Fig. 1). After curing the specimens were cut to their lengths and the ends were potted
into gaps of circular plates using mixture of aluminium powder and epoxy resin. The plates were cut
out of MDF and plywood boards for specimens of 500 mm and 300 mm in diameter, respectively.
Finally, the specimens were painted white using acrylic spray paint for post-buckling shape
monitoring using moiré fringes.

3. Determination of material properties

The material properties have been determined by tensile experiments, where the flat plates were cut
into tension specimens. The tests were performed according to the ISO 527-4:2000 standard, and the
chosen specimen configuration is shown in Fig. 2. According to the standard, end tabs were bonded
before cutting. Tensile tests were performed at a laboratory of the RTU Institute of Materials and
Structures, equipped with Zwick Z100 machine. The test was displacement-controlled, the load was
measured by a load cell and the strains were registered by a laser extensometer. Total of 14 specimens
were tested, half of them in 0° direction and other half in 90° direction. The average elastic modulus
was computed for every direction separately from the 0.05% to 0.25% strain, according to the ISO
standard. The obtained load-extension curves are presented on Fig. 3.

The average elastic modulus F of this E-glass fibre fabric / polyester resin matrix composite has been
measured 18.28 GPa in 0° direction and 18.66 GPa in 90° direction and the standard deviations are



0.78 MPa and 0.48 MPa, respectively. The average measured breaking tensile stress oy, was
registered 219 MPa with 13 MPa standard deviation in 0° direction and 296 MPa in 90° direction with
26 MPa standard deviation.
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Specimen for determination of composite’s tensile properties

4. Experimental set-up

The experimental rig prepared at the laboratory of the RTU Institute of Materials and Structures
consists of Instron 8802 hydraulic frame, Instron 3520 hydraulic pump, Instron 8800 Fast Track
controller and a computer (Fig. 4). The load is being introduced through pair of grips and two steel
plates. The top plate is fixed to the grip, while the bottom plate is spherically supported to distribute
the load evenly when the specimen end plates aren’t strictly parallel. The rotation centre of the
spherical support is 150 mm above the bottom plate. The load cell that registers the axial load of the
cylinder is located between the lower grip and the frame.

In order to monitor the post-buckling shapes of the cylinders, a basic interferometry set-up has been
created. A moiré fringe with both line thickness and distance between lines of 1 mm was placed in



front of the specimens. Placing a spotlight and a camera at different angles resulted in pictures with

moiré patterns clearly indicating post-buckling shapes on the taken pictures (Fig.7, 8).
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Load-extension curves of the tests for determination of tensile properties
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Fig. 4
The set-up for buckling experiments

5. Experimental results

All the specimens were repeatedly loaded until post-buckling to determine their buckling loads and
corresponding buckling shapes within a timeframe of 6 months. The scatters of obtained critical load
values for specimens with diameters of 300 mm and 500 mm are summarized in Figure 5 and Figure
6, respectively. It should be noted that the results for specimens with different lengths are presented on



the same figure, as according to the linear classical theory the buckling load for a perfect cylindrical
shell is not dependent on it’s length, as the shells under investigation are of medium length [2].
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Buckling loads for D = 300 mm specimens
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Buckling loads for D = 500 mm specimens

As it is seen from the scatter plots, there is significant discrepancy between the maximum and
minimum buckling loads. Comparing all the results for the cylinders of the same diameter, the
observed difference is 60% for 300 mm specimens and 40% for 500 mm specimens. The differences
are significantly smaller when comparing only the results for each cylinder. Average experimentally
obtained buckling loads and their standard deviations for each cylinder configuration are summarized
in Table 3.

For some cylinders the buckling loads had a minor scatter during the repeated loading, as for cylinders
RTU #1-5, RTU #7, RTU #12, RTU #13, RTU #16. However, for some cylinders, the buckling load
and also post-buckling behaviour did vary significantly, as in case of cylinders RTU #3, RTU #5 and
RTU #7. However, no visible damage has been observed on these specimens.



Not only the buckling loads differ, but the registered post-buckling mode shapes of the cylinders as
well. Pictures of the typical post-buckling mode shapes for the 300 mm and 500 mm cylinders are
summarized in Figures 7 and 8. The load-shortening curves with the maximum and minimum obtained
buckling loads for each specimen configuration are presented in Figure 9.

After performing the ABAQUS/Explicit [20] finite element analysis and obtaining the buckling
modes, it is clearly evident that the specimens having the buckling modes close to the numerically
obtained have the highest buckling loads. The specimen with the highest load-carrying capacity for
each configuration, namely, RTU #1-4, RTU #3, RTU #11 and RTU #16 all have fairly similar
buckling mode shapes (see Figures 7 and 8) comparing to the buckling mode shapes obtained
numerically (see Figure 15). It should be also noted that the pre-buckling stiffness, recorded during the
experiments, is significantly lower than the calculated one in case of D = 500 mm specimens. It can be
explained by the low elastic modulus of the MDF end fixture used for these specimens and the fact
that the shortening has been measured between the steel loading plates.

RTU #10 RTU #11

Fig. 7
Experimentally obtained buckling mode shapes of D = 300 mm specimens
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Load-shortening curves for experiments where maximum and minimum buckling loads have been
obtained for each configuration, and results of ABAQUS/Explicit numerical analysis



6. Finite Element modelling

Finite Element models of the experimentally investigated shells have been created to assess the
accordance with numerically obtained result. ANSYS [21] and ABAQUS/Implicit [20] finite element
codes were considered for this task. The results of linear analysis are buckling modes that are very far
from the experimentally obtained ones (compare Fig. 10 a, b and Fig.7, Fig. 8), thus confirming that
the linear eigenvalue and eigenmode analysis techniques can’t be used for comparison with physical
tests. However, linear analysis was used later for calculation of eigenmodes that were applied to the
model as “worst case scenario” imperfections. The effect of these artificial geometrical imperfections
will be discussed later in this article. In case of non-linear analysis, implicit finite element codes had
serious convergence problems and therefore very unrealistic initial imperfections or too high damping
factors had to be applied to obtain converging solution. Thus, ABAQUS/Explicit dynamic solution has
been used to perform the non-linear buckling analysis throughout the study [20].

a b c

Fig. 10
Eigenmodes and Post-buckling mode shapes of 300 mm cylinders: a — first eigenmode (Pcr=69.9 kN);
b —50™ eigenmode (Pcr=72.5 kN); ¢ — non-linear post-buckling mode (Pcr=68.6 kN)

The study on mesh sensitivity and boundary condition study has been performed to elaborate a
suitable modelling approach. According to the benchmark results presented in [22] 4-node shell
element S4R has been selected. The mesh sensitivity analysis results show that element size to shell
radius ratio of 1/20 is most appropriate for the simulation. The load-shortening curves obtained during
the mesh sensitivity analysis are presented in Fig. 11a and the corresponding post-buckling mode
shapes are summarized in Fig. 12. The mesh sensitivity analysis was performed on two model sizes —
on D = 300 mm and L = 560 mm model, and on D = 500 mm diameter and L = 660 mm model.
Simply supported boundary conditions were used throughout the mesh sensitivity analysis.

Three sets of boundary conditions were considered during this study (see Fig. 13) — simply supported
(SS) and clamped along the edges (CL), and a set designated as (SF). The latter is a boundary
condition set for more realistic representation of the conditions during the experiment that incorporates
a rigid body connecting the lower edge of the specimen with a reference point located at the centre of
the spherical support. The difference between the predicted buckling loads in the cases of simply
supported and clamped boundary conditions did not exceed 5% and therefore the less constraining
simply supported boundary conditions were used for the idealized reference model. The SF boundary
conditions included 10 mm eccentricity of the reference point, which represents the random



eccentricity that can occur during the physical test. This modelling approach resulted in buckling
mode shapes covering only one side of the circumference (see Fig. 14), as observed during the
experiments, and slightly lower buckling loads. The load-shortening curves for the three boundary
condition sets are presented in Fig. 11b. It is evident that inclusion of loading eccentricity of 10 mm
affects the model with smaller radius more than the model with greater radius.
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a - Results of the mesh sensitivity analysis.
b - Load-shortening curves obtained with different boundary condition sets:
SS — simply supported, CL — clamped, SF — with simulation of spherical support
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Fig. 12
Buckling modes obtained during the mesh sensitivity analysis for D =300 mm and D = 500 mm



The SF boundary conditions were used to perform the imperfection sensitivity analysis. Eigenmodes
were calculated for all of the specimens, and their shapes were used to introduce geometrical
imperfections. As the eigenvalues are very closely spaced, one of the first 10 eigenmodes was chosen
for introduction of the imperfections, so the buckling pattern would cover largest part of the shell.
Imperfection amplitudes were 1/1, 1/2, 1/4 and 1/8 of the skin thickness. The results of imperfection
sensitivity analysis will be discussed in the next chapter.

H

Fig. 13
Boundary condition sets considered for numerical analysis

7. Numerical results

According to the linear theory, the critical stress of perfect, anisotropic cylindrical shell is
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As the elastic moduli £, and E,, and v; and v, are very close for the material under investigation,
equation (2) becomes the same as the one for isotropic shells (1). According to this formula, the
critical stress for a perfect axially compressed cylindrical shell is not dependent on its length. After
modifying the formula to calculate the critical load, the shell radius parameter is also absent:
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and thus the buckling load is not dependent on the shell radius as well. As the wall thickness of all of
the specimens investigated was constant, the critical buckling load of perfect shells for all of the
specimen sizes is equal to 84.09 kN.

The critical loads obtained from non-linear buckling analysis for the idealized models (with simply
supported boundary conditions and no imperfections) and “realistic models” with different factors of
initial imperfections are summarized in Table 2. The corresponding load-shortening curves are
presented in Fig. 15.

The results for the idealized models with simply supported boundary conditions confirm the small
influence of the length of the cylinder on the buckling load. Comparison of the results for models with

P =2mto, =2



different radius shows the small influence of the radius as well. All the differences are within 5% for
the models with simply supported boundary conditions.

Table 2
Critical loads for the models considered
Model 300-400 | Model 300-560 | Model 300-660 | Model 500-660
Analytical formula 84.09 kN 84.09 kN 84.09 kN 84.09 kN
SS, no imperfections 68.36 kN 68.64 kKN 68.64 kN 69.62 kN
SF, no imperfections 63.14 kKN 64.36 kKN 64.52 kN 66.94 kN
SF, imperfection factor #/8 44.39 kN 44.99 kN 45.27 kN 48.46 kN
SF, imperfection factor #/4 37.09 kN 37.15kN 36.90 kN 39.54 kN
SF, imperfection factor #/2 34.12 kN 31.82 kN 32.47 kN 34.80 kN
SF, imperfection factor ¢ 33.31 kN 28.59 kN 28.18 kN 31.97 kN

It is also evident that buckling loads calculated with non-linear ABAQUS/Explicit finite element code
are about 18% lower that the ones calculated using the analytical formula (2) based on linear classical
theory.

The buckling modes obtained with the non-linear numerical analysis are in good agreement with the
experiments, considering the fact that the initial geometrical imperfections of the experimentally
investigated specimens were not included in the analysis. The tested specimens that have the greatest
critical buckling loads and therefore least initial imperfections had buckling patterns very similar to
the modes obtained by the “realistic” model that included the spherical support (see Fig. 14). The
buckling modes for idealized model with simply supported boundary conditions were similar, except
the buckles were of same magnitude all across the circumference.

Updating the model with representation of the spherical support also resulted in drop of numerically
obtained critical buckling load by more than 10%. This makes the numerical solution closer to the
experimental results, however, the ABAQUS finite element predictions still give a considerable
overestimation of the buckling load comparing to the experiments.

SS Bes SF Bes SF Bes SF Bcs SF Bes SF Bes
no imperfection no imperfection imperfection factor t/8  imperfection factor t/4 imperfection factor /2  imperfection factor t

Fig. 14
Influence of boundary conditions and magnitude of initial imperfections
on post-buckling shape of the cylinder (results shown only for model 300-560)

Adding initial imperfections to the model decreases the numerically obtained buckling loads and
confirms that the drop of the critical load depends on the shape and the magnitude of the
imperfections. As the initial imperfections of the test specimens could not be measured, eigenmode
shaped initial geometrical imperfections were applied to the finite element models. The magnitude of
the imperfections is defined as the maximum deviation from the perfect geometry and is called
“imperfection factor” in this paper. Fractions of the shell thickness were used as the imperfection
factors in this study. Imperfection factor of #/8 results in a 30 % drop comparing to the intact model,




and drop up to 59 % has been observed with the imperfection factor equal to the skin thickness ¢.
Critical loads obtained analytically, with idealized finite element models and models with different
imperfection factors are summarized in Table 2, and the corresponding load-shortening curves are
shown in the Figure 15. The numerical results closest to the average experimental results are
summarized in the Table 3. The results show, that it probably possible to predict average buckling
loads of series of composite cylinders, provided that statistical data of their imperfection character and
magnitude is available. Though, further studies on buckling of imperfect shells are needed, along with
experimental and numerical imperfection sensitivity analysis of axially compressed composite

cylinders.
Table 3
Comparison of experimental and numerical results
Specimen Average experimental Standard Closest numerical | Imperfection
configuration P.. [kN] deviation [KN] P.. [KN] factor
300-400 36.99 2.84 37.09 /4
300-560 39.73 3.90 37.15 /4
300-660 28.15 6.00 28.18 t
500-660 28.87 3.93 31.97 t
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Numerically obtained load-shortening curves for different imperfection magnitudes



8. Conclusions

An experimental and numerical investigation on buckling behaviour of composite cylinders has been
performed. 18 specimens with diameters of 300 mm and 500 mm and lengths of 400 mm to 660 mm
have been repeatedly loaded until post-buckling. The performed experiments were also simulated
using ABAQUS/Explicit finite element code.

The experimental results had significant scatter of critical loads, differing up to 40% for the specimens
that have same dimensions (see Figures 5 and 6), while the maximum difference between the results of
repeated experiments was ranging from 3% in case of specimen RTU #16 to 21% in case of specimen
RTU #3. The knockdown factors obtained in the experiments were ranging from 0.25 for specimen
RTU #10 to 0.58 for specimen RTU #3. These knockdown factors are within the margins observed by
Harris et al [24].

The numerical results have been obtained by ABAQUS/Explicit finite element code for perfect models
of the test specimens as well as for models updated with more “realistic” boundary conditions and
introduced initial imperfections. Use of ANSYS and ABAQUS/Implicit finite element codes has been
assessed as well, but with less success due to highly non-linear response of the structure. The critical
buckling loads were also analytically obtained using classical linear theory.

The comparison of experimentally obtained buckling mode shapes with the ones obtained by
ABAQUS/Explicit show good accordance between the modes observed for the specimens with the
highest buckling loads and the numerical result. However, the buckling loads of the perfect models are
significantly higher than the highest experimentally obtained buckling loads, but lower than
analytically obtained ones. Application of the artificial imperfections in shape of eigenmodes to the
finite element model lowered the buckling load significantly and the higher magnitude imperfections
also changed the numerically obtained buckling mode shapes. The shorter specimens have the greatest
experimentally obtained buckling loads and least standard deviations in the test series, which means
they have less initial imperfections. Consequently, relatively small imperfections had to be introduced
to the numerical model to obtain close result. In contrary, the specimens with greater length had
smaller buckling loads, greater standard deviations, and the greatest considered amplitude of artificial
imperfections resulted in close numerical results.

Good agreement between experimental and numerical results can be observed, however, further
studies are necessary. First of all, the effect of loading eccentricity has to be assessed to build a more
realistic finite element model. Other materials and #/r ratios of specimens should be used to validate
the results of finite element analysis. Technology for measurement of geometrical and thickness
imperfections has to be developed to update the finite element models with actual imperfections. This
measurement technology would also allow performing statistical analysis of imperfection size and
shape of the imperfections in specimens, as well as quality control. A scanning technology that would
allow measuring the buckled shape of the specimens should be developed for advanced comparison
between experimental and numerical results. Some steps on adopting laser scanning equipment used in
geomatics for these measurements have already been made.
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Eglitis E., Kalnins$ K., Ozolin§ O. Centriski spiestu kompozito cilindru noturibas eksperimentals un skaitlisks
petijums

Plansienu caulas ir racionalas konstrukcijas, kas ir vieglas un ar augstu nestspéju, tacu, atskirtba no stieniem
un plameém, caulam ir Joti nestabila pécnoturibas uzvediba, kas sarezgrt to projekteSanu un noturibas aprékinus.
Centriski spiesta cilindra noturiba ir vienkarss, klasisks caulas aprékina uzdevuma piemers, tomeér iegiit labu
sakritibu starp aprékiniem un natiiras eksperimentiem joprojam ir griiti. St pétijuma ietvaros ir tikusi izgatavoti
18 stikla skiedras auduma kompoziti cilindri ar sieninas biezumu 1.1 mm un diametriem 0.3 un 0.5 m, dazadiem
augstumiem, ka art plakani paraugi materiala elastigo ipasibu noteiksanai. Cilindri tika atkartoti slogoti pari
noturibas robezai, iegiistot slodzes-parvietojumu liknes un noturibas formas attélus. Salidzinajumam galigo
elementu programma ABAQUS tika izveidoti 5o cilindru modeli un veiktas eksperimentu simulacijas, ka art
veikti analitiski kritiska spéka aprékini Sddiem cilindriem. Pakapeniski pilnveidojot skaitlisko modeli un
papildinot to ar sakotnéjam geometriskam nepilnibam, ir izdevies iegiit ar eksperimentiem saskanosu rezultatus.
Ari eksperimentos noverotas noturibas formas atbilst galigo elementu simuldcijas iegiitajam.

Eglitis E., Kalnins K., Ozolin§ O. Experimental and numerical study on buckling of axially compressed
composite cylinders

Thin shells are lightweight, efficient structures that can support very high buckling loads. However, unlike
columns and plates, shells usually have a very unstable post-buckling behaviour that strongly influences their
buckling characteristics. Axially compressed cylinder may be one of the last classical problems in structural
mechanics for which it remains difficult to obtain close agreement between careful experiments and the best
predictions from numerical modelling, and therefore much more research is needed on this subject. Within this
investigation, 18 glass fibre composite shells with wall thickness of 1.1 mm, 0.3 m and 0.5 m diameters and
various lengths have been produced along with flat specimens for determination of elastic properties of the
material. The cylinders were repeatedly loaded until post-buckling and load-shortening curves and pictures of
buckling mode shapes have been registered. Finite element models of the specimens have been developed in
ABAQUS finite element package and non-linear explicit dynamic analyses have been performed for comparison
with experimental and analytical results. Gradually improving the finite element model and adding artificial
initial imperfections resulted in good agreement between the experimental and numerically obtained critical
loads. The buckling modes observed during the experiments are in good agreement with the results of finite
element simulations as well.



Denumuc 3., Kannunvw K., Ozonvinbm Q. DKcnepemeHmanvHoe U YUCAEHHOE UCCTe008AHUe
ycmouuugocmu KOMROZUMHBIX YUIUHOPOE NOO 0CEBbIM CHCAMUEM

Tonxocmennvie 00010YKU — MO 1E2KUE, PAYUOHALbHBIE KOHCMPYKYUL, KOMOPble CNOCOOHbI HECMU BbICOKUE
Haepy3ku. B omauuue om cmepoicHell U NAACMUH, 0OONOYKAM CBOUCMBEHHO OYeHb HeCmabuibHoe nocm-
Kpumuueckoe noseoeHue u HOdMOMY 6 UHICEHEPHbIX HAYKAX npobiemvl ycmouyusocmu 060104eK
OoecsamunemusmMuy sIsIOmcs. akmyanvhuvimu. Llenmpanovho cocamulii YyunuHop s61Aemcsi OOHOU U3 NOCAEOHUX
3a0a4 8 CMpoumenbHoU MexanuKe, Ol KOMopblx 00 CUX NOp MPYOHO O0OUMBCI XOPOUe20 CO8NAOCHUS MeNCOY
CaMbIMU  TOYHBIMU IKCNEPUMEHMAMU U pPACCUemamu, U, CIe008aAmenbHo, Mpedylomcs OONOIHUMENbHbIE
uccnedoganus. 18 KOMNOUMHBIX YUTUHOPOE PA3HOU ONUHKbL, ¢ moauunou cmenku 1.1 vum, ouamempamu 0.3 m
u 0.5 m, a max oce nrockue o6pazyvl Oisl ONPeOeleHUs MeXaHUYeCcKux C8OUucms mamepuaid, ObLiu
n0020moenenbl 0151 OAGHHO20 Ucc1e008anus. Llununopul noosepeanucs NOGMOPHOMY 0CE8OMY CHCAMUIO 00 HOCHI-
Kpumuuecko2o cocmosnus. Ilpu smom 3anucei8aniucy ouazpammuvl HAZpy3Ku-nepemeujerus u opmvl nomepu
yemouuugocmu. C  nomowro npoepammel ABAQUS 6vinu  paspabomansvt KOHewHO-deMeHmHble MOOenu
YUTUHOPOB U NpOBedeH HEeTUHEUHbI OUHAMUYeCKUll paccuem ONs CPABHEeHUs C IKCHePUMEHMANbHbIMU U
ananumuyeckumu  pesyivmamamu. Ilocmenenno cogepuleHcmeys YUCTEHHYI0 MOoOelb, U NONOIHAL eé
HAYANbHUMU — 20MEMPUYECKUMU — HeCOBEPUIEHCMBAMU  YOALOCh — NOYYUMb — pe3yibmamvl  Oauskue K
IKCNEPEeMEHMATIbHBIM.



