Using Data Structure Properties in Decision Tree Classifier Design
2010
Inese Poļaka, Arkādijs Borisovs

This paper studies the techniques of performance enhancement for decision tree classifiers (DTC) that are based on data structure analysis. To improve the performance of DTC, two methods are used – class decomposition that uses the structure of class density and taxonomy based DTC design that uses interactions between attribute values. The paper shows experimental exploration of the methods, their strengths and imperfections and also outlines the directions for further research.


Atslēgas vārdi
attribute value taxonomy, class decomposition, classification, decision tree classifiers, classifier performance enhancement

Poļaka, I., Borisovs, A. Using Data Structure Properties in Decision Tree Classifier Design. Informācijas tehnoloģija un vadības zinātne. Nr.44, 2010, 111.-117.lpp. ISSN 1407-7493.

Publikācijas valoda
English (en)
RTU Zinātniskā bibliotēka.
E-pasts: uzzinas@rtu.lv; Tālr: +371 28399196